functions of natural organic matter in changing environment978-94-007-5634-2...soil...

32
Functions of Natural Organic Matter in Changing Environment

Upload: others

Post on 04-Aug-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Functions of Natural Organic Matterin Changing Environment

Page 2: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,
Page 3: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Jianming Xu • Jianjun Wu • Yan He

Editors

Functions of NaturalOrganic Matterin Changing Environment

With 356 figures

Volume I

Page 4: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

EditorsJianming XuInstitute of Soil and Water Resourcesand Environmental Science

Zhejiang UniversityHangzhou, People’s Republic of China

Jianjun WuInstitute of Soil and Water Resourcesand Environmental Science

Zhejiang UniversityHangzhou, People’s Republic of China

Yan HeInstitute of Soil and Water Resourcesand Environmental Science

Zhejiang UniversityHangzhou, People’s Republic of China

ISBN 978-94-007-5633-5 ISBN 978-94-007-5634-2 (eBook)DOI 10.1007/978-94-007-5634-2Springer Dordrecht Heidelberg New York London

Jointly published with Zhejiang University PressISBN 978-7-308-10271-1 Zhejiang University Press

Library of Congress Control Number: 2012952090

# Zhejiang University Press and Springer Science+Business Media Dordrecht 2013This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed. Exempted from this legal reservation are brief excerptsin connection with reviews or scholarly analysis or material supplied specifically for the purpose of beingentered and executed on a computer system, for exclusive use by the purchaser of the work. Duplicationof this publication or parts thereof is permitted only under the provisions of the Copyright Law of thePublisher’s location, in its current version, and permission for use must always be obtained fromSpringer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.Violations are liable to prosecution under the respective Copyright Law.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exemptfrom the relevant protective laws and regulations and therefore free for general use.While the advice and information in this book are believed to be true and accurate at the date ofpublication, neither the authors nor the editors nor the publisher can accept any legal responsibility forany errors or omissions that may be made. The publisher makes no warranty, express or implied, withrespect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 5: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Preface

The changing environment leading to environmental issues is challenging the world

for its sustainability. The theme of the 16th Meeting of the International Humic

Substances Society (IHSS 16) is of special significance for understanding how and

to what extent the various environmental processes of soil nutrients and pollutants

at micro- and macro-levels are affected by humic substances (HS), natural organic

matter (NOM), naturally occurring and engineered nanoparticles, and biochar.

Further advance on the frontiers of knowledge on this subject matter requires

scientists to cross disciplines and scales to integrate understanding of processes in

the changing environment, ranging in scale from the formation, structure, and char-

acteristics of HS and NOM, environmental mineral-organism-humus-water-air

interactions, to the impact on the globe and humankind. These fundamental inter-

active processes have enormous impacts on both terrestrial and aquatic ecosystem

biodiversity, health, productivity and services, and human welfare as a whole.

Carbon is a major component of HS, NOM, and soils. Globally, the mass of soil

organic carbon is more than that of carbon in living matter and in the atmosphere

combined. However, the CO2 emission from the soil to the atmosphere is the

primary mechanism of soil carbon loss. Agricultural practices and land use patterns

contribute substantially to the total anthropogenic CO2 emission. Soil organo-

mineral-microbe interactions affect carbon turnover and sequestration. Our under-

standing on the formation, structure, and characteristics of HS and NOM and on the

role of HS and NOM in carbon transformation, dynamics, and sequestration in the

environment would contribute to developing innovative management strategies

to minimize its impact on climate change.

Humic substances and soil organic matter are vital to maintaining soil fertility

and closely related to biogeochemical cycling of nutrients, environmental toxic

elements, and anthropogenic organics. Decomposition of HS and NOM supplies

both nutrients and energy for plants and microbial organisms. The interactions at

the organic-inorganic complexes and organo-mineral-microbe interfaces pro-

foundly affect the physicochemical and biological processes such as migration,

transformation, and dissipation, thereby affecting the availability of nutrients and

the toxicity of toxic elements and anthropogenic organics. However, there are

v

Page 6: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

knowledge gaps on how and to what extent the processes are affected by HS and

NOM. The dynamics, transformations, bioavailability, and toxicity of toxic

elements and anthropogenic organics should be influenced enormously by the

chemistry and transformations of HS and NOM.

Nanoparticles are discrete atom assemblies at nanometer (10�9 m) scale.

Biochar is a carbon-rich product produced from any source of biomass by pyrolysis.

The biogeochemical and ecological impacts of nanoparticles and the characteristic

and function of biochar in the environment are some of the fastest-growing areas of

research today, with not only vital scientific but also environmental, economic, and

societal consequences. Little is known about the distribution, formation, transfor-

mation, and structural and surface chemistry of naturally occurring (HS and NOM)

and engineered nanoparticles and their biogeochemical and ecological impacts.

Extensive investigations are necessary to improve the understanding for the

functions and mechanisms of biochar in the environment.

Natural and commercial HS have been applied in agriculture as organic fertil-

izer, soil ameliorator, and/or crop growth stimulator. They have also been used in

industry and for wastewater treatment. However, there exist great knowledge gaps

on the effectiveness and environmental consequences of the applied HS. The

research on this subject matter should, thus, be an issue of intense interest for

years to come.

The objective of the conference is to provide a forum for the interactions and

communication of chemists, microbiologists, and physicists, with allied scientists

including pure chemists, biologists, environmental scientists, soil scientists, water

scientists, and ecologists, to address the current state of the art on “Functions of

Natural Organic matter in the Changing Environment.” The main sessions of the

conference were the following: (1) formation, structure, and characteristics of HS

and NOM; (2) HS/NOM and carbon sequestration; (3) HS/NOM and biogeo-

chemical cycling of nutrients; (4) HS/NOM and the environmental processes of

toxic elements and anthropogenic organics; (5) HS/NOM and naturally occurring

and engineered nanoparticles; (6) HS/NOM, biodiversity, and ecosystem health;

(7) HS/NOM in water and water treatment; (8) characterization and function of

biochar in the environment; and (9) industrial products and application of HS.

Twenty-one distinguished scientists worldwide were invited to give keynote

speeches in the nine sessions of the conference.

The conference was held in Zhejiang University, Hangzhou, China, on September

9–14, 2012, on the occasion of the 30th Anniversary of IHSS. Zhejiang University,

founded in 1897, is a comprehensive research university with distinctive features and

a national as well as international impact. Research at Zhejiang University spans 12

academic disciplines, covering philosophy, economics, law, education, literature,

history, arts, science, engineering, agriculture, medicine, management, and so on.

With 7 faculties and 37 colleges/schools, Zhejiang University has 14 primary and

21 secondary national leading academic disciplines. According to Essential Science

Indicator (ESI) ranking about 22 disciplines, Zhejiang University ranks among the

top 1 % in 14 disciplines and comes in 4th among the list of the top 100 academic

institutions of the world. At present, there are a total of more than 44,000 full-time

vi Preface

Page 7: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

students enrolled at Zhejiang University, including approximately 13,800 graduate

students, 7,700 Ph.D. candidates, and 22,600 undergraduates. In addition, there are

about 2,700 international abroad students currently studying in Zhejiang University.

The participants of this conference were from five continents: Asian delegates

from China, India, Iran, Israel, Japan, Mongolia, Pakistan, the Republic of Korea,

and Turkey; European scientists from Austria, Belgium, Croatia, Czech Republic,

Estonia, France, Germany, Greece, Ireland, Italy, Latvia, Norway, Poland, Portugal,

Russia, Spain, Sweden, the Netherlands, the UK, and Ukraine; Australasian

participants from both Australia and New Zealand; delegates from Argentina, Brazil,

Canada, and the USA in the Americas; and representatives from Egypt and Nigeria

on the African continent.

It was the first time to hold such a large-scale international conference of

International Humic Substances Society in China. It is hoped that the conference

would lead to identification of gaps in knowledge and as such to provide future

research directions and promote research on the characterization, function, and

application of HS in environment, agriculture, and industry. This is expected to lead

to advancing the frontiers of knowledge on biophysicochemical processes related to

HS and NOM in the environmental systems and their biogeochemical and ecologi-

cal impacts and also promoting education in this extremely important and challeng-

ing area of science for years to come, which is also expected to contribute toward

the international advancement of environmental chemistry and its impacts on the

terrestrial and aquatic ecosystems.

The book of proceedings is composed of extended abstracts that present new

ideas, findings, methods, and experience on the nine sessions of the conference.

All the extended abstracts have been subject to peer review by external referees, by

International Scientific Committee members of the conference, and by the editors

of the proceedings. On behalf of the organizing committee, we would like to thank

members of the International Scientific Committee and the authors for their invalu-

able collaboration. Special thanks are extended to our sponsors: International

Humic Substances Society (IHSS), Zhejiang University, National Natural Science

Foundation of China (NSFC), Soil Science Society of China (SSSC), Organization

for the Prohibition of Chemical Weapons (OPCW), and Zhejiang Provincial Key

Laboratory of Subtropical Soils and Plant Nutrition.

Chair of the IHSS 16 Jianming Xu

Preface vii

Page 8: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,
Page 9: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Editors

Jianming Xu (Zhejiang University, Hangzhou, China)

Jianjun Wu (Zhejiang University, Hangzhou, China)

Yan He (Zhejiang University, Hangzhou, China)

Organizing Committee

Chair Jianming Xu (China)

Members C. E. Clapp (USA) Claudio Ciavatta (Italy)

Claudio Zaccone (Italy) Gudrun Abbt-Braun (Germany)

Irina Perminova (Russia) Jerzy Weber (Poland)

Ladislau Martin-Neto (Brazil) Paul R. Bloom (USA)

Raymond Hozalski (USA) Renfang Shen (China)

Shu Tao (China) Teodoro Miano (Italy)

International Scientific Committee

Baoshan Xing (USA) Caixian Tang (Australia)

C. E. Clapp (USA) Changqing Song (China)

Claudio Ciavatta (Italy) Claudio Zaccone (Italy)

Donald L. Sparks (USA) Ed Tipping (Great Britain)

Egil T. Gjessing (Norway) E. Michael Perdue (USA)

Etelka Tombacz (Hungary) Fangbai Li (China)

Fengchang Wu (China) Fritz H. Frimmel (Germany)

Fushuo Zhang (China) Gengxin Pan (China)

(continued)

ix

Page 10: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

(continued)

Gudrun Abbt-Braun (Germany) Heike Knicker (Germany)

H. H. Cheng (USA) Hong J. Di (China)

Irina V. Perminova (Russia) Jerzy Weber (Poland)

Jianming Xu (China) Jinshui Wu (China)

John D. Coates (USA) Kirk Hatfield (USA)

Ladislau Martin-Neto (Brazil) Laosheng Wu (China)

Maria De Nobili (Italy) Masami Fukushima (Japan)

Minggang Xu (China) Ming K. Wang (China)

Nicola Senesi (Italy) Norbert Hertkorn (Germany)

Patrick G. Hatcher (USA) Paul R. Bloom (USA)

Philip C. Brookes (UK) Philippe Schmitt-Kopplin (Germany)

Qiaoyun Huang (China) Qimei Ling (China)

Renfang Shen (China) Richard G. Burns (Australia)

Roger Swift (Australia) Rong Ji (China)

Scott X. Chang (Canada) Sen Dou (China)

Shiqiang Wei (China) Siabhan Staunton (France)

Shuying Leng (China) Shu Tao (China)

Teodoro Miano (Italy) Tohru Miyajima (Japan)

Weixiang Wu (China) Wenfeng Tan (China)

William C. Koskinen (USA) William T. Cooper (USA)

Xibai Zeng (China) Xudong Zhang (China)

Yona Chen (Israel) Yongguan Zhu (China)

Yongtao Li (China) Zhihong Xu (Australia)

Zhongpei Li (China) Zubin Xie (China)

Local Organizing Committee

Haizheng Wang Zhejiang University, Hangzhou

Jiachun Shi Zhejiang University, Hangzhou

Jianming Xu Zhejiang University, Hangzhou

Laosheng Wu Zhejiang University, Hangzhou

Lingzao Zeng Zhejiang University, Hangzhou

Min Liao Zhejiang University, Hangzhou

Mingkui Zhang Zhejiang University, Hangzhou

Shenggao Lu Zhejiang University, Hangzhou

Xingmei Liu Zhejiang University, Hangzhou

Yan He Zhejiang University, Hangzhou

x Editors

Page 11: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Sponsors

International Humic Substances Society (IHSS)

Zhejiang University (ZJU)

National Natural Science Foundation of China (NSFC)

Soil Science Society of China (SSSC)

Organisation for the Prohibition of Chemical Weapons (OPCW)

Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition

Editors xi

Page 12: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,
Page 13: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Contents of Volume I

Part I Formation, Structure and Characteristics of HS and NOM

Revisiting Structural Insights Provided by Analytical Pyrolysis

About Humic Substances and Related Bio- and Geo-Polymers . . . . . . . 3

J.A. Gonzalez-Perez, F.J. Gonzalez-Vila, G. Almendros, H. Knicker,

J.M. de la Rosa, and Z. Hernandez

The Role of Mineral Complexation and Metal Redox Coupling

in Carbon Cycling and Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Donald L. Sparks and Chunmei Chen

Elucidating the Biogeochemical Memory of the Oceans by Means

of High-Resolution Organic Structural Spectroscopy . . . . . . . . . . . . . . 13

N. Hertkorn, M. Harir, B.P. Koch, B. Michalke, and Ph. Schmitt-Kopplin

Correlating Bulk Optical Spectroscopy and Ultrahigh-Resolution

Mass Spectrometry to Determine the Molecular Composition

of Dissolved Organic Matter in Northern Peatlands . . . . . . . . . . . . . . . 19

William T. Cooper, Malak M. Tfaily, Jane E. Corbet, and Jeffrey P. Chanton

Effects of Synthetic Quinones as Electron Shuttles on Geothite

Reduction and Current Generation by Klebsiella pneumoniae L17 . . . . 25

Xiaomin Li, Liang Liu, Tongxu Liu, Tian Yuan, Wei Zhang, Fangbai Li,

Shungui Zhou, and Yongtao Li

Dynamics of Newly Formed Humic Acid and Fulvic Acid in Aggregates

After Addition of the 14C-Labelled Wheat Straw in a Typic Hapludoll

of Northeast China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Sen Dou, Song Guan, Guang Chen, and Gang Wang

FTIR Analysis of Soil Organic Matter to Link the Turnover

of Organic Inputs with Carbon Respiration Rates . . . . . . . . . . . . . . . . 37

M.C. Hernandez-Soriano, B. Kerre, B. Horemans, and E. Smolders

xiii

Page 14: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Characterization of Soil Humic Substances Using Mid-infrared

Photoacoustic Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Changwen Du, Zhongqi He, and Jianmin Zhou

Splitting of Soil Humic Acid Fluorescence on Different

Fluorophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Oleg Trubetskoj, Lubov Shaloiko, Dmitrii Demin, Victor Marchenkov,

and Olga Trubetskaya

Lumping or Splitting: Holistic or Fractionation Approaches

to Studies of Humic Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Michael H.B. Hayes and Roger S. Swift

The Fate of Mineral Particles in Bulk Peat and Corresponding Humic

Acids Throughout an Ombrotrophic Bog Profile: Atmospheric Dust

Depositions vs Mineralization Processes . . . . . . . . . . . . . . . . . . . . . . . . 61

C. Zaccone, S. Pabst, T.M. Miano, and W. Shotyk

HS-Protein Associates in the Aqueous/Oil System: Composition

and Colloidal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

M.G. Chernysheva and G.A. Badun

Integrated Physical-Chemical Procedure for Soil Organic Carbon

Fractionation and Characterization During Transition to Organic

Farming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

H.M. Abdelrahman, D.C. Olk, C. Cocozza, D. Ventrella, F. Montemurro,

and T. Miano

Sulfur-Containing Molecules Observed in Hydrophobic

and Amphiphilic Fractions of Dissolved Organic Matter by Fourier

Transform Ion Cyclotron Resonance Mass Spectrometry . . . . . . . . . . . 79

Guixue Song, Rajaa Mesfiou, Aaron Dotson, Paul Westerhoff,

and Patrick Hatcher

Standard and Reference Samples of Humic Acids, Fulvic Acids,

and Natural Organic Matter from the Suwannee River, Georgia:

Thirty Years of Isolation and Characterization . . . . . . . . . . . . . . . . . . 85

E. Michael Perdue

Molecular Understanding of a Humic Acid by “Humeomic”

Fractionation and Benefits from Preliminary HPSEC Separation . . . . 89

Antonio Nebbioso and Alessandro Piccolo

Microbiological Oil Transformation to Humic-Like Substances . . . . . . 95

E.A. Vialih and S.A. Ilarionov

Genesis of Peat Humic Acid Structure and Properties Within

Bog Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Maris Klavins and Oskars Purmalis

xiv Contents of Volume I

Page 15: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Influence of Biota on Low Molecular Weight Organic Acids in Soil

Solutions of Taiga and Tundra Soils in the East-European Russia . . . . 107

Е.V. Shamrikova, I.V. Gruzdev, V.V. Punegov, and Е.V. Vanchikova

The Complementary Use of UV, EPR and SEC to Study the Structural

Changes of Humic Substances During Wood Waste Composting . . . . . 113

O. Bikovens, V. Lepane, N. Makarotseva, T. Dizhbite, and G. Telysheva

Influence of Vegetation Dynamics on Humic Substance Composition

in Maritime Burozems of Primorsky Krai (Russia) . . . . . . . . . . . . . . . 119

B.F. Pshenichnikov and N.F. Pshenichnikova

Residue-Derived Amino Sugar Formation and Its Carbon

Use Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Zhen Bai, Samuel Bode, Pascal Boeckx, and Xudong Zhang

Studies of Humic Substances from Sediments in Galway Bay,

Ireland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

R. Mylotte, C.M.P. Byrne, R.R. Chang, C. Dalton, and M.H.B Hayes

Separation of Humic Acid Constituents by Polyacrylamide Gel

Electrophoresis in the Presence of Concentrated Urea Using

a Preparative Electrophoresis System . . . . . . . . . . . . . . . . . . . . . . . . . . 135

S. Karim and M. Aoyama

A Comparison of the Compositional Differences Between

Humic Fractions Isolated by the IHSS and Exhaustive

Extraction Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

R.R. Chang, R. Mylotte, R. Mclnerney, Y.M. Tzou, and M.H.B. Hayes

Studies on Dynamic Change of Humic Acid in Chicken

Manure Composting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Yujun Wang, Sen Dou, and Jinjing Zhang

Optical Properties and Asymmetric Flow Field-Flow Fractionation

of Dissolved Organic Matter from the Arcachon Bay (French

Atlantic Coast) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Phuong Thanh Nguyen, Marie-Ange Cordier, Fabienne Ibalot,

and Edith Parlanti

Hydrocolloids Prepared from Humic-Rich Lignite . . . . . . . . . . . . . . . . 159

Miloslav Pekar and Mirka Machackova

Methodical Basis of Analysis for Various Genesis of Humic Acids . . . . 165

V.D. Tikhova and V.P. Fadeeva

Adsorption of Extracellular Polymeric Substances (EPS) from

Pseudomonas putida on Various Soil Particles from an Alfisol . . . . . . . 171

Y. Cao, Q. Huang, and P. Cai

Contents of Volume I xv

Page 16: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Adsorption of HA Fractions with Different Molecular Weight

on Magnetic Polyacrylic Anion Exchange Resin . . . . . . . . . . . . . . . . . . 177

Chendong Shuang, Fei Pan, Qing Zhou, Mancheng Zhang, Aimin Li,

and Penghui Li

An Innovative In Situ Spectroscopic Approach to Characterize

Functional Groups in Natural Organic Matters (NOMs) and Their

Interactions with Protons and Metals . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Yuan Gao and Gregory V. Korshin

Characterization and Three-Dimensional Structural Modeling

of Humic Acid Using Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . 187

Nan Zhao, Yintian Zheng, and Yizhong Lv

Relationships Between Polarity, Aliphaticity/Aromaticity, Fluorescence,

and Molecular Size of Soil HA Electrophoretic Fractions . . . . . . . . . . . 191

Olga Trubetskaya, Claire Richard, Guillaume Voyard, and Oleg Trubetskoj

Molecular Size Distribution and Shape of Humic Substance

and Ferrihydrite Coprecipitated Complexes . . . . . . . . . . . . . . . . . . . . . 197

Claudio Colombo, Giuseppe Palumbo, Ruggero Angelico, Andrea Ceglie,

and Jizheng He

Properties of Soil Organic Matter in Abounded Pastureland: A Case

Study from the Jaworzynka Valley in the Tatra Mountains, Poland . . . 203

Katarzyna Wasak and Marek Drewnik

Spectroscopic Characterization of Humic Substances Isolated

from Sediment of an Area of Sugarcane Cultivation . . . . . . . . . . . . . . . 209

G. Pantano, A. Santos, M.C. Bisinoti, and A.B. Moreira

Amino Acid Composition Analysis of Humic Acids Isolated

by Sequential Alkaline Extraction from Soil . . . . . . . . . . . . . . . . . . . . . 215

E.A. Vialykh, S.A. Ilarionov, and A.V. Zhdanova

Study of the Optical Properties of Dissolved Organic Matter

in the Seine River Catchment (France) . . . . . . . . . . . . . . . . . . . . . . . . . 219

Phuong Thanh Nguyen, Camille Lopez, Caroline Bonnot, Gilles Varrault,

Marc Benedetti, Marie-Ange Cordier, Alexande Gelabert, Laure Cordier,

Mickael Tharaud, and Edith Parlanti

Assessment of the Possibility of Humic Acid Extraction

from Vermicompost with Urea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A. Hemati, H.A. Alikhani, G. Bagheri Marandi, and L. Mohammadi

The Most Appropriate Way to Increase the Quality Indices

of the Humic Acid Extracted from Vermicompost . . . . . . . . . . . . . . . . 229

H.A. Alikhani and A. Hemati

xvi Contents of Volume I

Page 17: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Quantitation of Interactions of Suwannee River Fulvic Acid

with Protons Based on Numerical Deconvolution of Differential

Absorbance and Fluorescence Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 233

Mingquan Yan and Gregory V. Korshin

Characterization of Chinese Standard Fulvic Acid Fractions

Obtained by Sequential Extractions with Pyrophosphate Buffer

from Forest Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Yingchen Bai, Fengchang Wu, and Guolan Shi

