fu catalyst 1

Upload: rahn-na

Post on 15-Feb-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Fu Catalyst 1

    1/34

    Aspects of Asymmetric Nucleophilic Amine Catalysis:Organocatalyst Design and Implementation

    MacMillan Group MeetingIan Storer

    February 28, 2005

  • 7/23/2019 Fu Catalyst 1

    2/34

    Asymmetric Nucleophilic CatalysisOutline

    ! Introduction to

    N-centred nucleophilic catalysts

    ! Design, development and application of asymmetric nucleophilic catalysts

    !concepts and definitions

    !origins and requirements

    !Natural alkaloid catalysts - Precejus, Wynberg

    !Biomimetic histidine containing peptide catalysts - Miller

    !

    Synthetic alkaloid analogues - Lectka, Hatekeyama, Deng

    Useful Reviews:

    !

    Fance, S.; Guerin, D. J.; Miller, S. J.; Leckta, T., Nucleophilic Chiral Amines as Catalysts inAsymmetric Synthesis. Chem Rev.2003, 103, 2985-3012.

    !Fu, G. C. Asymmetric Catalysis with "Planar-Chiral" Derivatives of DMAP. Acc. Chem. Res.2004,37, 542-547.

    !Asymmetric DMAP equivalents - Fuji / Fu

    !Miller, S. J. In Search of Peptide-Based Catalysts for Asymmetric Organic Synthesis. Acc. Chem.Res. 2004, 37, 601-610.

  • 7/23/2019 Fu Catalyst 1

    3/34

    Definitions

    ! Nucleophilic Catalysis

    Catalysis by a Lewis base, involving formation of a Lewis adduct as a reaction intermediate. For example,the esterification of anhydrides catalysed by DMAP:

    O

    OR R

    O

    O R

    O

    Lewis base

    Lewis base complex

    N

    Lewis base

    ! Lewis base

    OH

    R1 R3

    R2N

    NMe Me

    N

    NMe Me

    O RO R

    O

    R3

    R1

    R2

    IUPAC Compendium of ChemicalTerminology

    A molecular entity (and the corresponding chemical species) able to provide a pair of electrons and thuscapable of coordination to a Lewis acid, thereby producing a Lewis adduct.

    The catalyst has to be a very effective nucleophile and a good leaving group .

    ! Implication on Choice of catalyst

    N

    MeMe

  • 7/23/2019 Fu Catalyst 1

    4/34

    Useful Nucleophilic Catalysts

    ! Commonly applied 'everyday' nucleophilic catalysts

    N

    NMe Me

    ! Common applications

    N

    N

    N N

    HN

    Nucleophilic Aromatic Amines nucleophilic teriary amines

    ! Ineffective bases: Nucleophilicity highly sensitive to steric and electronic factors

    N

    DABCOImidazolePyridineDMAP

    good Bronsted bases, poor nucleophilic catalysts

    Me N Me N MeMe Me

    Me

    picoline lutidine collidine

    !O-acylation - electrophile activation (pyridine, DMAP)!O-silylation - electrophile activation (imidazole, DMAP)!Baylis-Hilman reaction - nucleophile activation (DABCO, DMAP)

    N

    N

    PPY

    N

    N

    Me

    NMI

    N

    Et

    EtEt

    TEA

  • 7/23/2019 Fu Catalyst 1

    5/34

    Cinchona Alkaloids: Earliest Successful Nucleophilic Asymmetric Catalysts

    !First used for a resolution of a racemate in 1853 by Pasteur.

    N

    R1

    HOH

    H

    N

    H

    Cinchonidine (CD)Quinine (QN)

    R1= H

    R1= OMe

    pseudoenantiomers

    N

    R1

    HHO

    N

    H

    Cinchonine (CN)Quinidine (QD)

    R1= H

    R1= OMe

    H

    !Asymmetric Bronsted bases!Asymmetric phase transfer reagents (as salts)!Asymmetric bifunctional catalysts (acid / base)!Asymmetric nucleophilic catalysts

    !Several modes of application

    Moncure, R. MacMillan Group Meeting, 2003, web. contains a more fully discussion of cinchona alkaloids

