fuel cell systems for aircraft applications. kallo...system build up: fuel cell technology transfer...

18
FC Workshop 2015 Fuel cell systems for aircraft applications S. Flade, T. Stephan, C. Werner, L. Busemeyer, J. Schirmer & J. Kallo German Aerospace Center - Institute of Engineering Thermodynamics University of Ulm - Instiute of Energy Conversion and Energy Storage Lampoldshausen, 15.09.2015

Upload: others

Post on 28-Jan-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • FC Workshop 2015

    Fuel cell systems for aircraft applications

    S. Flade, T. Stephan, C. Werner, L. Busemeyer, J. Schirmer & J. Kallo

    German Aerospace Center - Institute of Engineering ThermodynamicsUniversity of Ulm - Instiute of Energy Conversion and Energy Storage

    Lampoldshausen, 15.09.2015

  • Aerospace Research Center and Space Agency ofthe Federal Republic of Germany (DLR)

    • 7.700 employees• 16 national facilities• > 30 institutes and test facilities• offices in Brüssel, Paris, Washington• Test facilities in Almeria/Spain

    • ESI Energy System Integration, DLR• Battery Systems and degradation• Fuel Cell Systems and degradation• Aircraft Applications MEA and AEA

    Cologne

    Oberpfaffenhofen

    Braunschweig

    Goettingen

    Berlin

    Bonn

    Neustrelitz

    Weilheim

    Bremen Trauen

    Lampoldshausen

    Stuttgart

    Stade

    Augsburg

    Hamburg

    Juelich

    Ulm

  • University of Ulm –Institute of Energy Conversion and Energy Storage

    Department of Hybrid Concepts• Power Electronic Hardware, Controls and

    FC/Battery Power Management Systems

    Department of Propulsion Research• High power E-Machines, Generators

    Applications: Aircraft applications, ….

    Hardware/Teststand: • ICE-Battery-E-Machine Hybrid up to 250kW• Hydrogen infrastructure• Low Pressure and Temperature chamber for

    components and complete systems

    Cologne

    Oberpfaffenhofen

    Braunschweig

    Goettingen

    Berlin

    Bonn

    Neustrelitz

    Weilheim

    Bremen Trauen

    Lampoldshausen

    Stuttgart

    Stade

    Augsburg

    Hamburg

    Juelich

    Ulm

  • • electric energy supply

    • emmission free ground operation→ Autonomous Taxiing

    • electric Main Engine Start

    • supply of air conditioning

    • water production(potable water and lavatory)

    • waste heat recovery(de-icing, warm water generation)

    • prevention and suppression of fire and explosions(tank inerting, cargo inerting)

    • humidification of Cockpit air and/orcabin air

    tank inerting

    water generation

    supply of thepower grid

    De-icing of the wings

    humidification (air)

    emission freetaxiing

    Electricengine startup

    supply of airconditioning

    Potentials of fuel cells in aviation applications→ Multifunctional use of fuel cell systems in an aircraft

  • Fuel Cell Aircraft and Airport Applications at DLRInstitute of Engineering Thermodynamics

    Fuel Cell TechnologyDevelopment Platform

    Electric Energy, ODA,  Water Source (MFFC)Energy Source for Emission Free Taxi

    Modular Hybrid Development PlatformEASA CS.22 and CS.23.Light 

    Flying Testrig for Fuel Cells and Hybrids,Emission Free Propulsionfor UAV and General Aviation(4‐6 Pax or 200 kg Payload)

  • Aircraft flight profile

    Taxiing & Takeoff

    Climb Landing & TaxiingCruise

    Descent

    0,25bar < Pin_air < 1bar

  • )()(

    )()1(

    )(21,0

    __

    __

    _

    _

    __

    __

    2

    2

    2

    2

    2

    2

    InInOHSatInIn

    InInOHSatIn

    InOHIn

    InOH

    ExhaustExhaustOHSatExhaustExhaust

    ExhaustExhaustExhaustOHSatExhaustCathode TprHp

    TprHpp

    pwith

    TprHppTprH

    gasinlet cathode of pressurer Water vapo

    gasexhaust cathode of Pressure

    gasinlet cathode of Pressure

    gasinlet cathode ofhumidity Relative

    gasexhaust cathode ofhumidity Relative

    _2

    InOH

    Exhaust

    In

    In

    Exhaust

    p

    p

    p

    rH

    rH

    gas exhaust cathode of eTemperatur

    gas inlet cathode of eTemperatur

    gas exhaust cathode of pressure vapor Saturation

    gas inlet cathode of pressure vapor Saturation

    __

    __

    2

    2

    Exhaust

    In

    ExhaustOHSat

    InOHSat

    T

    T

    p

    p

    Assumptions:• Pressure difference between cathode inlet and outlet is neglected• Water drag between cathode and anode is neglected• O2 – Concentration of cathode inlet gas is assumend to be 21 Vol.-%• Tin = TExhaust – 10K