Humification of Pig Slurry in Presence of Sawdust . . . . . . . . . . . . . . . . 245

Deborah P. Dick, Marlon H. Arenhardt, and Celso Aita

Computational Screening of Environmental Proxies

in Spectrometric Patterns from Humic Acids . . . . . . . . . . . . . . . . . . . . 251

G. Almendros, Z. Hernandez, J. Sanz, F.J. Gonzalez-Vila, H. Knicker,

and J.A. Gonzalez-Perez

Assessment of Agricultural Practices on Volcanic Ash Soils Assisted

by Automated Interpretation of Mid-Infrared Spectra and Partial

Least Squares Multivariate Statistical Approach . . . . . . . . . . . . . . . . . 255

Z. Hernandez, G. Almendros, J. Sanz, J.P. Perez-Trujillo,

J.A. Gonzalez-Perez, and F.J. Gonzalez-Vila

Humic Substances of Spodic Horizons in the Coastal Plain

of Sao Paulo State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

J.M. Lopes, P. Vidal-Torrado, P. Buurman, and P.B. Camargo

Distribution of Humus Substances Between Clay Particles

of Different Peptization Level in the Meadow Soils of the Middle

Priamurje, Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

L.A. Matiushkina

Study of Humification of Soil Organic

Matter in a Lowland Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

F.M.M. Luz, S.C. Saab, L.M. Santos, J.A.B. Santos, M.L. Simoes,

and A.M. Brinatti

Study of Humification Dynamics of Organic Residues

on Vermicomposting Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

L.B.F. Pigatin, A. dos Santos, F. Benetti, R.S. Ferrer, M.D. Landgraf,

and M.O.O. Rezende

Properties of Humic Acids as a Parameter Characteristics

for Lake Bottom Sediments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

J. Cieslewicz and S.S. Gonet

Molecular Composition Study of Mumijo from Different Geographic

Areas Using Size-Exclusion Chromatography, NMR Spectroscopy,

and High-Resolution Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . 283

A.I. Konstantinov, G.N. Vladimirov, A.S. Grigoryev, A.V. Kudryavtsev,

I.V. Perminova, and E.N. Nikolaev

Contents of Volume I xvii

Page 18: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Morphology and Hydrophobicity of Humic Coatings on Glass

as Studied by Atomic Force Microscopy (AFM) and Contact

Angle Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

A.B. Volikov, V.A. Lebedev, E.V. Lazareva, A.M. Parfenova,

S.A. Ponomarenko, and I.V. Perminova

Soil Oxidizable Organic Carbon Fractions Under Organic

Management with Industrial Residue of Roasted Mate Tea . . . . . . . . . 295

F.B. Pereira, R.C. Santos, K.C. Lombardi, A.N. Dias, and C.M.B.F. Maia

Application of Thermal Analysis and Isotope Ratio Mass Spectrometry

to Determine the Stability and Function of Soil Organic Matter

in Forest Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Garrett C. Liles and William R. Horwath

Changes in Selected Hydrophobic Components During Composting

of Municipal Solid Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Jakub Bekier, Jerzy Drozd, Jerzy Weber, Bogdan Jarosz, and Elzbieta Jamroz

The Release of Dissolved Organic Carbon in Paddy Soils Under

Contrasting Redox Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Jiajiang Lin, Yan He, Jiachun Shi, Xingmei Liu, and Jianming Xu

Content of Organic Carbon and Nitrogen as Well as Root

Mass in Meadow Soils Under a Combined Slope and Flood

Irrigation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

A. Dziamski, M. Banach-szott, M. Drag, and Z. Stypcynska

A Novel Polymer Blend Based on Sodium Humate/PVP/PEG . . . . . . . 323

Ahmet Tutar and Mumin Dizman

Temperature Dependence of the Reaction Between the Hydroxyl

Radical and Organic Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

G. McKay, M.M. Dong, J. Kleinman, S.P. Mezyk, and F.L. Rosario-Ortiz

Aggregation Kinetics of Humic Acid: Effects of Ca2+ Concentration . . . 335

N.S. Kloster, M. Brigante, G. Zanini, and M.J. Avena

Surface Activity of Humic Substances Within Peat Profile . . . . . . . . . . 341

Oskars Purmalis and Maris Klavins

Part II HS/NOM and Carbon Sequestration

Sequestration and Loss of Organic Carbon in Inland Waters:

From Microscale to Global Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Lars J. Tranvik, Cristian Gudasz, Birgit Koehler, and Dolly Kothawala

Carbon Sequestration in Subtropical Oxisol Profiles: Retention

Capacity and Effect of Soil Management . . . . . . . . . . . . . . . . . . . . . . . 353

Deborah P. Dick, Cecılia S. Reis, Cimelio Bayer, and Jennifer S. Caldas

xviii Contents of Volume I

Page 19: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Electron Transfer Capacity as a Rapid Index for Soil Organic

Carbon Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Ran Bi, Yong Yuan, Li Zhuang, and Shungui Zhou

Carbon Sequestration Rates in Organic Layers of Soils Under

the Grey Poplar (Populus x canescens) Stands Impacted by Heavy

Metal Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Agnieszka Medynska-Juraszek and Leszek Kuchar

CO2 Sequestration by Humic Substances and the

Contribution of Quinones and Quinone Imines: Consideration

on the Molecular Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

F. Liebner, M. Wieland, T. Hosoya, G. Pour, A. Potthast, and T. Rosenau

Carbon Sequestration in Organic Farming . . . . . . . . . . . . . . . . . . . . . . 377

Raymond Liu, Jianming Xu, and C. Edward Clapp

Field Temperature Dominantly Affected Soil Organic Carbon

Stability along an Altitudinal Gradient in Changbai Mountain,

Northeast China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Q.X. Tian, H.B. He, and X.D. Zhang

Organic Carbon and Humic Substances Fractions in Soil Aggregates . . . 385

S.S. Gonet, H. Czachor, and M. Markiewicz

Structural Features of Humic Substances as Biogeochemical Proxies

for Soil Carbon Stabilization and Ecosystem Functions . . . . . . . . . . . . 391

F.J. Gonzalez-Vila, G. Almendros, J.A. Gonzalez-Perez, Z. Hernandez,

H. Knicker, A. Piedra-Buena, and J.M. de la Rosa

Contribution of High Accumulated Polyphenols to C Stabilization

in Soil of Tea Gardens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

M. Zhang, D.M. Fan, Q. Zhu, Y.P. Luo, and X.C. Wang

Influence of Soil Use on Organic Carbon and Humic Substances

of an Oxisol in Tropical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

N.V. Llerme, E.C. Jose, and S.G.P. Junior

Soil Organic Carbon Sequestration Under Long-Term Manure

and Straw Fertilization in North and Northeast China by RothC

Model Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Minggang G. Xu, Jinzhou Z. Wang, and Chang’ai A. Lu

The Carbon Sequestration in Moso Bamboo Plantation and

Its Spatial Variation in Anji County of Southeastern China . . . . . . . . . 413

Keli L. Zhao, Weijun J. Fu, Peikun K. Jiang, and Guomo M. Zhou

Using ArcGIS and Geostatistics to Study Spatial Pattern of Forest

Litter Carbon Density in Zhejiang Province, China . . . . . . . . . . . . . . . 419

Weijun Fu, Keli Zhao, Peikun Jiang, and Guomo Zhou

Contents of Volume I xix

Page 20: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Wildfire-Induced Changes in the Quantity and Quality of Humic

Material Associated to the Mineral Phase . . . . . . . . . . . . . . . . . . . . . . . 425

M. Lopez Martın, M. Velasco-Molina, F.J. Gonzalez-Vila, and H. Knicker

The Potential of Humic Material in Sombric-Like Horizons

of Two Brazilian Soil Profiles as an Efficient Carbon Sink within

the Global C Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

M. Velasco-Molina, H. Knicker, and F. Macıas

Part III HS/NOM and Biogeochemical Cycling of Nutrients

Field Assessment of Humic Substance Effect on Phosphate

Rock Solubilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

O.O. Adesanwo, M.T. Adetunji, and S. Diatta

Effect of Calcium Boro-Humate Application on the Yield

Performance of Cotton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

K. Dhanasekaran and R. Priyarani

Changes in the Composition of Soil Dissolved Organic Matter

After Application of Poultry Manure . . . . . . . . . . . . . . . . . . . . . . . . . . 451

D. Pezzolla, S. Gizzi, C. Zadra, A. Agnelli, L. Roscini, and G. Gigliotti

Long-Term Fertilization Effects on b-Glucosaminidase Activity

in a Chinese Mollisol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Wei Zhang, Xudong Zhang, and Hongbo He

Stoichiometric Effect of Labile C and N on the Transformation

Dynamics of Soil Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Xudong Zhang, Hongbo He, and Wei Zhang

Nitrogen Release from Natural and Aminoorganosilane-Modified

Humic Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

N.A. Kulikova, O.I. Philippova, Ya.S. Bychkova, A.B. Volikov,

and I.V. Perminova

Alkalinity Generation by Agricultural Residues Under

Field Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

C.R. Butterly, J.A. Baldock, and C.Tang

Leaching of Dissolved Organic Carbon (DOC) as Affected

by Plant Residue Composition and Soil pH . . . . . . . . . . . . . . . . . . . . . . 475

Kongcao Xiao, Jian Zhou, Xingmei Liu, Jianjun Wu, and Jianming Xu

Abundant and Stable Char Residues in Soils: Implications

for Soil Fertility and Carbon Sequestration . . . . . . . . . . . . . . . . . . . . . 479

J.D. Mao, R.L. Johnson, J. Lehmann, D.C. Olk, E.G. Neves,

M.L. Thompson, and K. Schmidt-Rohr

xx Contents of Volume I

Page 21: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Importance of Harvesting Time of Winter Cover Crop Rye as Green

Manure on Controlling CH4 Production in Paddy Soil Condition . . . . . 485

Sang Yoon Kim, Hyo Suk Gwon, Yong Gwon Park, Hyun Young Hwang,

and Pil Joo Kim

Characterization of Humic Fractions in Leachates from Soil Under

Organic and Conventional Management and Their Interactions

with the Root Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

T. Vujinovic, M. Contin, S. Cesco, R. Pinton, N. Tomasi, P. Ceccon,

and M. De Nobili

Part IV HS/NOM and the Environmental Processes of Toxic

Elements and Anthropogenic Organics

Effect of Carbonaceous Soil Amendments on Potential Mobility

of Weak Acid Herbicides in Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

William C. Koskinen, Alegria Cabrera, Kurt A. Spokas, Lucia Cox,

Jennifer L. Rittenhouse, and Pamela J. Rice

Role of Natural Organic Matter as Sorption Suppressant in Soil . . . . . 501

Joseph J. Pignatello

Comparison of Thermal and Chemical Stability of Cu-Humic

Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Martina Klucakova and Kristyna Novackova

Correlation Between Humic-Like Substances and Heavy Metals

in Composts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

M. Elisabete F. Silva, L. Teixeira de Lemos, O.C. Nunes,

and A.C. Cunha-Queda

Influence of Organic Matter from Urban Effluents on Trace

Metal Speciation and Bioavailability in River Under Strong

Urban Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Z. Matar, G. Chebbo, M. Troupel, L. Boudhamane, E. Parlanti, E. Uher,

C. Gourlay, and G. Varrault

Mechanisms of Detoxification by Humic Substances . . . . . . . . . . . . . . . 523

N.S. Kudryasheva, A.S. Tarasova, and E.S. Fedorova

Sorption of Pentachlorophenol to Organo-Clay Complexes

Prepared by Polycondensation Reactions of Humic Precursors . . . . . . 529

Masami Fukushima, Ryo Okabe, Ryo Nishimoto, Shigeki Fukuchi,

Tsutomu Sato, and Motoki Terashima

The Influence of Aquatic Humic Substances from an Area

of Sugarcane and Orange on the Dynamics of Chromium Ions

in the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

A.M. Tadini, A.B. Moreira, and M.C. Bisinoti

Contents of Volume I xxi

Page 22: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Mechanisms of Co-catalytic Action of Humic-Like Additives

on Pentachlorophenol Oxidation by a Fe-Porphyrin Catalyst . . . . . . . . 543

M. Louloudi, M. Papastergiou, and S.P. Perlepes

Effect of Humification and Temporal Alterations of Organogenic Waste

(Sewage Sludge) Properties on Its Sorption Capacity for Metals . . . . . . 549

Irena Twardowska, Ewa Miszczak, Sebastian Stefaniak,

Philippe Schmitt-Kopplin, and Mourad Harir

Does the Compositional Change of Soil Organic Matter in Rhizosphere

and Bulk Soil of Tea Plant Induced by Tea Polyphenols Have Some

Correlation with Pb Bioavailability? . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

Dechao Duan, Mingge Yu, Yingxu Chen, Luying Dai, Dongyan Long,

and Chen Xu

Reaction Rates in Enzymatic Assay System in Solutions of Metal

Salts and Humic Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Anna S. Tarasova and Nadezhda S. Kudryasheva

Humic Acid-Bound Polycyclic Aromatic Hydrocarbons (PAHs)

in Rhizosphere of Rice (Oryza sativa L.) . . . . . . . . . . . . . . . . . . . . . . . . 567

Bin Ma and Jianming Xu

Study on Mobility of Methylene Blue in the Presence

of Humic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Petr Sedlacek, Jirı Smilek, and Martina Klucakova

xxii Contents of Volume I

Page 23: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Contents of Volume II

Influence of Reactivity of Humic Acids on Transport Behaviour

of Copper(II) Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

Michal Kalina, Martina Klucakova, and Petr Sedlacek

Dissolved Organic Matter-Ofloxacin Interaction as Affected

by Metal Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Chi Wang, Mengyi Qiu, Bo Pan, and Baoshan Xing

Arsenic Sorption onto Peat and Iron Humates . . . . . . . . . . . . . . . . . . . 591

Linda Ansone, Linda Eglite, and Maris Klavins

Catalytic Decomposition of Pentachlorophenol by the Iron Fenton

System: The Dual Role of Humic Acid . . . . . . . . . . . . . . . . . . . . . . . . . 597

Y. Deligiannakis and Dimitra Hela

Effects of Dissolved Organic Matter on Pentachlorophenol Reductive

Transformation in Paddy Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Liang Tao, Mangjia Chen, Zhenke Zhu, and Fangbai Li

Phytoremediation of the Endocrine Disruptors Bisphenol A, Linuron

and 17a-ethinylestradiol in NOM-Enriched Water and Freshwaters . . . 607

C.E. Gattullo, B.B. Cunha, E Loffredo, A.H. Rosa, and N. Senesi

The Relationship Between the Activity of Dehydrogenases

and the Content of Polycyclic Aromatic Hydrocarbons

in Urban Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

E.J. Bielinska

Influences of a Humic Acid on Potassium Monopersulfate Oxidation

of 2,4,6-Tribromophenol by a SiO2-Supported Iron(III)-Porphyrin

Catalyst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Qianqian Zhu, Yusuke Mizutani, Shouhei Maeno, and Masami Fukushima

xxiii

Page 24: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Mitigation of Peroxidative Stress for a Barley Exposed to Cadmium

in the Presence of Water-Extractable Organic Matter from

Compost-Like Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Naoya Tachibana, Kenya Nagasawa, Masami Fukushima, Hikari Kanno,

Takuro Shinano, and Keiki Okazaki

The Role of Sediment Humic Substances in Cu and Cr Concentrations

in the Pore Water of a Typical Area of Cultivation of Sugar Cane

in Sao Paulo, Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

G. Pantano, M.B. Campanha, A.B. Moreira, and M.C. Bisinoti

Effect of Humic and Fulvic Acids on the Photocatalytic

Degradation of N, N-diethyl-m-toluamide (DEET) Using TiO2

Suspensions and Simulated Solar Light . . . . . . . . . . . . . . . . . . . . . . . . 633

I.K. Konstantinou and Y. Deligiannakis

Accumulation and Transformation of PCBs in Ryegrass

(Lolium multiflorum L.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Na Ding, Jianming Xu, and Paul Schwab

Humic Substances as a Reductant for Hydrophobic

Organic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

Tahir Hayat, Wen Xia, Yan He, Haizhen Wang, Jianjun Wu,

and Jianming Xu

Differentiation of Organic Matter and Major Geochemical Flows

in the Amur Basin Landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

А.F. Makhinova and А.N. Makhinov

The Impact of Different Root Exudate Components on Phenanthrene

Availability in Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

Bingqing Sun and Yanzheng Gao

Influence of the Incorporation of Organic Matter in the Retention

of Pb, Cr, and Cu Cations in Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

L.A. Mendes, L.F.P. Bucater, M.M. Kanashiro, M.D. Landgraf,

and M.O.O. Rezende

Cadmium Adsorption by a Humic Acid . . . . . . . . . . . . . . . . . . . . . . . . 665

Sara Mola Ali Abasiyan and Hassan Tofighi

Does the Distribution of Polycyclic Aromatic Hydrocarbons

in Soil Particle-Size Separates Affect Their Dissipation During

Phytoremediation of Contaminated Soils? . . . . . . . . . . . . . . . . . . . . . . 669

Jinzhi Ni, Jiwang Lin, Ran Wei, Hongyu Yang, and Yusheng Yang

Effects of Cation Saturation, Substrate Addition, and Aging

on the Mineralization and Formation of Non-extractable Residues

of Nonylphenol and Phenanthrene in a Sandy Soil . . . . . . . . . . . . . . . . 673

Anastasia Shchegolikhina and Bernd Marschner

xxiv Contents of Volume II

Page 25: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Influence of Tea Polyphenols Amendment to Contaminated Soil

on Lead Speciation, Transformation, and Bioavailability . . . . . . . . . . . 679

Mingge Yu, Hong Xiao, Dechao Duan, Jie Yu, Yingxu Chen, and Jie Xu

A Novel Fluorescence Spectroscopy Approach to Characterization

of Interaction Between Humic Substances and Pyrene: Determination

of Environmental Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

E.A. Shirshin, G.S. Budylin, N.Yu. Grechischeva, V.V. Fadeev,

and I.V. Perminova

Link Between Acetate Extractable Fe(II) Accumulation

and Pentachlorophenol Dissipation in Flooded Paddy Soils

with Vicia cracca L. Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

Yong Liu, Xiongsheng Yu, Fangbai Li, and Jianming Xu

Determination and Characterization on the Capacity of Humic

Acid for the Reduction of Divalent Mercury . . . . . . . . . . . . . . . . . . . . . 695

Tao Jiang, Shiqiang Wei, Xuemei Li, Song Lu, and Meijie Li

Dynamics of Dissolved Organic Carbon in Rhizosphere of Different

Rice (Oryza sativa L.) Cultivars Induced by PAHs Stress . . . . . . . . . . . 701

Wen Xia, Yan He, F.Z. Xu, and Jianming Xu

Effects of DOM on Sorption of Polar Compounds to Soils:

Sulfapyridine as a Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Hai Haham, Adi Oren, and Benny Chefetz

Determination of Mercury Methylation Potential in the Presence

of Peat Organic Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Marques Gomes Vinicius, dos Santos Ademir, Cesar Rocha Julio,

Moutinho da Silva Ricardo, Fabrıcio Zara Luis,

and Camargo de Oliveira Luciana

Effect of Composting Process of Pig Manure on Phytotoxicity . . . . . . . 715

Jun Meng, Xingmei Liu, Jiachun Shi, Jianjun Wu, and Jianming Xu

Transformation of Metal Fractions in the Rhizosphere of Elsholtziasplendens in Mining and Smelter-Contaminated Soils: Contribution

of Fulvic-Metal Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Jianjun Yang, Jin Liu, Shenhai Zhu, Cheng Peng, Lijuan Sun, Jiyan Shi,

and Yingxu Chen

Part V HS/NOM, Naturally Occurring and Engineered Nanoparticles

Environmental Processes and Biotoxicity of Engineered

Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Baoshan Xing

Contents of Volume II xxv

Page 26: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Humic Substances-Assisted Synthesis of Nanoparticles in the Nature

and in the Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

I.V. Perminova

Adsorption of Sulfamethoxazole on DOM-Suspended

Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

Di Zhang, Bo Pan, Hao Li, and Baoshan Xing

Genotoxicity Study of Multiwalled Carbon Nanotubes in the Presence

of Humic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

M.S. Vidali, D. Vlastos, E. Bletsa, and Y. Deligiannakis

Effect of Humic Acids on the Physicochemical Property and Cd(II)

Sorption of Multiwalled Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . 751

Xiaoli Tian, Kun Yang, Yong Xu, Huifeng Lu, and Daohui Lin

Application of Natural Organic Matter in the Biosynthesis

of a-Alumina Nanoparticles: The Humic Sol-Gel Route . . . . . . . . . . . . 757

Graziele da Costa Cunha, Luciane Pimenta Cruz Romao,

and Zelia Soares Macedo

Adsorption of Contaminants of Emerging Concern by Carbon

Nanotubes: Influence of Dissolved Organic Matter . . . . . . . . . . . . . . . . 763

Ilya Lerman, Yona Chen, and Benny Chefetz

Enhancement of Extraction Amount and Dispersibility of Soil

Nanoparticles by Natural Organic Matter in Soils . . . . . . . . . . . . . . . . 769

Wenyan Li, Xinyu Zhu, Huiming Chen, Yan He, and Jianming Xu

Synthesis and Characterization of Nanostructured

Hydroxyapatite Produced via Precipitation Route Using Natural

Organic Matter (NOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

J.A. Peixoto, G.C. Cunha, L.P.C. Romao, Z.S. Macedo, and M.E.G. Valerio

Adsorption of SMX on CNTs as Affected by Environmental

Conditions: Coexisted Organic Chemicals and DOM . . . . . . . . . . . . . . 779

Hao Li, Bo Pan, Di Zhang, and Baoshan Xing

A New Humic Acid Preparation with Addition of Silver

Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

G.P. Alexandrova, G. Dolmaab, Sh. Tserenpil, L.A. Grishenko, B.G. Sukhov,

D. Regdel, and B.A. Trofimov

Highly Reactive Subnano-Sized Zero-Valent Iron Synthesized

on Smectite Clay Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

Cheng Gu, Hui Li, Brian J. Teppen, and Stephen A. Boyd

Solubilisation of Multiwalled Carbon Nanotubes by Synthetic

Humic Acids Studied by ATR-FTIR Spectroscopy . . . . . . . . . . . . . . . . 793

Eleni Bletsa, Yiannis Deligiannakis, and Dimitris Gournis

xxvi Contents of Volume II

Page 27: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Fluorescence and Raman Spectroscopy Study of Humic Acids

in Iron Chloride Solutions and Magnetite/HA Nanoparticles . . . . . . . . 799

S.A. Burikov, T.A. Dolenko, N.V. Gorbunova, O.Yu. Gosteva,

D.A. Khundzhua, K.A. Kydralieva, S.V. Patsaeva, A.A. Yurischeva,

and V.I. Yuzhakov

Interactions Between Silver Nanoparticles and Dissolved Natural

Organic Matter Under Estuarine Conditions . . . . . . . . . . . . . . . . . . . . 805

