fulltextproblemas introductorios trigonometria

Upload: john-faibert-quintero-oviedo

Post on 07-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 fulltextproblemas introductorios trigonometria

    1/9

    2

    Introductory Problems

    1. Let x be a real number such that sec x tan x = 2. Evaluate sec x + tan x.

    2. Let 0 < < 45. Arrange

    t1 = (tan )tan , t2 = (tan )cot ,t3 = (cot )tan , t4 = (cot )cot ,

    in decreasing order.

    3. Compute

    (a) sin 12

    , cos 12

    , and tan 12

    ;

    (b) cos4 24

    sin4 24

    ;

    (c) cos 36 cos 72; and(d) sin 10 sin 50 sin 70.

    4. Simplify the expressionsin4 x + 4 cos2 x

    cos4 x + 4 sin2 x.

  • 8/6/2019 fulltextproblemas introductorios trigonometria

    2/9

    64 103 Trigonometry Problems

    5. Prove that

    1 cot 23 =2

    1 cot 22 .

    6. Find all x in the interval

    0, 2

    such that

    3 1

    sin x+

    3 + 1

    cos x= 4

    2.

    7. RegionR contains all the points (x,y) such that x2 + y2 100 and sin(x +y) 0. Find the area of region R.

    8. In triangle ABC, show that

    sinA

    2 a

    b + c .

    9. Let I denote the interval

    4,

    4

    . Determine the function f defined on the

    interval [1, 1] such that f (sin 2x) = sin x + cos x and simplify f (tan2 x)for x in the interval I.

    10. Let

    fk (x)

    =

    1

    k

    (sink x

    +cosk x)

    for k = 1, 2, . . . . Prove that

    f4(x) f6(x) =1

    12

    for all real numbers x.

    11. A circle of radius 1 is randomly placed in a 15-by-36 rectangle ABCD so that

    the circle lies completely within the rectangle. Given that the probability thatthe circle will not touch diagonal AC is m

    n, where m and n are relatively prime

    positive integers, find m + n.

  • 8/6/2019 fulltextproblemas introductorios trigonometria

    3/9

    2. Introductory Problems 65

    12. In triangle ABC,

    3sin A + 4cos B = 6 and 4 sin B + 3cos A = 1.

    Find the measure of angle C.

    13. Prove that

    tan 3a tan 2a tan a = tan 3a tan 2a tan afor all a = k

    2, where k is in Z.

    14. Let a , b , c , d be numbers in the interval [0, ] such that

    sin a + 7sin b = 4(sin c + 2sin d),cos a + 7cos b = 4(cos c + 2cos d).

    Prove that 2 cos(a d) = 7cos(b c).

    15. Expresssin(x y) + sin(y z) + sin(z x)

    as a monomial.

    16. Prove that

    (4cos2 9 3)(4cos2 27 3) = tan 9.

    17. Prove that 1 + a

    sin x

    1 + b

    cos x

    1 +

    2ab2

    for all real numbers a , b , x with a, b 0 and 0 < x < 2

    .

    18. In triangle ABC, sin A + sin B + sin C 1. Prove that

    min

    {A

    +B, B

    +C, C

    +A

    }< 30.

    19. Let ABC be a triangle. Prove that

  • 8/6/2019 fulltextproblemas introductorios trigonometria

    4/9

    66 103 Trigonometry Problems

    (a)

    tan A2

    tan B2

    + tan B2

    tan C2

    + tan C2

    tan A2

    = 1;

    (b)

    tanA

    2tan

    B

    2tan

    C

    2

    3

    9.

    20. Let ABC be an acute-angled triangle. Prove that

    (a) tan A + tan B + tan C = tan A tan B tan C;(b) tan A tan B tan C 3

    3.

    21. Let ABC be a triangle. Prove that

    cot A cot B + cot B cot C + cot C cot A = 1.

    Conversely, prove that ifx , y , z are real numbers with xy + yz + zx = 1, thenthere exists a triangle ABC such that cot A = x, cot B = y, and cot C = z.

    22. Let ABC be a triangle. Prove that

    sin2A

    2+ sin2 B

    2+ sin2 C

    2+ 2sin A

    2sin

    B

    2sin

    C

    2= 1.

    Conversely, prove that ifx , y , z are positive real numbers such that

    x2

    +y2

    +z2

    +2xyz

    =1,

    then there is a triangle ABC such that x = sin A2

    , y = sin B2

    , and z = sin C2

    .

    23. Let ABC be a triangle. Prove that

    (a) sinA

    2sin

    B

    2sin

    C

    2 1

    8;

    (b) sin2A

    2+ sin2 B

    2+ sin2 C

    2 3

    4;

    (c) cos2 A2

    + cos2 B2

    + cos2 C2

    94

    ;

    (d) cosA

    2cos

    B

    2cos

    C

    2 3

    3

    8;

  • 8/6/2019 fulltextproblemas introductorios trigonometria

    5/9

    2. Introductory Problems 67

    (e) cscA

    2 +csc

    A

    2 +csc

    A

    2 6.

    24. In triangle ABC, show that

    (a) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C;(b) cos 2A + cos2B + cos 2C = 1 4cos A cos B cos C;(c) sin2 A + sin2 B + sin2 C = 2 + 2cos A cos B cos C;(d) cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1.

    Conversely, ifx , y , z are positive real numbers such that

    x2 + y2 + z2 + 2xyz = 1,

    show that there is an acute triangle ABC such that x = cos A, y = cos B,C = cos C.

    25. In triangle ABC, show that

    (a) 4R = abc[ABC] ;

    (b) 2R2 sin A sin B sin C = [ABC];(c) 2R sin A sin B sin C = r(sin A + sin B + sin C);

    (d) r = 4R sin A2

    sinB

    2sin

    C

    2;

    (e) a cos A + b cos B + c cos C = abc2R2

    .

    26. Let s be the semiperimeter of triangle ABC. Prove that

    (a) s = 4R cos A2

    cosB

    2cos

    C

    2;

    (b) s 3

    3

    2R.

    27. In triangle ABC, show that

    (a) cos A + cos B + cos C = 1 + 4sin A2

    sinB

    2sin

    C

    2;

  • 8/6/2019 fulltextproblemas introductorios trigonometria

    6/9

    68 103 Trigonometry Problems

    (b) cos A

    +cos B

    +cos C

    3

    2

    .

    28. Let ABC be a triangle. Prove that

    (a) cos A cos B cos C 18

    ;

    (b) sin A sin B sin C 3

    3

    8;

    (c) sin A + sin B + sin C 3

    3

    2 .

    (d) cos2 A + cos2 B + cos2 C 34

    ;

    (e) sin2 A + sin2 B + sin2 C 94

    ;

    (f) cos 2A + cos2B + cos 2C 32

    ;

    (g) sin 2A + sin 2B + sin 2C 3

    3

    2 .

    29. Prove thattan 3x

    tan x= tan

    3

    x

    tan

    3+ x

    for all x = k6

    , where k is in Z.

    30. Given that

    (1 + tan 1)(1 + tan 2) (1 + tan 45) = 2n,

    find n.

    31. Let A = (0, 0) and B = (b, 2) be points in the coordinate plane. Let ABCDEFbe a convex equilateral hexagon such that F AB = 120, AB DE,BC EF, and CD F A, and the y coordinates of its vertices are distinct elementsof the set {0, 2, 4, 6, 8, 10}. The area of the hexagon can be written in the formm

    n, where m and n are positive integers and n is not divisible by the square

    of any prime. Find m + n.

  • 8/6/2019 fulltextproblemas introductorios trigonometria

    7/9

    2. Introductory Problems 69

    32. Show that one can use a composition of trigonometry buttons, such as sin, cos,

    tan, sin1

    , cos1

    , and tan1

    , to replace the broken reciprocal button on acalculator.

    33. In triangle ABC, A B = 120 and R = 8r. Find cos C.

    34. Prove that in a triangle ABC,

    a b

    a + b =tan

    A B

    2

    tanC

    2

    .

    35. In triangle ABC, ab

    = 2 +

    3 and C = 60. Find the measure of angles Aand B.

    36. Let a , b , c be real numbers, all different from 1 and 1, such that a + b + c =abc. Prove that

    a1 a2 +

    b1 b2 +

    c1 c2 =

    4abc(1 a2)(1 b2)(1 c2) .

    37. Prove that a triangle ABC is isosceles if and only if

    a cos B + b cos C + c cos A = a + b + c2

    .

    38. Evaluate

    cos a cos 2a cos3a cos 999a,where a = 2

    1999.

    39. Determine the minimum value of

    sec4

    tan2 +sec4

    tan2

    over all , = k2

    , where k is in Z.

  • 8/6/2019 fulltextproblemas introductorios trigonometria

    8/9

    70 103 Trigonometry Problems

    40. Find all pairs (x,y) of real numbers with 0 < x < 2

    such that

    (sin x)2y

    (cos x)y2/2

    + (cos x)2y

    (sin x)y2/2

    = sin 2x.

    41. Prove that cos 1 is an irrational number.

    42. Find the maximum value of

    S = (1 x1)(1 y1) + (1 x2)(1 y2)

    ifx21 + x22 = y21 + y22 = c2.

    43. Prove thatsin3 a

    sin b+ cos

    3 a

    cos b sec(a b)

    for all 0 < a, b Tn(x) for real numbers x with x > 1;(e) Determine all the roots ofTn(x);

    (f) Determine all the roots ofPn(x) = Tn(x) 1.

    50. Let ABC be a triangle with BAC = 40 and ABC = 60. Let D and E bethe points lying on the sides AC and AB, respectively, such that CBD = 40and BCE = 70. Segments BD and CE meet at F. Show that AF BC.

    51. Let S be an interior point of triangle ABC. Show that at least one of SAB, SBC, and SCA is less than or equal to 30.

    52. Let a=

    7

    .

    (a) Show that sin2 3a sin2 a = sin 2a sin 3a;(b) Show that csc a = csc2a + csc4a;(c) Evaluate cos a cos2a + cos 3a;(d) Prove that cos a is a root of the equation 8x3 + 4x2 4x 1 = 0;(e) Prove that cos a is irrational;

    (f) Evaluate tan a tan 2a tan 3a;

    (g) Evaluate tan2 a+

    tan2 2a+

    tan2 3a;

    (h) Evaluate tan2 a tan2 2a + tan2 2a tan2 3a + tan2 3a tan2 a.(i) Evaluate cot2 a + cot2 2a + cot2 3a.