fundamentals of computational thermo-elasticityjpamin/dyd/soki/termoelast.pdf · fundamentals of...

18
Thermo-elasticity Examples Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński, R. Putanowicz, A. Stankiewicz, A. Wosatko Cracow University of Technology, Department of Civil Engineering, Institute for Computational Civil Engineering 5 listopada 2015 J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity Thermo-elasticity Examples Overview and assumptions 1 Thermo-elasticity Thermodynamic background Theory and algorithms 2 Examples Assumptions small displacements and strains isotropic continuum linear elasticity static loading nonstationary heat transport coupling due to thermal expansion selected material parameters temperature-dependent J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Upload: others

Post on 17-Mar-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Fundamentals of computational thermo-elasticity

J. Pamin

in cooperation with

J. Jaśkowiec, P. Pluciński, R. Putanowicz,

A. Stankiewicz, A. Wosatko

Cracow University of Technology, Department of Civil Engineering,Institute for Computational Civil Engineering

5 listopada 2015

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Overview and assumptions

1 Thermo-elasticityThermodynamic backgroundTheory and algorithms

2 Examples

Assumptions

small displacements and strains

isotropic continuum

linear elasticity

static loading

nonstationary heat transport

coupling due to thermal expansion

selected material parameters temperature-dependent

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 2: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Thermodynamics and mechanics

Thermodynamics provides restrictions on the form of constitutivemodels

State variables (observable and internal), e.g.

(ε, κ, θ) - strain tensor, internal variable vector, temperature, resp.

A thermodynamic system is reversible if thermodynamic potentialsdo not depend on internal variables

Laws of thermodynamics (for elementary material volume)

1 → e = σ : ε+ r −∇q (balance of internal energy)

2 → spro ­ 0 (specific internal entropy production)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Dissipation

Definition of energy dissipation density

D = θspro = Dmech +Dther ­ 0 (local + conductive)

D = σ : ε− (e − θs)− q · ∇θθ­ 0 (Clausius-Duhem inequality)

Helmholtz free energy ψ(ε, κ, θ)

e − θs = ψ

Dissipation inequality for isothermal conditions

D = σ : ε− ψ ­ 0

ψ = ∂εψ : ε+ ∂κψ · κ

D = (σ − ∂εψ) : ε+K · κ ­ 0

K = −∂κψ (thermodynamic forces)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 3: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Material models - isothermal elasticity

Hyperelasticityσ = σ(ε) and D = 0

Selected ψ is path-independent internal stress power W

ψ = W (ε) = σ : ε (stored elastic energy)

Work equals stored elastic energy

W |t1t0 =

∫ t1t0

W (ε)dt = ψ(ε1)− ψ(ε0)

ψ =∂ψ

∂ε: ε

D = σ : ε−∂ψ

∂ε: ε = 0 → σ =

∂ψ

∂ε

σ =∂2ψ

∂ε⊗ ∂ε: ε (tangent stiffness)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Non-isothermal conditions

Dissipation inequality for non-isothermal conditions

D = σ : ε− (ψ + s θ)− q·∇θθ ­ 0

Thermo-elasticity

ψ =∂ψ

∂ε: ε+

∂ψ

∂θθ , s = −

∂ψ

∂θ, D = −q · ∇θ

θ

Thermo-elasto-plasticity

ψ = ψ(εe, κ, θ), εe = ε− εp

ψ =∂ψ

∂εe: εe +

∂ψ

∂κκ+

∂ψ

∂θθ

Dmech = σ : εp + K · κ ­ 0

Dther = −q · ∇θθ­ 0

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 4: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Temperature dependence

In principle all materialparameters (isotropy assumed)are temperature-dependent:– density ρ– Young modulus E– Poisson ratio ν– expansion coefficient α– heat conductivity k– heat capacity c

For elastic-plastic materialsadditionally:– yield stress σy– hardening modulus hp

Figures from (Ottosen and Ristinmaa, 2005)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Sources of nonlinearity

Arbitrary choice made for present derivation: E (θ), k(θ)

Hence, nonlinearity is due to temperature-dependence of Young modulusand heat conductivity, and possibly natural boundary conditions for thethermal subproblem (radiation).