M. Millour, E. Pelletier, and J.P. Gagne

Part VI HS/NOM, Biodiversity and Ecosystem Health

How Important Is Microbial Biodiversity in Controlling

the Mineralisation of Soil Organic Matter? . . . . . . . . . . . . . . . . . . . . . 813

Phil Brookes and Sarah Kemmitt

The Influence of Humic Acids on the Activities of Lysozyme

and Urease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817

Yan Li, Wenfeng Tan, and Luuk K. Koopal

Sorption Between Humic Substances and Marine Microalgae

in Estuaries: Effects of Microalgae Species, pH and Salinity . . . . . . . . 823

M. Millour and J.P. Gagne

Feasibility of Chelating Agent Utilization for Suppressing Methane

Production During Soil Organic Matter Decomposition . . . . . . . . . . . . 829

Prabhat Pramanik and Pil Joo Kim

Microbial and Enzyme Properties in Response to Amelioration

of an Acidic Ultisol by Industrial and Agricultural By-Products . . . . . 833

Jiuyu Li, Zhaodong Liu, Anzhen Zhao, and Renkou Xu

Change of Cation Exchange Capacity of Soils as Influenced

by Plowing and Irrigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

B.M. Klenov

Elemental Composition of Humic Acids in Frost Cracks of Soils

of Cryolithic Belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

G.D. Chimitdorzhieva, M.G. Merkusheva, A.N. Baldanova,

O.V. Vishnyakova, and B.M. Klenov

Humus Composition of Saline Soils as Affected by Long-Term

Irrigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

M.G. Merkusheva, A.N. Baldanova, G.D. Chimitdorzhieva, and B.M. Klenov

Determination of Labile Fe(II) Species Complexed with Seawater

Extractable Organic Matter in a Seawater Environment . . . . . . . . . . . 853

Hisanori Iwai, Masami Fukushima, and Mitsuo Yamamoto

Contents of Volume II xxvii

Page 28: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Microbial Community Composition of Latosols Under

a Rubber Plantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

Haichao Guo, Wenbin Wang, Xiaoping Wu, and Xuehua Luo

Quantitative Determination of 2-Mercaptoethane Sulfonate

as a Biomarker for Methanogens in Soil Using HPLC . . . . . . . . . . . . . 863

Prabhat Pramanik and Pil Joo Kim

Kocuria Rosea HN01: A Newly Discovered Alkaliphilic

Humic-Reducing Bacteria Isolated from Cassava Dregs Composting . . . 869

Nan Chen, Chunyuan Wu, Qinfen Li, and Xiao Deng

The Endodermis Is the Major Control Point for Radial Transport

of Humic Substances into the Vascular System of Plants . . . . . . . . . . . 873

N.A. Kulikova, D.P. Abroskin, A.S. Beer, G.A. Badun, M.G. Chernysheva,

V.I. Korobkov, and I.V. Perminova

Impact of Methanogens Originated from Cattle Manure

on Increasing CH4 Emission in Paddy Soil During Rice Cultivation . . . 877

Sang Yoon Kim, Prabhat Pramanik, and Pil Joo Kim

Part VII HS/NOM in Water and Water Treatment

Water Repellency Induced by Organic Matter (OM) in Treated

Wastewater (TWW) Infiltration Ponds and Irrigation . . . . . . . . . . . . . 883

Itamar Nadav, Jorge Tarchitzky, and Yona Chen

Production of Biologically Stable Safe Drinking Water from

Polluted Surface Water Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889

Olena Samsoni-Todorova, Natalia Klymenko, and Liudmyla Savchyna

The Effect of Increased Dissolved Natural Organic Matter

on Eutrophication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895

Rolf D. Vogt, Alexander Engebretsen, and Christian Mohr

EEM Spectra and Removal Property of Fluorescent DOM

in Biologically Treated Sewage Effluent . . . . . . . . . . . . . . . . . . . . . . . . 901

Wentao Lia and Aimin Li

pH Dependence of Configurations and Surface Properties

of Microbial Extracellular Polymeric Substances (EPS) . . . . . . . . . . . . 905

Lingling Wang, Longfei Wang, Xuemei Ren, Xiaodong Ye, Wenwei Li,

Shijie Yuan, Min Sun, Guoping Sheng, Hanqing Yu, and Xiangke Wang

Ferrate(VI): Novel Compound for Removal of Natural Organic

Matter in Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911

Virender K. Sharma, Jiaqian Jiang, and Hyunook Kim

The Role of Natural Organic Matter in the Biodecontamination

of Freshwaters from the Endocrine Disruptor Bisphenol A . . . . . . . . . 915

G. Castellana, E. Loffredo, A. Traversa, and N. Senesi

xxviii Contents of Volume II

Page 29: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Selective Removal of DOM on Anion-Exchange Resin from Water . . . 921

Haiou Song, Aimin Li, and Yang Zhou

Applicability of Fluorescence Analysis of Sedimentary Porewater

Humic Substances for Reconstructing Past Lake Conditions . . . . . . . . 925

A. Leeben

Effect of Natural Organic Matter (NOM) with Different Molecular

Size on Tetracycline Removal from Natural Aquatic Environment

by Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931

Qing Zhou, Mengqiao Wang, Chendong Shuang, Aimin Li,

Zheqin Li, and Mancheng Zhang

Humic Substance and Dissolved Organic Matter Distribution

in the Bureya Reservoir Water System, Central Priamurye, Russia . . . 935

S.I. Levshina

Assessing the Dynamics of Dissolved Organic Matter in the

Changjiang Estuary with Absorption and Fluorescence Spectroscopy . . . 939

Weidong Guo, Liyang Yang, Weidong Zhai, Robert G.M. Spencer,

Wenzhao Chen, and Huasheng Hong

Rivers of the Southern Russian Far East: DOC Composition

and Landscape Peculiarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945

Tatiana Lutsenko

Spectral Approach to Binding Between Metals and Dissolved

Organic Matter from a Biological Wastewater Treatment Plant . . . . . 949

Juan Xu and Guoping Sheng

Part VIII Characterization and Function of Biochar in the Environment

Designing Relevant Biochars to Revitalize Soil Quality: Current

Status and Advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955

Jeff Novak, Keri Cantrell, Don Watts, and Mark Johnson

Relationships Between Biochar and Soil Humic Substances . . . . . . . . . 959

M.H.B. Hayes

Effects of Black Carbon and Earthworms on the Degradation

and Residual Distribution of 14C-2,4-Dichlorophenol and14C-Phenanthrene in Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965

Wenqiang Zhou, Bingqi Jiang, Hongyan Guo, and Rong Ji

Characterisation of Humic Substances Extracted from Soil Treated

with Charcoal (Biochar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971

E.H. Novotny, R. Auccaise, L.B. Lima, and B.E. Madari

Impact of Pyrolysis Temperature on Nutrient Properties of Biochar . . . 975

Hao Zheng, Zhengyu Wang, Xia Deng, and Baoshan Xing

Contents of Volume II xxix

Page 30: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

The Sorption of Sulfamethoxazole on Biochars Derived from

a Sediment with High Organic Matter Content . . . . . . . . . . . . . . . . . . 979

