full duplex wireless - stanford universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdffull...

85
Full Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain, Jung Il Choi, Sachin Katti, Kannan Srinivasan, Taemin Kim, Dinesh Bharadia, Prasun Sinha, and Siddarth Seth. 1

Upload: vuongtruc

Post on 07-Jun-2018

238 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Full Duplex Wireless

Philip LevisStanford University

@Princeton 10.12.2012

also Mayank Jain, Jung Il Choi, Sachin Katti, Kannan Srinivasan, Taemin Kim, Dinesh Bharadia, Prasun Sinha, and Siddarth Seth.

1

Page 2: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

2

Chuck Thacker InterviewCommunications of the ACM, July 2010

Page 3: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

3

“It is generally not possible for radios to receive and transmit on the same frequency band because of the interference that results. Thus, bidirectional systems must separate the uplink and downlink channels into orthogonal signaling dimensions, typically using time or frequency dimensions.” - Andrea Goldsmith, “Wireless Communications,” Cambridge Press, 2005.

Page 4: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• We’ve built working full duplex radios‣ Breaks a fundamental assumption in wireless‣ Current limitations: transmit power: ≤ WiFi

(200mW), bandwidth (≤ 20MHz)

• How full duplex could transform wireless

• Open technical barriers and challenges

Talk In a Nutshell

Page 5: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Why Half Duplex?

TX RX TX RX

• Self-interference is millions to billions (60-90dB) stronger than received signal

• If only we could “subtract” our transmission...

Page 6: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• Digital cancellation: subtracting known interference digital samples from received digital samples.

ZigZag[1], Analog Network Coding[2] etc.

• Hardware cancellation: RF noise cancellation circuits with transmit signal as noise reference

Radunovic et al.[3]

Existing Techniques

6

[1] Gollakota et al. “ZigZag Decoding: Combating Hidden Terminals in Wireless Networks”, ACM SIGCOMM 2008[2] Katti et al. “Embracing Wireless Interference: Analog Network Coding”, ACM SIGCOMM 2007[3] Radunovic et al. , "Rethinking Indoor Wireless: Lower Power, Low Frequency, Full-duplex", WiMesh (SECON Workshop),, 2010

Page 7: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• Digital cancellation: subtracting known interference digital samples from received digital samples.

ZigZag[1], Analog Network Coding[2] etc.

Ineffective if ADC saturates

• Hardware cancellation: RF noise cancellation circuits with transmit signal as noise reference

Radunovic et al.[3]

Existing Techniques

7

[1] Gollakota et al. “ZigZag Decoding: Combating Hidden Terminals in Wireless Networks”, ACM SIGCOMM 2008[2] Katti et al. “Embracing Wireless Interference: Analog Network Coding”, ACM SIGCOMM 2007[3] Radunovic et al. , "Rethinking Indoor Wireless: Lower Power, Low Frequency, Full-duplex", WiMesh (SECON Workshop),, 2010

Page 8: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

These are not enough: 25dB +15dB = 40dB

• Digital cancellation: subtracting known interference digital samples from received digital samples.

ZigZag[1], Analog Network Coding[2] etc. ~15dB

Ineffective if ADC saturates

• Hardware cancellation: RF noise cancellation circuits with transmit signal as noise reference

Radunovic et al.[3] ~25dB

Existing Techniques

8

Page 9: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

First Design: Antenna Cancellation

d d + λ/2

TX1 TX2RX

9

Page 10: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

First Design: Antenna Cancellation

~30dB self-interference cancellation

Enables full-duplex when combined with digital (15dB) and hardware (25dB) cancellation.

d d + λ/2

TX1 TX2RX

10

Page 11: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Three techniques give ~70dB cancellation

• Antenna Cancellation (~30dB)

• Hardware Cancellation (~25dB)

• Digital Cancellation (~15dB)

11

Page 12: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Our Prototype

12

AntennaCancellation

HardwareCancellation

Digital InterferenceCancellation

Page 13: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bringing It Together

QHX220

ADC

HardwareCancellation

TX Signal

AntennaCancellation

13

RX

DigitalCancellation

∑TX Samples

+-

Clean RX samples

RF

Baseband

Page 14: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bringing It Together

QHX220

ADC

HardwareCancellation

TX Signal

AntennaCancellation

14

RX

DigitalCancellation

∑TX Samples

+-

Clean RX samples

RF

Baseband

Page 15: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bringing It Together

QHX220

ADC

HardwareCancellation

TX Signal

AntennaCancellation

15

RX

DigitalCancellation

∑TX Samples

+-

Clean RX samples

RF

Baseband

Page 16: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bringing It Together

QHX220

ADC

HardwareCancellation

TX Signal

AntennaCancellation

16

RX

DigitalCancellation

∑TX Samples

+-

Clean RX samples

RF

Baseband

Page 17: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

-60

-55

-50

-45

-40

-35

-30

-25

0 5 10 15 20 25

RSS

I (dB

m)

Position of Receive Antenna (cm)

TX1 TX2

Only TX1 Active

Antenna Cancellation: Performance

17

Page 18: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

-60

-55

-50

-45

-40

-35

-30

-25

0 5 10 15 20 25

RSS

I (dB

m)

Position of Receive Antenna (cm)

TX1 TX2

Only TX2 Active

Antenna Cancellation: Performance

18

Only TX1 Active

Page 19: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

-60

-55

-50

-45

-40

-35

-30

-25

0 5 10 15 20 25

RSS

I (dB

m)

Position of Receive Antenna (cm)

TX1 TX2

Only TX1 ActiveOnly TX2 Active

Both TX1 & TX2 Active

Antenna Cancellation: Performance

19

NullPosition

Page 20: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

-60

-55

-50

-45

-40

-35

-30

-25

0 5 10 15 20 25

RSS

I (dB

m)

Position of Receive Antenna (cm)

TX1 TX2

Only TX1 ActiveOnly TX2 Active

Both TX1 & TX2 Active

Antenna Cancellation: Performance

20

~25-30dBNull

Position

Page 21: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Sensitivity of Antenna Cancellation

21

Amplitude Mismatch between TX1 and TX2

Placement Errorfor RX

dB

Red

uctio

n Li

mit

(dB)

Red

uctio

n Li

mit

(dB)

Error (mm)

Page 22: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Sensitivity of Antenna Cancellation

22

dB

Red

uctio

n Li

mit

(dB)

Red

uctio

n Li

mit

(dB)

Error (mm)

30dB cancellation < 5% (~0.5dB) amplitude mismatch < 1mm distance mismatch

Amplitude Mismatch between TX1 and TX2

Placement Errorfor RX

Page 23: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Sensitivity of Antenna Cancellation

23

dB

Red

uctio

n Li

mit

(dB)

Red

uctio

n Li

mit

(dB)

Error (mm)

• Rough prototype good for 802.15.4

• More precision needed for higher power systems (802.11)

Amplitude Mismatch between TX1 and TX2

Placement Errorfor RX

Page 24: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bandwidth Constraint

A λ/2 offset is precise for one frequency

24

fc

d d + λ/2

TX1 TX2RX

Page 25: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bandwidth Constraint

A λ/2 offset is precise for one frequencynot for the whole bandwidth

25

fc fc+Bfc -B

d d + λ/2

TX1 TX2RX

Page 26: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bandwidth Constraint

A λ/2 offset is precise for one frequencynot for the whole bandwidth

26

fc fc+Bfc -B

d d + λ/2

TX1 TX2RX

d2 d2 + λ+B/2

TX1 TX2RX

d1 d1 + λ-B/2

TX1 TX2RX

Page 27: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bandwidth Constraint

27

fc fc+Bfc -B

d d + λ/2

TX1 TX2RX

d2 d2 + λ+B/2

TX1 TX2RX

d1 d1 + λ-B/2

TX1 TX2RX

WiFi (2.4G, 20MHz) => ~0.26mm precision error

A λ/2 offset is precise for one frequencynot for the whole bandwidth

Page 28: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bandwidth Constraint

28

2.4 GHz

5.1 GHz

300 MHz

Page 29: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Bandwidth Constraint