For generalization refer e.g. to (Ottosen and Ristinmaa, 2005)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 5: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Thermoelasticity

Voigt’s notation:σ = [σx , σy , σz , τxy , τxz , τyz ]

T

ε = [εx , εy , εz , γxy , γxz , γyz ]T

Assumed b, t independent of temperature

Equilibrium

LTσ + b = 0 in V

σn = t on Stu = u on Su

Linear elasticity + thermal expansion (θ = T − T0)

ε = εe + εθ, σ = E(ε− εθ), ε = Lu

εθ = αθΠ, Π = [1 1 1 0 0 0]T, E = E(θ)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Momentum balance

Weak form at t + ∆t (u = u, vu = 0 on Su)∫V

(Lvu)T σ dV =

∫V

vTu b dV +

∫St

vTu t dS ∀vu

σt+∆t = σt + ∆σ

∆σ = limi→∞

∆σi , ∆σi+1 = ∆σi + dσ, σt+∆ti = σt + ∆σi∫

V

(Lvu)T dσ dV = Wt+∆text −Wt+∆t

int,i

Wt+∆tint,i =

∫V

(Lvu)T σt+∆ti dV

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 6: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Momentum balance

Linearized weak form

dσ = E(dε− dεθ

)+ dE

(ε− εθ

)dE =

dEdθdθ, dεθ = αΠ dθ, sθ =

dEdθ

(ε− αθΠ)− αEΠ

dσ = E dε+ sθ dθ

dε = L du∫V

(Lvu)T E L du dV +

∫V

(Lvu)T sθ dθ dV = Wt+∆text −Wt+∆t

int,i

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Heat transport

Assumed ρ, r , q independent of temperature

Heat transportc θ +∇Tq = r in V

qTn = q on Sq

θ = θ on Sθ

Fourier’s lawq = −Λ∇θ, Λ = Λ(θ)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 7: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Heat transport

Weak form at t + ∆t (θ = θ, vθ = 0 on Sθ)∫V

vθc θ dV −∫V

(∇vθ)T q dV =

∫V

vθr dV −∫Sq

vθq dS ∀vθ

θt+∆t = θt + ∆θ

Generalized midpoint rule(1− γ)θt + γ θt+∆t =

θt+∆t − θt

∆t

For γ = 1 backward Euler for time integration

θt+∆t =∆θ

∆t∫V

vθc∆θ

∆tdV −

∫V

(∇vθ)T qt+∆t dV = Qt+∆text

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Heat transport

Weak form at t + ∆t (θ = θ, vθ = 0 on Sθ)

∆θ = limi→∞

∆θi , ∆θi+1 = ∆θi + dθ, θt+∆ti = θt + ∆θi

qt+∆t = qt + ∆q

∆q = limi→∞

∆qi , ∆qi+1 = ∆qi + dq, qt+∆ti = qt + ∆qi

Linearization:

dq = −dΛdθ∇θ dθ − Λ∇( dθ)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 8: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Heat transport

Linearized weak form

1∆t

∫V

vθc dθ dV +

∫V

(∇vθ)TdΛdθ∇θ dθ dV+

+

∫V

(∇vθ)T Λ∇( dθ) dV = Qt+∆text + Qt+∆t

int,i

Qt+∆tint,i =

∫V

(∇vθ)T qt+∆ti dV − 1

∆t

∫V

vθc∆θi dV

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Thermodynamic backgroundTheory and algorithms