  • 7/23/2019 Fu Catalyst 1

    6/34

    QuinidinePracejus (1964)Wynberg (1983)Simpkins (2001)

    site of quaternary saltformation, nucleophilicaddition or basicity

    site of modification

    site of modification:ether/ ester formation

    site of inversion ofconfiguration (epi alkaloids)-pseudoenantiomers

    Alkaloids and Derivatives as Nucleophilic Catalysts

    ! Natural alkaloids

    N

    OMe

    H

    N

    OH H

    O O

    O O

    N OMe

    N

    Et

    H

    N

    Et

    NMeO

    (DHQD)2AQNDeng

    N

    Me

    O

    N

    OH

    Hatakeyama

    N

    OMe

    N

    O H

    benzoylquinineLectka (2000)

    O

    ! Synthetically modified analogues

  • 7/23/2019 Fu Catalyst 1

    7/34

    Seminal Findings: Pracejus Methanolysis of Ketenes

    !Pracejus proposed a mechanism involving QN activation of methanol.

    N

    OMe

    H

    N

    OH H

    QuinidineMe Ph

    O12 mol % quinidine

    MeOH, 110 C

    up to 76% ee

    Precejus, H.; Mtje, H. J. Prakt. Chem. 4. Reihe. 1964, 24, 195.Precejus, H.; Santleben, R. J. Prakt. Chem. 1972, 314, 157.

    O

    OMePh

    Me

    NHR3

    O

    OMePh

    Me

    NMeO

    H

    N

    HO

    Hselective

    protonationH

    OMe

    +MeOH

    H-bond activation

    !Simpkins proposes alternative nucleophilic mechanism

    Me3Si Bn

    O

    10 mol % quinidine

    benzene, 78 C 79-93% ee

    O

    SPhBn

    SiMe3

    NMeO

    H

    N

    HO

    H

    PhSH

    O

    NR3Bn

    SiMe3

    selectiveprotonation

    Blake, A. J.; Friend, C. L.; Outram, R. J.; Simpkins, N. S.; Whitehead, A. J. Tetrahedron Lett. 2001, 42, 2877.

    SPh

  • 7/23/2019 Fu Catalyst 1

    8/34

  • 7/23/2019 Fu Catalyst 1

    9/34

    Development of Functionalised Alkaloid Analogues:Catalytic Asymmetric Cycloadditions

    !!-lactone synthesis: Romo's expansion of Wynberg's method

    N

    OMe

    HN

    O H

    Acyl-quinidine

    H

    O

    CCl2R2 O

    O

    R

    2

    Cl2C

    R1= H, alkyl, arylR2= Cl, alkyl

    O

    Me

    R

    1

    O

    ClR1

    O

    NR3

    R1Base: iPr2NEt

    PhMe, 25 C

    >90% ee

    !The use of pre-acylated catalyst stops unwanted acylation of the catalyst during the reaction.

    !Applies a stoichiometric, non-nucleophilic base to turn over the catalyst.

    !In situ ketene generation

    !Solubility of the Hunigs salt may be crucial to catalyst turnover.

    Tennyson, R.; Romo, D. J. Org. Chem. 2000, 65, 7248.

    2 mol% cat.

    R3Ncat.

  • 7/23/2019 Fu Catalyst 1

    10/34

    Development of Functionalised Alkaloid Analogues:Catalytic Asymmetric Cycloadditions

    N

    OMe

    H

    N

    O H

    Benzoyl-quinidine

    O

    !

    !-lactam synthesis: Lectka

    NO

    EtO2C R1

    O

    ClR1

    O

    NR3

    R

    1

    N

    CO2EtH

    Ts

    N

    CO2EtH

    Ts

    O

    NR3

    R

    1

    EtO2C

    NTs

    R3Ncat.

    10 mol% cat.PhMe, 78 C

    Base: proton sponge or K2CO3or NaH

    Ts 45-65% yield

    95-99% ee25-99:1 dr

    Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J.; Lectka, T. J.. J. Am. Chem. Soc. 2000, 122, 7831.Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J.. J. Am. Chem. Soc. 2002, 124, 6626.

    cat.

    !'Shuttle deprotonation' using excess of a thermodynamic, non-nucleophilic base.!Concomitant Lewis acid activation of the imine later provided better yields

    !Proposed transition state

  • 7/23/2019 Fu Catalyst 1

    11/34

    Development of Functionalised Alkaloid Analogues:Catalytic Asymmetric Halogenation

    N

    OMe

    H

    N

    O H

    Benzoyl-quinidine

    O

    !Halogenation: Lectka

    O

    ClR1

    10 mol% cat.