29

2.4 GHz

5.1 GHz

300 MHz

• WiFi (2.4GHz, 20MHz): Max 47dB reduction

• Bandwidth⬆ => Cancellation⬇• Carrier Frequency⬆ => Cancellation⬆

Page 30: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• 802.15.4 based signaling on USRP nodes

• Two nodes at varying distances placed in an office building room and corridor

Experimental Setup

30

Page 31: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• Full-duplex should double aggregate throughput31

Half-Duplex :- Nodes interleave transmissions

Node 1 ➜ 2

Node 2 ➜ 1

Node 1 ➜ 2

Node 2 ➜ 1

Full-Duplex :- Nodes transmit concurrently

Page 32: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Median throughput 92% of ideal full-duplex

Throughput

0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

CDF

Throughput (Kbps)

Half-Duplex Full-Duplex Ideal Full-Duplex

1.84x

32

Page 33: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

CDF

Throughput (Kbps)

Throughput

Half-Duplex Full-Duplex Ideal Full-Duplex

1.84x

33

Performance loss at low SNR

Page 34: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

34

First prototype gives 1.84x throughput gain with two radios compared to half-duplex with a single radio.

Limitation 1: Need 3 antennas

Limitation 2: Limited to 802.15.4

Limitation 3: Difficult farfield effects

Limitation 4: Doesn’t adapt to environment

Page 35: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Why Half Duplex?

TX RX TX RX

• Self-interference is millions to billions (60-90dB) stronger than received signal

• If only we could “subtract” our transmission...

Page 36: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Poor Man’s Subtraction

2.4 GHz

5.1 GHz

300 MHz

Page 37: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Cancellation using Phase OffsetSelf-Interference

Cancellation Signal

Page 38: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Cancellation using Phase Offset

38

Self-Interference

Cancellation Signal

Self-Interference

Cancellation Signal

Frequency dependent, narrowband

Page 39: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Cancellation using Signal Inversion

39

Self-Interference

Cancellation Signal

Page 40: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Cancellation using Signal Inversion

40

Self-Interference

Cancellation Signal

Self-Interference

Cancellation Signal

Frequency and bandwidth independent

Page 41: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Time

41

Xt +Xt/2

-Xt/2

BALUN

Second Design: Balanced to Unbalanced Conversion

Page 42: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Traditional Design

R

TXRF Frontend

RXRF Frontend

T R+aT

aT

Page 43: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

1. Invert the Signal

aT R

TXRF Frontend

RXRF Frontend

2T

+T -T R+aT

balun

Page 44: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

2. Subtract Signal

R

TXRF Frontend

RXRF Frontend

ΣR+aT-T

R+aT

balun

aT

2T

-T+T

Page 45: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

3. Match Signals

R

TXRF Frontend

RXRF Frontend

Σv

-vT R+aT-vT

R+aT

balun

attenuator anddelay line

aT

2T

-T+T

Page 46: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Can Receive If v = a!

R

TXRF Frontend

RXRF Frontend

Σv

-vT

R+aTattenuator anddelay line

balun

aT

2T

-T+T

R+aT-aT

Page 47: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

+Xt/2

• Measure wideband cancellation

• Wired experiments

• 240MHz chirp at 2.4GHz to measure response

Time

Signal Inversion Cancellation: Wideband Evaluation

47

TX

RX

Signal Inversion Cancellation Setup

∑ TX RX

Phase Offset Cancellation Setup

∑RF

Signal Splitter

Xt +Xt/2

-Xt/2

Xt

+Xt/2

λ/2 Delay

Page 48: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Time

48

Lower isbetter

Higher isbetter

Page 49: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Time

49

~50dB cancellation at 20MHz bandwidth with balun vs ~38dB with phase offset cancellation.

