fuel cells for aircraft applications: activities of dlr k...

30
Fuel Cells for Aircraft Applications: Activities of DLR K. Andreas Friedrich Institut für Technische Thermodynamik Pfaffenwaldring 38-40, Stuttgart www.DLR.de Chart 1 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Upload: lekhue

Post on 02-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Fuel Cells for Aircraft Applications: Activities of DLR K. Andreas Friedrich Institut für Technische Thermodynamik Pfaffenwaldring 38-40, Stuttgart

www.DLR.de • Chart 1 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 2: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Motivation: ACARE* 2020 Goals

- Very ambitious targets. Specified in Vision 2020 and ACARE 2050:

www.DLR.de • Chart 2

* Advisory Aeronautics Research in Europe http://www.acare4europe.org/docs/Vision 2020.pdf http://www.acare4europe.org/docs/Flightpath2050_Final.pdf

Goal Vision 2020 ACARE 2050

CO2 Emission Reduction (Reduction per passenger kilometer)

50% 75%

NOx Emission Reduction (Reduction per passenger kilometer)

80% 90%

External Noise Reduction (Reduction per flying aircraft)

50% 65%

Fuel Consumption Reduction (Reduction per flying aircraft)

50% NA

> Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 3: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Motivation for Fuel Cell System Application

Ecological and Economical A/C Operation Aspects

Ecological Aspects: Emission reduction Higher fuel economy Noise reduction

Economical Aspects: Mass reduction Maintenance improvements Mission optimization Elimination of RAT and AP Reduction of battery size

ηAPU ~ 20 %

ηidle ~ 10 %

ηAPU ~ 40 %

ηidle ~ 50 %

www.DLR.de • Chart 3 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 4: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Ecological Aspects at Airports

www.DLR.de • Chart 4

Approach Final

Approach Ground

Idle Take Off Ground

Climb initial

Climb Final

Approach Final

Approach Ground

Idle Take Off Ground

Climb initial

Climb Final Approach

Final Approach Ground

Idle Take Off Ground

Climb initial

Climb Final

Approach Final

Approach Ground

Idle Take Off Ground

Climb initial

Climb Final

Fuel Burn Tons

Tons

PM10 (Particulate Matter < 10 µm)

Tons

NOx Emissions

Tons

Benzene

Data: Airport Stuttgart 2010

• 35% of fuel consumption from idling engines or APU (ca. 10 kT/ year or 5680 Flights STR-HAM)

• Ca. 11% of nitrous oxides emissions from idling engines or APU

• Ca. 45% of particulate matter from APU operation

• Ca. 91% of Benzene emissions from APU or idling engines

> Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 5: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Potential Functions of Fuel Cells Systems in A/C -Higher Aircraft efficiency -Mission + safety improvements

Inerting of tank (dry) or inerting of cargo (wet)

Water Generation

Supply of Electrical Network

Wing Anti Ice System

Air Humidification System

Emission free

Taxi

Electrical Main Engine Start

EECS supply

Water Refilling Truck

Emergency Power

Auxiliary Power

www.DLR.de • Chart 5 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 6: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

DLR Demonstrators and Research Aircraft

• Multifunctional Auxiliary Power Unit for commercial passenger aircraft (large market and Airbus interest)

• Motor glider as test platform with propulsion system for general aviation, military and surveillance

A320 ATRA used in collaboration with Airbus

Antares DLR-H2 Test platform and research

www.DLR.de • Chart 6 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 7: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Fuel Cell System Development

www.DLR.de • Chart 7

2008 2010 2011

Emergy Power RAT Replacement

First use of DLR 320 ATRA with Fuel cell integration /

Airbus Integration

First public flight in

Hamburg of Antares DLR H2 with only

fuel cell power and HT Fuel

cells

Demonstration of e-Taxiing

with DLR 320 ATRA

2012

Electric Flying with Fuel Cells

Multifunctional use of Fuel Cells in Aircraft

Highly integrated Fuel Cell System

in Antares / Endurance flights

Green Tech Award for Airbus 2013

Clean Tech Media Award for DLR 2012

> Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 8: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Initial Results – Fuel Cell Emergency Power System Test Flights 2008

- Immediate power after failure of power generation - Integration into the aircraft body -> independent of flight velocity Benefits compared to Ram Air Turbine: • Weight reduction without influence on flow resistance • Possibility of switch-off and reactivation of system • Maximum power independent of flight phase (flight velocity and flight height) • Less maintenance (no moving parts)

Constant power during acceleration in flight (30.000ft)!