Zhen Mao, Bo Pan, Ping Huang, and Baoshan Xing

Effect of Biochars on Adsorption of Cu(II), Pb(II) and Cd(II)

by an Oxisol from Hainan, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983

Renkou Xu, Anzhen Zhao, and M.M. Masud

Utilizing Stalk-Based Biochar to Control the Risk of Persistent

Organic Pollutants in the Environment . . . . . . . . . . . . . . . . . . . . . . . . 989

Huoliang Kong, Jiao He, Jin Han, and Yanzheng Gao

Impact of Black Carbon Amendments on the Retention Capacity

of Cadmium in Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993

Qing Yi, Xueyu Hu, and Jahisiah J. Benoit

Biochar Produced from Chemical Oxidation of Charcoal . . . . . . . . . . . 997

A.S. Mangrich, L.C. Angelo, and K.M. Mantovani

Carbon Distribution in Humic Substance Fractions Extracted

from Soils Treated with Charcoal (Biochar) . . . . . . . . . . . . . . . . . . . . . 1003

B.E. Madari, L.B. Lima, M.A.S. Silva, E.H. Novotny, F.A. Alcantara,

M.T.M. Carvalho, and F.A. Petter

Using Solid-State 13C NMR to Study Pyrolysis Final Temperature

Effects on Biochar Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007

C.F.B.V. Alho, R. Auccaise, C.M.B.F. Maia, E.H. Novotny,

and R.C.C. Lelis

Physical Attributes of Soil Evaluated for 9 Months After Application

of Biochar in Planting Eucalyptus benthamii . . . . . . . . . . . . . . . . . . . . . 1013

R.S. Carvalho, K.C. Lombardi, and E.G. Pinheiro

Organic Matter and Carbon in a Cambisoil After Incorporation

of Biochar for Eucalyptus benthamii . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017

G.T. Haberland and K.C. Lombardi

The Effect of Biochar and Bacterium Agent on Humification

During Swine Manure Composting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021

Qiaoping Tu, Weixiang Wu, HaoHao Lu, Bin sun, Cheng Wang, Hui deng,

and Yingxu Chen

A Comparison of Greenhouse Gas Emissions from a Paddy Field

Following Incorporation of Rice Straw and Straw-Based Biochar . . . . 1027

Jianlin Shen, Hong Tang, Jieyun Liu, Yong Li, Tida Ge, and Jinshui Wu

Organic Matter Investigation by Direct Analysis of Charcoal

Fractions Using Diffuse Reflectance FT-IR Spectroscopy . . . . . . . . . . . 1033

O. Francioso, G. Certini, and C. Ciavatta

Impact of Pyrolysis Time and Temperature on Physicochemical

Characteristics of Biochars from Wetland Plants . . . . . . . . . . . . . . . . . 1039

Niaz Muhammad, Zhongmin Dai, Haizhen Wang, F.Z. Xu,

and Jianming Xu

xxx Contents of Volume II

Page 31: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Part IX Industrial Products and Application of HS

On-Farm Evaluation of a Humic Product in Iowa (US)

Maize Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047

Dan C. Olk, Dana L. Dinnes, Chad Callaway, and Mike Raske

Enhancement of Germination and Early Growth of Different

Populations of Switchgrass (Panicum virgatum L.) by Compost

Humic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051

A. Traversa, E. Loffredo, A.J. Palazzo, T.L. Bashore, and N. Senesi

Humic Acid Quality: Using Oxalic Acid as Precipitating Agent . . . . . . 1055

Guido Meyer and Renate Klocking

Possible Use of Leonardite-Based Humate Sources as a Potential

Organic Fertilizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061

M.R. Karaman, M. Turan, A. Tutar, M. Dizman, and S. Sahin

Chemical Properties of Humic and Fulvic Acid Products

and Their Ores of Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067

Jingdong Mao, Dan C. Olk, Na Chen, Dana L. Dinnes, and Mark Chappell

Evaluation of a Proposed Standardized Analytical Method for the

Determination of Humic and Fulvic Acids in Commercial Products . . . 1071

Richard Lamar, Dan C. Olk, Lawrence Mayhew, and Paul R. Bloom

Potential Direct Mechanisms Involved in the Action of Humic

Substances on Plant Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075

V. Mora, L. Jannin, E. Bacaicoa, M. Arkoun, M. Fuentes, M. Olaetxea,

R. Baigorri, M. Garnica, S. San Francisco, A.M. Zamarreno, A. Ourry,

P. Etienne, P. Laıne, J.C. Yvin, and J.M. Garcı-mina

Commercial Humic Substances Stimulate Tomato Growth . . . . . . . . . 1079

A.F. Patti, W.R. Jackson, S. Norng, M.T. Rose, and T.R. Cavagnaro

Effect of Application Rate of Commercial Lignite Coal-Derived

Amendments on Early-Stage Growth of Medicago sativa and Soil

Health, in Acidic Soil Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085

Karen Little, Michael Rose, Antonio Patti, Timothy Cavagnaro,

and Roy Jackson

Influence of Commercial Humic Products on Living Organisms

and Their Detoxification Ability in Cu-Polluted Soil in Model

Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089

O.S. Yakimenko, M.V. Gorlenko, V.A. Terekhova, A.A. Izosimov,

and M.A. Pukalchik

Comparable Evaluation of Biological Activity of New Liquid

and Dry Modifications of the Humic Product “Lignohumate” . . . . . . . 1095

R.B. Poloskin, O.A. Gladkov, O.A. Osipova, and O.S. Yakimenko

Contents of Volume II xxxi

Page 32: Functions of Natural Organic Matter in Changing Environment978-94-007-5634-2...Soil organo-mineral-microbe interactions affect carbon turnover and sequestration. Our under-standingontheformation,structure,

Production of Fulvic Acid via Ethyl Fulvate . . . . . . . . . . . . . . . . . . . . . 1101

Bekir Zuhtu Uysal, Yusuf Mert Sonmez, and Duygu Uysal

Application of Humic Substances in Medicine: Basic Studies

to Assess Pro- and Anticoagulant Properties of Humic Acids . . . . . . . . 1105

H.P. Klocking and R. Klocking

Possibility for Synergic Growth-Stimulating Effects of Humic

Substances and Water with Low Isotope 2H Content on the

Germination of Wheat Seeds Under Favourable and Stress

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111

N.G. Bakanova, A.A. Timakov, A.I. Smirnov, and G.A. Kalabin

Dose-Dependent Effects of Different Humic Substances in Preclinical

Test Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117

R. Klocking, C. Kleiner, R. Junek, R. Schubert, A.M. Beer, J. Lukanov,

P. Sagorchev, H.P. Klocking, and J.I. Schoenherr

Humic Acid Quality: The Influence of Peat Formation Variables . . . . . 1123

Guido Meyer, Dierk Michaelis, Hans Joosten, and Renate Klocking

Nitration Effect on the Yield and Chemical Composition of Humic

Acids Obtained from South Brazil Coal Samples . . . . . . . . . . . . . . . . . 1129

Eduardo de Albuquerque Brocchi, Deborah P. Dick,

and Anderson Jose Barcellos Leite

Granulated Mineral-Organic Humic Preparations Based on PAPR . . . 1133

K. Hoffmann, M. Huculak-Maczka, and J. Hoffmann

Molecular Composition of Microaggregates from Artificial Soils Based

on Organic Wastes and Fe-Rich Mud by FTIR Analysis . . . . . . . . . . . 1137

M.C. Hernandez-Soriano, A. Sevilla-Perea, M.D. Mingorance,

and E. Smolders

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143

xxxii Contents of Volume II