Significant improvement in wideband cancellation

Lower isbetter

Higher isbetter

Page 50: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Time

50

• From 3 antennas per node to 2 antennas

• Parameters adjustable with changing conditions

Attenuator andDelay Line

TX RX

TXRF Frontend

Xt

+Xt/2 -Xt/2

RXRF Frontend

Other advantages

Page 51: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• Need to match self-interference power and delay

• Can’t use digital samples: saturated ADC

Adaptive RF Cancellation

51

TX RX

Attenuation & Delay

Wireless Receiver

Wireless Transmitter

RF Cancellation

TX Signal Path RX Signal Path

RF ReferenceΣ

Balun

Page 52: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• Need to match self-interference power and delay

• Can’t use digital samples: saturated ADC

Adaptive RF Cancellation

52

RSSI : Received Signal Strength Indicator

TX RX

Attenuation & Delay

Wireless Receiver

Wireless Transmitter

RF Cancellation

TX Signal Path RX Signal Path

RF ReferenceΣ

Balun

RSSI

Page 53: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• Need to match self-interference power and delay

• Can’t use digital samples: saturated ADC

Adaptive RF Cancellation

53

Use RSSI as an indicator of self-interference

TX RX

Attenuation & Delay

Wireless Receiver

Wireless Transmitter

RF Cancellation

TX Signal Path RX Signal Path

RF ReferenceΣ

Balun

RSSI

Control Feedback

Page 54: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

54

Objective: Minimize received power

Control variables: Delay and Attenuation

TX RX

Attenuation & Delay

Wireless Receiver

Wireless Transmitter

RF Cancellation

TX Signal Path RX Signal Path

RF ReferenceΣ

Balun

RSSI

Control Feedback

Page 55: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

55

Objective: Minimize received power

Control variables: Delay and Attenuation

Page 56: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

56➔ Simple gradient descent approach to optimize

Objective: Minimize received power

Control variables: Delay and Attenuation

Page 57: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

57

Typical convergence within 8-15 iterations (~1ms total)

Page 58: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

58

Digital Interference Cancellation

TX RX

Attenuation & Delay

RF ➔ Baseband

ADC

Baseband ➔ RF

DAC

Encoder Decoder

Digital Interference Reference

RF Cancellation

TX Signal Path RX Signal Path

RF ReferenceΣ

FIR filter ∆

RSSI

Control Feedback

Channel Estimate

Balun

Bringing It All Together

Page 59: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

59

Channel Coherence

~3dB reduction in cancellation in 1-2 seconds

~6dB reduction in <10 seconds

Page 60: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

60

Performance

• WiFi full-duplex: with reasonable antenna separation

• Not enough for cellular full-duplex: need 20dB more

Page 61: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Implications

Page 62: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• WARPv2 boards with 2 radios

• OFDM reference code from Rice University

• 10MHz bandwidth OFDM signaling

• CSMA MAC on embedded processor

• Modified for full-duplex

Implementation

62

Page 63: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• CSMA/CA can’t solve this

• Schemes like RTS/CTS introduce significant overhead

APN1 N2

Current networks have hidden terminals

Mitigating Hidden Terminals

63

Page 64: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• CSMA/CA can’t solve this

• Schemes like RTS/CTS introduce significant overhead

APN1 N2

Since both sides transmit at the same time, no hidden terminals exist

Current networks have hidden terminals

Full Duplex solves hidden terminals APN1 N2

Mitigating Hidden Terminals

64

Page 65: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• CSMA/CA can’t solve this

• Schemes like RTS/CTS introduce significant overhead

APN1 N2

Since both sides transmit at the same time, no hidden terminals exist

Current networks have hidden terminals

Full Duplex solves hidden terminals APN1 N2

Mitigating Hidden Terminals

65Reduces hidden terminal losses by up to 88%

Page 66: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Network Congestion and WLAN Fairness

Without full-duplex:

• 1/n bandwidth for each node in network, including APDownlink Throughput = 1/n Uplink Throughput = (n-1)/n

66

Page 67: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Network Congestion and WLAN Fairness

Without full-duplex:

• 1/n bandwidth for each node in network, including APDownlink Throughput = 1/n Uplink Throughput = (n-1)/n

67

With full-duplex:

• AP sends and receives at the same timeDownlink Throughput = 1 Uplink Throughput = 1

Page 68: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Network Congestion and WLAN Fairness

68

1 AP with 4 stations without any hidden terminals

Throughput (Mbps)Throughput (Mbps)Fairness (JFI)

Upstream DownstreamFairness (JFI)

Half-Duplex 5.18 2.36 0.845

Full-Duplex 5.97 4.99 0.977

Full-duplex distributes its performance gain to improve fairness

Page 69: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Wide Area

(LTE)_

Apps Processor

BT

Media Processor

GPS

WLAN

UWB

DVB-H

FM/XM

All of these different radios interfere with one another

Today: limit which radios can be active at the same time

Coexistence Problem

Page 70: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Tomorrow: Full Duplex

Wide Area

(LTE)_

Apps Processor

BT

Media Processor

GPS

WLAN

UWB

DVB-H

FM/XM WLAN

LTE

Full duplexsignal cancellation

Page 71: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

71

Access Point networks

Full-duplex Networking

Page 72: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

72

Access Point networksCellular networks

Cell Basestation

Relay

Full-duplex Networking

Page 73: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

73

Access Point networks

Multi-hop Networks

Cellular networks

Cell Basestation

Relay

Full-duplex Networking

Page 74: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

74

Access Point networks

Multi-hop NetworksSecure Networks[1,2]

Cellular networks

Cell Basestation

Relay

Full-duplex Networking

[1] Gollakota et al. “They Can Hear Your Heartbeats: Non-Invasive Security for Implantable Medical Devices.”, in Sigcomm 2011.[2] Lee et al. “Secured Bilateral Rendezvous using Self-interference Cancellation in Wireless Networks”, in IFIP 2011.

Page 75: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

75

Access Point networks

Multi-hop NetworksSecure Networks[1,2]

Cellular networks

Cell Basestation

Relay

Full-duplex Networking

[1] Gollakota et al. “They Can Hear Your Heartbeats: Non-Invasive Security for Implantable Medical Devices.”, in Sigcomm 2011.[2] Lee et al. “Secured Bilateral Rendezvous using Self-interference Cancellation in Wireless Networks”, in IFIP 2011.

?

Page 76: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Possible Dealbreakers

Page 77: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

v != a

R

TXRF Frontend

RXRF Frontend

Σv

-vT

R+aTattenuator anddelay line

balun

aT

2T

-T+T

R+aT-aT

Page 78: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Frequency Selectivity

Lower isbetter

Page 79: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Multipath

TXRF Frontend

RXRF Frontend

Σv

attenuator anddelay line

balun

-T+T

Second path

Page 80: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Greatest Potential?

• Where capacity is ultra-scarce (MIMO?)?

• Fixed channels/bands?

• Drop-in improvements (incremental)?

• Channel coherence < packet time?

• We can only guess.

Page 81: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

• We’ve built working full duplex radios‣ Breaks a fundamental assumption in wireless‣ Current limitations: transmit power: ≤ WiFi

(200mW), bandwidth (≤ 20MHz)

• How full duplex could transform wireless

• Open technical barriers and challenges

Talk In a Nutshell

Page 82: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,
Page 83: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

Backup

83

Page 84: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

0 10 20 30-30 -20 -10

0

10

20

30

-30

-20

-10

x axis (meters)

y ax

is (

met

ers)

84

Equal Transmit Power

Deep Nulls at 20-30m

Unequal Transmit Power

What about attenuation at intended receivers?Destructive interference can affect this signal too!

• Different transmit powers for two TX helps

0 10 20 30-30 -20 -10

0

10

20

30

-30

-20

-10

x axis (meters)

y ax

is (

met

ers)

Page 85: Full Duplex Wireless - Stanford Universitycsl.stanford.edu/~pal/talks/duplex-princeton.pdfFull Duplex Wireless Philip Levis Stanford University @Princeton 10.12.2012 also Mayank Jain,

0 10 20 30-30 -20 -10

0

10

20

30

-30

-20

-10

x axis (meters)

y ax

is (

met

ers)

85

Equal Transmit Power Unequal Transmit Power

0 10 20 30-30 -20 -10

0

10

20

30

-30

-20

-10

x axis (meters)

y ax

is (

met

ers)

-52 dBm

-58 dBm-52 dBm -100 dBm

What about attenuation at intended receivers?Destructive interference can affect this signal too!

• Different transmit powers for two TX helps