Test flights performed in cooperation with Airbus 2008; integration by Airbus

Time / min

www.DLR.de • Chart 8 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 9: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Multifunctional Fuel Cell System (Airbus Concept)

www.DLR.de • Chart 9

Gaseous Hydrogen

or Liquid

Hydrogen (cryogenic)

or Compressed

Cryogenic Hydrogen

Fuel Cell System

Elec. Power Water Inert Gas

Heat Humid Air

Condenser / Separator

Gas / Gas humidifier

1. ECS 2. Main Engine Start 3. Autonomous taxiing 4. Emergency Power 5. Ground Power

1. Fuel tanks 2. Cargo Inerting 3. Fire extinguishing

1. Potable Water 2. Toilet Flush Water 3. Engine injection

1. Icing prevention 2. Cooling

1. Cockpit air 2. Cabin air

> Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 10: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

DLR Fuel Cell System for Flight Testing

Air Fuel Cell System for multifunctional use: Power > 12.5 kW

Water generation and inerting function demonstrated

www.DLR.de • Chart 10 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 11: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

SEITE 11

Multifunctional Fuel Cell System System of 12 kW electrical power with aircraft relevant design shows inert gas generation (oxygen content < 12 Vol.%) and water generation

Major importance is air stoichometry

Modelling for flight operation according to Federal Aviation Administration (FAA) publications

www.DLR.de • Chart 11 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 12: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

DLR Development Emission-free Taxiing with Fuel Cell and Electric Nose Wheel Drive

Multifunctional fuel cell system in cargo bay - Output Voltage 300 VDC

DC/DC + DC/AC

Control Box and Data Aquisition

High Torque 11.000 Nm

www.DLR.de • Chart 12 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 13: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Emmission free taxi on ground (nose wheel or main wheel) Saves up to 1200h/year engine time with lower emissions (e.q. A320)

DLR Development Emission-free Taxiing

Fuel cell driven nose wheel drive of an Airbus A320 Test on A/C 2011

www.DLR.de • Chart 13 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 14: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

(Advanced Technology Research Aircraft)

Electrical drive in nose wheel

System Installation of DLR Fuel Cell System in Airbus A320 ATRA

Installation of fuel cell in the Cargo area

www.DLR.de • Chart 14 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 15: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Savings Potential (calculated for Frankfurt – Airport) fuel consumption A320 + B737 conventional

fuel consumption A320 + B737 electrical drive

www.DLR.de • Chart 15

Saving by fuel cell technology

Jet fuel 44.267 kg/d (-18,2 %)

CO2 emissions - 135.919 kg/d (-18,7 %)

H2O emissions - 53.375 kg/d (-18,7 %)

Reduction of acoustic noise 120 dB(A) < 60 dB(A) (ref: A 320)

> Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 16: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

www.DLR.de • Chart 16

Development of system concepts for multifunctional A/C applications QFCS – theoretical analysis for inerting (ODS)

System Req primary • Generation of O2

depleted air (ODA)

secondary • Pel • Water generation

Architecture Req • high Pel • redundancy • „Fail safe“ concept • reliability • flexibility • Multi-functional

capability

> Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 17: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Labormessungen

Example: Power output of 3 systems defined, 4. system „floating“

load distribution of subsystem can be controlled in a flexible way

„floating“ system provides the necessary load for power output

high redundancy

Demonstration of prototypes - multiple system coupling;

www.DLR.de • Chart 17 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 18: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

QFCS – conception2 Architecture – Experimental Analysis for Inerting

Serial Architecture • More flexibility for

system control • Low minimum power

for ODA generation with <11.1%-O2

• Optimal adaption of λcath for operation possible

Parallel Architecture • ODA xO2 stoichiometry

limit of λcath=1.8 is possible

• So far no optimization of ODA generation with dynamics and water management possible

Demonstration of Prototypes

ODA – gas composition with < 11%Vol O2

Serial configuration

www.DLR.de • Chart 18 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 19: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Fuel Cell Aircraft and Airport Applications at the DLR

Airworthy technology development platform for A320

for emergengy power for multifunctional use APU energy source for nose wheel drive

Modular architecture development platform

for GPU applications for high torque airport applications (transport)

Modular airworthy propulsion platform Antares DLR H2

for UAV applications for general aviation (up to 6 Pax or utility)

www.DLR.de • Chart 19 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 20: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Hydrogen storage system

2 in-tank valves: 1 operation 1 emergency bypass Pressure regulator: 350 bar 8 bar Temperature measurement unit

In-tank valve

Tank:

Dynetec W205 Dimensions 415mm x 2110 mm Weight 99,5 kg Volume 74 Liter,

H2 capacity 4.89 kg at 350 bar max. 5 h flight time

www.DLR.de • Chart 20 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 21: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Fuel cell technology Antares DLR H2

Modular fuel cell system with cooling booster

Fuel cell system power up to 33 kWnet modular system 3 x 11 kW liquid cooled

www.DLR.de • Chart 21 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 22: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

LT - Next generation medium area fuel cell system Hydrogenics

Air supply

Coolant

H2 supply

Cell Voltage Monitor + Controls

Sensors

Pressure regulator

Anode recirculation

Base unit 100 cells, metallic insulated connectors up to 360V Medium active area up to 11 kWnet per module Temp up to 80°C, low pressure drop (ca. 150 mbar at max. power)

www.DLR.de • Chart 22 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 23: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

LT - Next generation medium area fuel cell system Lab Test – system efficiency 3 modules

System Efficiency (%LHV)

- System efficiency including cathode blower > 50% LHV (without cooling pump)

www.DLR.de • Chart 23 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 24: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Highly integrated fuel cell system with customized parts

www.DLR.de • Chart 24 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 25: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Startup of integrated system on ground

Integrated system

Lab system

www.DLR.de • Chart 25 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 26: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Highly integrated fuel cell system in flight

First flight on fuel cell with new systems 7.09.2012

www.DLR.de • Chart 26 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 27: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

1: Zweibrücken EDRZ

2,4: Hof-Plauen EDQM

3: Berlin Schönefeld

EDDB

5: Stuttgart EDDS

Zweibrücken – Hof

2 hours 47 minutes

378,4 km

ca. 2,5 kg hydrogen

Hof - Berlin

2 hours 36 minutes

367,0 km (loop at landing)

ca. 2,2 kg hydrogen

Berlin - Hof

2 hours 42 minutes

271,4 km

ca. 2,6 kg hydrogen

Hof - Stuttgart

2 hours 18 minutes

295,5 km

ca. 2,2kg hydrogen

Total flight time during tour: 11:42 [hh:mm], 1483,9 km

Fuel cell „Germany Tour“ – Antares DLR H2 www.DLR.de • Chart 27 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 28: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Fuel Consumption during the Flights

www.DLR.de • Chart 28

• Power consumption approx. 1kgH2 / 100 km • Fuel cell system efficiency 48% – 52%

> Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 29: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Fuel cell system performance „on ground“ (150m) vs. „in flight“ (1200-1600m)

„In flight“ - performance

„on ground“ - performance

Summarized performance loss „in flight“ due to altitude and cooling effects ca. 5%

www.DLR.de • Chart 29 > Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013

Page 30: Fuel Cells for Aircraft Applications: Activities of DLR K ...elib.dlr.de/85706/1/Fuel_cells_in_aviation_Hamburg_printnew.pdf · Institut für Technische Thermodynamik . Pfaffenwaldring

Thank you for your attention !

Acknowledgement: Josef Kallo, Johannes Schirmer, Airbus, LufthansaTechnik, Hydrogenics, Serenergy, Lange Aviation, DLR Team, and BMWi, BMVBS / NOW and Hansestadt Hamburg for funding

> Fuel Cells for Aircraft Application > K. A. Friedrich > Hamburg 26.09.2013