    Impact of feed gas humidification to the water manage-ment of a PEMFC under aviation relevant conditions

  • Impact of aviation relevant operating parameters to thewater management of a self-humidified PEMFC

    System temperature control crucial for humidification

  • System build up:Fuel Cell Technology Transfer to Aircraft Application

    Mechanical Strenght SimulationVibration, EMC, H2 Safety, Controls

    Aircraft Application (DO16xX)Functionality, Architecture, BOP

    FC System from Transport Application

    Airworthy technology development platform

    - Fuel cell- DC/DC- hydrogen storage

  • Fuel cell system efficiency as a function ofcathode inlet pressure and relative humidity at thecathode outlet

    Temperature(cath out)

    rHout (%) 950 mbar rHout (%) 700 mbar

    45 161 10848 139 9355 98 6565 62 41

    System efficiency

    55°C

    45°C

    65°C

    Adequate system temperature for optimal system efficiency (IStack = 0,5 Imax)

  • Fuel Cell System TopologyElectrical power assessment A320 (681 flights, 5 different A320)

    Average real world consumptionlower than 50% of ELA

  • Electrical power data catalogue A320Profiles electrical power

    • 681 Flights

    • Flightphase definitionbased on ELA

    Mission duration catalogue

    Overall Electrical power catalogue

    Average mission duration: ca. 100min Average electrical power: ca. 36kW

    Average 3,6kg H2 /mission(at 50% system efficiency)

  • Specific electric power distribution and dynamics A320

    Electric power and electric power dynamics • Power slopes up to +/- 50kW/s

    • Minor absolute power case > 50kW

    Hybrid System

  • Customized hybrid system for A320

    Electric power and electric power dynamics Hybrid System – 50 KW FC

    Hard boundaries FC dynamics 1kW/s power slope

    Expected power from fuel cell system? Power and capacity of used battery ?

  • FC Hybrid system impact on battery power

    A/C Power, fuel cell and battery power profile FC Hybrid System - 50 KW - 1kW/s

    Battery power: + 75kW ; - 35kW

    0,8kWh - capacity-35kW +75kW

    Battery power

    Fuel cell power

  • FC Hybrid System impact on battery capacity

    Max power fuel cell (kW)

    0,85kWh capacity

    FC Hybrid System - 50 KW - 1kW/s

    Battery power: + 75kW ; - 35kW Battery capacity: 0,85kWh (7kg)

    Battery capacity as a function ofmax. FC system power

    Bat

    tery

    capa

    city

    (kW

    h)

  • Standard 09_2010

    Folie 20

    Abschätzung der idealerweise verfügbaren C-Rate

    1. ∙ , ∙ ∙

    2. , ∙ , ∙ ∙

    3. , , ∙

    4. , , , ,∙ ,

    0

    50

    100

    150

    200

    250

    300

    350

    0123456789

    40 45 50 55 60

    Min

    imum

    , opt

    imal

    eC

    -Rat

    e [1

    /h]

    Ener

    giei

    nhal

    t der

    Bat

    terie

    [kW

    h]

    Begrenzung BZ Leistung [kW]

    Energieinhalt derBatterieOptimale Entladerate

    Optimale Laderate

    -60

    -40

    -20

    0

    20

    40

    60

    80

    40 45 50 55 60

    Bat

    terie

    leis

    tung

    [kW

    ]

    Begrenzung BZ Leistung [kW]

    max. Leistung

    min. Leistung

    max. Leistung OhneBegrenzung

    -9-8-7-6-5-4-3-2-101

    40 45 50 55 60

    Bat

    terie

    ener

    giei

    nhal

    t[kW

    h]

    Begrenzung BZ Leistung [kW]

    max. Speicherstand

    min. Speicherstand

    max. Speicherstand OhneBegr.

    0,85kWh42C 80C

  • Thank you for your attention!

    Contact: [email protected]