    THF, 78 C

    Base: BEMP orK2CO3or NaH

    Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J.; Lectka, T. J. J. Am. Chem. Soc. 2001, 123, 1531.Hafez, A. M.; Taggi, A. E.; Wack, H.; Esterbrook, J.; Lectka, T. J. Org. Lett. 2001, 3, 2049.

    Taggi, A. E.; Wack, H.; Hafez, A. M.; France, S.; Lectka, T. J. Org. Lett. 2002, 4, 627.

    OCl

    ClCl

    Cl

    Cl

    Cl

    O

    BrBr

    Br Br

    MeN NMeP

    NEt2NBut

    10 mol% cat.

    THF, 78 C

    Base: BEMP orK2CO3or NaH

    O

    ClR1

    O

    OR1

    Br

    Br

    Br

    Br

    O

    OR1

    Cl

    Cl

    Cl

    Cl

    Cl

    Cl

    65-85% yield99% ee

    55-80% yield>90% ee

  • 7/23/2019 Fu Catalyst 1

    12/34

  • 7/23/2019 Fu Catalyst 1

    13/34

    Deng's Application of bis-quinuclidines

    N

    MeO

    O

    H

    N

    H

    Et

    N N

    Ph

    Ph

    O

    N

    OMeH

    H

    N

    Et

    catalyst

    !Mechanism of asymmetric induction not well understood

    !Cyanation

    O

    OEtR3N

    CN NC

    R1

    R2

    OO

    OEtR3N

    Deng, L. et al. J. Am. Chem. Soc. 2001, 123, 7475.

    R1

    O

    R2 NC

    O

    OEt

    10-35 mol% catalyst

    CHCl3, 12 to 24 C0.5 - 7 days

    NC

    R1R2

    O

    O

    OEt

    R1

    O

    R2

    R3Ncat.

    O

    O

    O

    R

    R

    MeOH5-30 mol% catalyst

    Et2OOMe

    OH

    O

    O

    R

    R

    ( )n( )n

    Deng, L. et al. J. Am. Chem. Soc. 2000, 122, 9542.

    !Desymmmetrization of meso anhydrides

    52-78% yield87-97% ee

    70-99% yield90-98% ee

  • 7/23/2019 Fu Catalyst 1

    14/34

    Designing Asymmetric Variants of Known Nucleophilic Amine Catalysts

    ! Considerations

    ! Synthetic chiral analogues of common nucleophilic heterocycles

    !Must be nucleophilc, but maintain good leaving group ability!Must have a valid chiral pocket to transfer asymmetry to product.

    FeN

    NMeMe

    Ph

    Ph

    Ph

    Ph

    Ph N

    N

    H H

    OH

    Synthetic chiral DMAP equivalents

    Fu (1998-current)

    N

    N

    BocHNO

    O

    NH

    NH

    Me

    Me Me

    O

    Synthetic chiral imidazole equivalents

    Miller

    O O

    O O

    N OMe

    N

    Et

    H

    N

    Et

    NMeO

    (DHQD)2AQNDeng

    N

    OMe

    H

    N

    OH H

    QuinineWynberg

    N

    Me

    O

    N

    OH

    Hatakeyama

    ! Alkaloids and analogues

  • 7/23/2019 Fu Catalyst 1

    15/34

    Biological Role of Nucleophilic Catalysis

    Admiraal, S. J.; Herschlag, D.; J. Am. Chem. Soc., 1999, 121, 5837-5845

    !Phosphorylation transfer from ATP is ubiquitous in biological chemistry.!

    Histidine often serves as in vivoacceptors of the !-phosphate of ATP.!Proposed mechanism of ATPases and nucleoside diphosphate kinase (NDPK).

    O

    OH OH

    AOPO

    O

    O

    P

    O

    O

    OP

    O

    O

    OO

    OH OH

    AOPO

    O

    O

    P

    O

    O

    OP

    O

    O

    E

    NH

    N

    O

    E

    NH

    N

    ATP

    ! Mechanism of some kinases - role of histidine

    ADP

    NDP3 E

    NH

    N

    NTP4fast

    !First in vitro example of imidazole participating in phosphoryl transfer from ATP analogues.!N-nucleophiles found to react 30-100 fold faster than O-nucleophiles at physiological temperatures.!Carried out in vitro experiments on ATP.!Supports proposed enzymatic mechanism.

    OP

    O

    O

    O P

    O

    O

    NH

    N

    O

    NH

    NH2O

    NH

    N

    HOPO32

    fast

    NO2 O NO2

    ! In vitro phosphorylation of imidazole

  • 7/23/2019 Fu Catalyst 1

    16/34

    Miller N-Methyl Imidazole-Containing Tripeptide

    ! Synthesis of a nucleophilic tripeptide

    Miller, S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann, T. E.; Ruel, E. M. J. Am. Chem. Soc. 1998, 120, 1629-1630.

    N

    N

    BocHNO

    O

    NH

    NH

    Me

    Me Me

    O

    N

    N

    H2N

    OH

    O

    N

    N

    BocHNO

    O

    NH

    NH

    Me

    Me Me

    O

    MeO

    Ac2O

    OAc

    acyl imidazolium

    !Peptide-substrate interactions are crucial for the fidelity by which an enzyme imparts its selectivity.

    !Incorporating an amino acid residue as an analogue of known nucleophilic catalyst N-methyl imidazolium (NMI).

    !Work focused on peptides that had propensity to form stable secondary structures (!-turn) in solution.

    ! Modularity of peptide-based systems allows for the rapid synthesis and screening of many analogues.

    !Initial designs drew heavily from the peptide design literature in order to generate a relatively rigid !-turn structure

  • 7/23/2019 Fu Catalyst 1

    17/34

    Miller Chiral Imidazole Tripeptide:Kinetic Resolution of Alcohols

    ! Kinetic resolution of amino-alcoholscatalyst

    anti, racemic

    10 equiv

    O

    Me O Me

    O

    5 mol% catalyst0 C

    Miller, S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann, T. E.; Ruel, E. M. J. Am. Chem. Soc. 1998, 120, 1629-1630.

    NHAc

    OH

    NHAc

    OH

    NHAc

    O Me

    O1.0 equiv CH3CN = 12% eeCH2Cl2 = 40% eePhMe = 84% ee (S = 12.6)

    !Amide in amino-alcohols necessary for good levels of stereoinduction

    !Non-polar solvents which favour H-bonding work best

    !Replacement of the amide with an ester provides only poor selectivity

    N

    N

    BocHNO

    O

    NH

    NH

    Me

    Me Me

    O

    ! Kinetic resolution of mono-acylated diols

    anti, racemic

    10 equiv

    O

    Me O Me

    O

    5 mol% catalyst0 C

    OAc

    OH

    OAc

    OH

    OAc

    O Me

    O1.0 equivPhMe = 14% ee

  • 7/23/2019 Fu Catalyst 1

    18/34

    Probing Origins of Selectivity

    ! Diastereomeric catalysts display enantiodivergence

    Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 1999, 121, 4306.

    Harris, R. F.; Nation, A. J.; Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2000, 122, 11270.

    NN

    BocHNO

    O

    NH

    NH

    Bn

    O

    OMe

    Me Me

    O

    !Changing a single stereocentre in the catalyst causes a change in secondary structure.

    !

    Changing a single stereocentre in the catalyst causes a complete switch in enantioselectivity.

    ! What is the mechanism of binding and role of the peptide backbone structure?

    H

    Me

    N

    O

    O

    NH

    NH

    Bn

    O

    OMe

    Me Me

    OH

    HN

    N

    Me

    Boc

    S = kSS/ kRR= 3.1 S = kRR/ kSS= 28

    L-Pro D-Pro

    anti, racemic10 equiv

    O

    Me O Me

    O

    5 mol% catalyst0 C

    NHAc

    OH

    NHAc

    OH

    NHAc

    O Me

    O1.0 equiv

    ! Test System: Kinetic resolution

  • 7/23/2019 Fu Catalyst 1

    19/34

  • 7/23/2019 Fu Catalyst 1

    20/34

    Miller: Development of a Fluorescence Assay

    Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc.. 1999, 121, 4306.Harris, R. F.; Nation, A. J.; Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc.. 2000, 122, 11270.

    ! Development of a fluorescence probe for rapid reaction conversion analysis

    N

    O

    OMe

    H

    OAc

    N

    O

    OMe

    Non-Fluorescent Fluorescent

    !Fluorescence intensity is a function of acetic acid concentration

    !Assisted rapid catalyst discovery.

    AcOH

    ! Kinetic resolution of amino-alcohols

    O

    Me O Me

    O

    catalyst

    NHAc

    OH

    NHAc

    OH

    NHAc

    O Me

    O1.0 equivAcOH

    reaction byproduct

  • 7/23/2019 Fu Catalyst 1

    21/34

  • 7/23/2019 Fu Catalyst 1

    22/34

  • 7/23/2019 Fu Catalyst 1

    23/34

  • 7/23/2019 Fu Catalyst 1

    24/34

  • 7/23/2019 Fu Catalyst 1

    25/34

    Fuji Chiral DMAP Equivalent:Kinetic Resolution of Alcohols

    ! Kinetic Resolution of Alcohols catalyst

    syn, racemic

    O

    Bui O iBu

    O

    5 mol% catalysttoluene, rt, 2-5 h

    Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169-3170.

    ! Induced-fit Mechanism

    N

    N

    H

    H

    OH

    OCOR

    OH

    OCOR

    OH

    OCOR

    O iBu

    O0.7 equiv81->94% ee

    68-72% conv.

    N N

    H H

    HO

    H

    H

    open conformation

    NN

    H H

    reactive, closed conformation

    OH

    O

    H

    Me

    Me

    Nu

    !

    First non-enzymatic chiral resolution of alcohols

    !

    Take advantage of charged Lewis adduct!Cation-p interaction holds transition state rigid

    O

    Bui O iBu

    O

  • 7/23/2019 Fu Catalyst 1

    26/34

  • 7/23/2019 Fu Catalyst 1

    27/34

    Fu - Planar Chirality: Kinetic Resolution of Alcohols

    ! Kinetic Resolution of Alcohols

    FeN

    NMeMe

    Ph

    Ph

    Ph

    Ph

    Ph

    catalyst

    OH

    R1 R2

    racemic

    O

    Me O Me

    O

    2 mol% catalystEt3N,t-amyl alcohol

    OH

    R1 R2

    O

    R1 R2

    O

    Me

    Me

    OH

    tBu

    OH OHCl

    Me

    OH

    F

    Me

    OH

    Me

    OH

    Me

    OH

    Me

    99% ee55% conv.

    99% ee55% conv.

    99% ee55% conv.

    99% ee55% conv.

    99% ee55% conv.

    99% ee55% conv.

    99% ee55% conv.

    Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997, 119, 1492-1493.Ruble, J. C.;Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794-2795.

    ! Very high enantioselectivities for Aryl and Cinnamyl alcohols

  • 7/23/2019 Fu Catalyst 1

    28/34

    Fu Chiral DMAP: Origins of Enantioselectivity

    !Acetyl rotamer consistent with minimization of sterics between the methyl Rgroup and ferrocene.

    !Selectivity increases as the size of the alkyl group Rincreases.

    !Nucleophile approaches from the top face of the DMAP catalyst.

    ! Geometry of acyl rotamers

    FeN

    NMeMe

    Ph

    Ph

    Ph

    Ph

    PhO

    Me

    FeN

    NMeMe

    Ph

    Ph

    Ph

    Ph

    PhMe

    O

    HH

    Favoured rotamer Disfavoured rotamer

    ! Crystal Structure of Acyl salt

    FeN

    NMeMe

    Ph

    Ph

    Ph

    Ph

    PhO

    Me

    Nu

    Nu

  • 7/23/2019 Fu Catalyst 1

    29/34

    ! The substrate amine is nucleophilic enough to add directly to most acylating agents careful selection of acylating reagent proved necessary to render no background reaction

    Kinetic Resolution of Amines

    !First non-enzymatic acylation catalyst for kinetic resolution of amines

    FeN

    Ph

    Ph

    Ph

    Ph

    Ph

    catalyst

    NH2

    Ar Me

    racemicCHCl3, 50 C

    NH2

    Ar Me

    HN

    Ar Me

    O

    Me

    Me

    NH2

    Me

    NH2

    s=12 s=27

    Arai, S.; Laponnaz-Bellemin, S.; Fu, G. C. Angew. Chem. Int. Ed., 2001, 40, 234-236.

    ! Very high enantioselectivities for Aryl and Cinnamyl alcohols

    NO

    OMeO

    N

    O

    !-naph

    But

    Me

    NH2

    s=22

    MeO

    NH2

    s=16

    Me

    10 mol% catalyst

    reacts faster with catalystthan substrate amine

  • 7/23/2019 Fu Catalyst 1

    30/34

    Rearrangement of O-Acylated Azalactones

    !First non-enzymatic acylation catalyst for kinetic resolution of amines

    FeN

    Ph

    Ph

    Ph

    Ph

    Ph

    catalyst

    0 C, t-amyl alcohol2-6 h

    Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc., 1998, 120, 11532-11533.

    ! Direct synthesis of dipeptides

    NO

    XO

    N

    O

    R2

    R1

    10 mol% catalyst O

    !

    N

    O

    R2

    R1

    O

    X

    X = OMe, OBnR1= Me, Et, Bn

    R

    2

    = Me, Ph, PMP

    54-90% ee

    0 C, t-amyl alcohol2-6 h

    O

    OBnO

    N

    OMe 10 mol% catalyst

    O

    N

    OMe

    O

    BnO

    0 C, t-amyl alcohol

    2-6 h

    10 mol% catalyst

    OMe OMe

    91% ee91% yield

    Me NH

    NH

    O Me

    OMe

    O

    O

    BnO

    O

    OMe

    95% yielddipeptide

  • 7/23/2019 Fu Catalyst 1

    31/34

    Chiral Planar DMAP Analogues: Rearrangements

    !Intramolecular rearrangement of O-acylated oxindoles and benzofurans

    FeN

    Ph

    Ph

    Ph

    Ph

    Ph

    catalyst

    CH2Cl2, 35 C

    Hills, I. D.; Fu, G. C. Angew. Chem. Int. Ed., 2003, 42, 3921-3924.

    ! A crystal structure was obtained

    N

    5 mol% catalyst

    X = NMe, OR1= alkyl, aryl

    72-95% yield88-99% ee

    X

    R1

    O

    OR2O

    X

    O

    O

    OR2R1

    FeN

    N

    PhPh

    Ph

    PhPhO

    O

    R2

    OPh

    O

    endo (cation-!)

  • 7/23/2019 Fu Catalyst 1

    32/34

    Chiral Planar DMAP Analogues: Rearrangements

    !Intermolecular C-acylation of silyl ketene acetals

    FeN

    Ph

    PhPh

    Ph

    Ph

    catalyst

    Et2O, CH2Cl2, 23 C

    Mermerian, A. H.; Fu, G. C. J. Am. Chem. Soc., 2003, 125, 4050-4051.

    N

    5 mol% catalyst

    R1= aryl

    R2= H, Me

    73-92% yield80-99% eeO

    R2

    R2

    OTMS

    R1O

    R2

    R2

    O

    R1Me

    O

    O

    OMe Me

    O

    !Currently limited to !-aryl substrates

    O

    NR3Me O Me

    O

    O

    R2

    R2

    OTMS

    R1

    O

    NR3Me

    O

    R2

    R2

    O

    R1

    cat.cat.

    TMSOAc

  • 7/23/2019 Fu Catalyst 1

    33/34

    Chiral Planar DMAP Analogues: Reactions with Ketenes

    !!-lactam Staudinger synthesis

    NO

    R1

    O

    NR3

    R1

    N

    R2H

    Ts

    N

    CO2EtH

    Ts

    O

    NR3

    R1

    EtO2C

    NTs

    R3Ncat.

    10 mol% cat.

    PhMe, 78 C

    Ts

    45-65% yield95-99% ee8:1-15:1 dr

    Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 1578-1579.

    cat.

    !Reaction successful for both symmetrical and unsymmetrical ketenes

    FeN

    Me

    Me

    Me

    Me

    Me

    catalyst

    N

    Ph R1

    O

    Ph

    zwitterion A zwitterion B

    R1 = alkyl, R2= alkyl, aryl

    PhR2

  • 7/23/2019 Fu Catalyst 1

    34/34

    Summary and Conclusions

    ! Miller's combinatorial approach has successfully obtained catalysts that show high selectivity

    ! Natural and synthetic alkaloids continue to have success across a variety of reaction types, although definitive stereochemical rationale is not always possible

    ! Fu has developed the first truly general synthetic DMAP analogue catalyst system. Led the way in showing that nucleophilic catalysis is a general and useful concept.

    ! Chiral amines have become functional nucleophilic catalysts, having been larglyoverlooked until recently.