Discretization and coupling

u, vu using Nu, u = Nuu, Bu = LNu

θ, vθ using Nθ, θ = Nθθ, Bθ = ∇Nθ

Substitution leads to:[Ki Kθ,i

0 C + Hi

][d u

d θ

]=

[ft+∆text − ft+∆t

int,i

ht+∆text − ht+∆t

int,i

]where

Ki =

∫V

BTu EiBu dV , Kθ,i =

∫V

BTu sθ,iNθ dV

C =1

∆t

∫V

NTθ cNθ dV , Hi =

∫V

BTθ

(dΛdθ

∣∣∣∣i

∇θiNθ + ΛiBθ

)dV

ft+∆tint,i =

∫V

BTu σt+∆ti dV , ht+∆t

int,i =

∫V

NTθ c∆θi∆tdV −

∫V

BTθ qt+∆ti dV

Staggered algorithm possibleJ. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 9: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Square configuration under thermal load

qn = 0

qn = 0

qn = 0

T (t)

t

T

1

Mechanics:

– density ρ = 2– Young modulus E = 20000– Poisson ratio ν = 0.2– yield stress σy = 300– hardening modulus ET = 2000

Heat flow:

– initial temperature T0 = 0– heat conductivity k = 10– heat capacity c = 1– expansion coefficient α = 0.01

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Square configuration under thermal load (FEAP)Equivalent stress (elasticity)

Evolution of equivalent stress (FEAP)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 10: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Square configuration under thermal load (FEAP)Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Square configuration under thermal load (FEAP)Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 11: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Square configuration under thermal load (FEAP)Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Square configuration under thermal load (FEAP)Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 12: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Square configuration under thermal load (FEAP)Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Square configuration under thermal load (FEAP)Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 13: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Square configuration under thermal load (FEAP)Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Square configuration under thermal load (ANSYS)Equivalent stress (elasticity)

coarse mesh dense mesh

Caution: sensitivity of results to space and time discretization!

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 14: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

Square configuration under thermal load (ANSYS)Equivalent stress (plasticity)

coarse mesh dense mesh

Caution: locking in plasticity must be prevented!

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Square configuration under thermal load (ANSYS)Plastic strain measure

coarse mesh dense mesh

Question: what if we need full coupling due to plastic dissipation andthermal softening?

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 15: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

FEMDK (Tochnog kernel): heat induced deformationProblem setup

0.9

1.0

1.0

����������������

����������������

����������������

����������������

����������������

����������������

������

����������������

����������������

����������������

���������������� ���

������

���������

������������

������������

������������

������������

������

������

convection

to environment

T

t

T(t) free to

move

fixed

fixed

T(0) = 0

T(2) = 1600

insulation

insulation

Material properties (SI Units): Steel AISI-304, density ρ = 8030.0, Youngmodulus E = 1.93e11, Poisson ratio ν = 0.29, yield stress σy = 24.3e6, linearexpansion coefficient α = 1.78e − 5, heat conductivity k = 16.3, convectioncoefficient hc = 10.0, environment temperature Tambient = 0.0.

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

FEMDK (Tochnog kernel): heat induced deformationDiscretisation

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 16: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

FEMDK (Tochnog kernel): heat induced deformationFinal temperature distribution

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

FEMDK (Tochnog kernel): heat induced deformationFinal displacement

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 17: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

FEMDK (Tochnog kernel): heat induced deformationFinal total strain distribution

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

FEMDK (Tochnog kernel): heat induced deformationFinal isotropic hardening parameter

Movie

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Page 18: Fundamentals of computational thermo-elasticityjpamin/dyd/SOKI/termoelast.pdf · Fundamentals of computational thermo-elasticity J. Pamin in cooperation with J. Jaśkowiec, P. Pluciński,

Thermo-elasticityExamples

FEMDK (Tochnog kernel): heat induced deformationEffective stress distribution in wall cross-section

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticityExamples

Literature

G. A. Maugin.The Thermomechanics of Plasticity and Fracture.Cambridge University Press, Cambridge, 1992.

D.W. Nicholson.Finite element analysis. Theromechanics of solids.CRC Press, Boca Raton, 2008.

N.S. Ottosen and M. Ristinmaa.The Mechanics of Constitutive Modeling.Elsevier, 2005.

W. Prager.Introduction to Mechanics of Continua.Dover Publications, 1961.

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity