fundamentals of data conversion: part i...major need for high dynamic range, wide-bandwidth, low...

89
Sebastian Hoyos http://ece.tamu.edu/~hoyos/ Several of these slides were provided by Dr. Jose Silva-Martinez and Dr. Jun Zhou Fundamentals of Data Conversion: Part I.1

Upload: others

Post on 07-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Sebastian Hoyoshttp://ece.tamu.edu/~hoyos/

    Several of these slides were provided by

    Dr. Jose Silva-Martinez and Dr. Jun Zhou

    Fundamentals of Data Conversion: Part I.1

    http://ece.tamu.edu/%7Ehoyos/

  • • Fundamentals of Analog-to-Digital Converters

    • Introduction

    • Sampling and Quantization

    • Quantization noise and distortion

    • INL and DNL

    • Technological related issues

    • Sample and Hold

    • Switching issues

    • S/H Accuracy

    • Active S/H

    • Switch around S/H

    Outline

  • The Smartphone market

    • Global smartphone market projected to growAnticipated global unit sales to approach 400 millions in 2013

    (market research report from Forward Concepts Co)Projected revenue in 2012: $32.2 billion

    (source: In-Stat Group)

  • GSM

    WCDMA

    FM

    WiMax & 802.20

    GPS

    Bluetooth

    WiFi

    Multi-standard Wireless Systems• Multiple services

    • Reuse circuits as much as possible• Power• Area• Competitiveness

    • Smaller Cell phone,stronger function,longer battery duration

    • Use of digital (analog unfriendly) nanometric tecnologies

  • Exponential growth in mobile computing and broadband wireless Major need for high dynamic range, wide-bandwidth, low power ADCs.

    Multi-standard Wireless Systems

  • Bandwidth requirements for higher connectivity

    Bluetooth, 802.11band 802.11g

    Frequency (GHz)

    Spec

    turm

    802.11a

    5.42.4

    UMTS

    2

    DECT

    1.91.0

    GSM

    IS-95

    DTV

    0.05 0.8

    > 45 dB

    Higher flexibility on operational frequency and bandwidth, higher blocker rejection, higher dynamic range

    Receiver Architectures:

    Super-heterodyne, Low-IF, Direct Conversion, High-IF, Digital Radio

  • What is an Analog-to-Digital Converter (ADC)?Analog

    Continuous with no apparent discontinuities

    The way we interpret our surroundings: sound, light, temperature … etc

    Digital01001011001010010101010101010100101001010010100101010010010010010110011001010100100101001001010

    Discrete with limited range; based on binary numbers with limited number of bits.

    The way we mathematically represent and process our world using electronic “brain” power

    ADC

  • R. Walden, 1999

  • x(t)

    Sampling

    δ(t-nTS)

    x(nTS)

    Quantization

    x(nTS)+q(nTS)

    Decoding111110101

    010001000

    765

    210

    N bits

    How does an ADC work?Analog Digital

    Continuous with no apparent discontinuities

    The way we interpret our surroundings: sound, light, temperature … etc

    10010100101001010010011001011001010

    01001011001010010101010101010100101001010010100101010010010010010110011001010100100101001001010

    ADC Discrete with limited range; based on binary numbers with limited number of bits.

    The way we mathematically represent and process our world using electronic “brain” power

  • How does an ADC work?

    x(t)

    Sampling

    δ(t-nTS)

    x(nTS)

    Quantization

    x(nTS)+q(nTS)

    Decoding111110101

    010001000

    765

    210

    N bits

    x(t)

    t

    x(n)

    nTS

    Analog Digital

    10010100101001010010011001011001010

    ADC

    δ(n)

    nTS

    x(n)

    nTS

    2N Levels separated by 1LSB, 1LSB = VFS* / 2N

    * VFS = full scale range, Vmax-Vmin

    Quantization noise

  • ADCs are indispensable, but now need to handle smaller signals at higher speeds with similar or higher resolutions.

    ADCs: Yesterday vs. TodayExample: Digital photography (8-12b ADCs)

    2000

    CCD/CMOS Image Array

    Balance Control

    DSP(black level

    compensation , encoding ...etc)

    AMP ADC

    0.5-0.8µm CMOS with 5V supply (moderate gate density and speed in DSPs)

    2M pixel CCD sensor (low pixel scanning speed) Some pre-ADC analog conditioning ~ 2.5mV / LSB

    2009

    DSP(balance control, black level

    compensation, image stabilization, exposure levels, noise reduction, lens shading

    correction, encoding...etc)

    AMP

    CCD/CMOS Image Array

    ADC

    90nm-180nm CMOS with 1.2-1.8V supplies (high gate density and speed in DSPs)

    12M pixel CCD sensor (high pixel scanning speed) Minimal pre-ADC analog conditioning ~ 0.5mV / LSB

    Faster DSPs capable of performing numerous complex functions are developed thanks to advanced CMOS technologies

    ADCs are becoming the bottleneck for advancement, and new design techniques need to be developed.

  • ADCs: Tomorrow?ADC IEEE literature survey: 2006-2008

    Pipeline ADC is currently most published architecture Pipeline ADC is breaking the trend set by Sigma-Delta and Flash ADCs

    Pipeline ADC is expected to be a key ADC architecture in future applications

    2468

    101214161820

    0.1 1 10 100 1000 10000Signal Bandwidth (MHz)

    Res

    olut

    ion

    (bits

    )

    0.01

    Sigma-DeltaPipelinedFlash

    The development of new design techniques for high speed, low voltage and low power Pipeline ADCs is crucial to stay on the future applications roadmap

    15M?20M?

    From 1080P to 4K (2160P)?

    4G?HDTV?

    Tomorrow

    Pipeline ADC ApplicationsToday

    Pipeline ADC is breaking the trend set by Sigma-Delta and Flash ADCs, and driven by consumer electronics

  • Design Challenges of Pipeline ADCs in Advanced CMOS Technologies (Summary)

    High Speed Low Voltage Low Power

    DSP(balance control, black level

    compensation, image stabilization, exposure levels, noise reduction, lens shading

    correction, encoding...etc)

    AMP

    CCD/CMOS Image Array

    ADC

    With the added speed of new generations of DSPs, the ADC is becoming the bottleneck for overall system speed

    in addition to increased speed, the DSP ability to perform more complex tasks will require higher ADC resolutions

    Reduction of Device size allows for denser integration, but device reliability dictate lower supply voltages

    Reduced supplies means reduced signal range, which requires a higher ADC accuracy for the same number of bits

    Many applications are portable and operated from a battery

    As a potentially power hungry component, the ADC power needs to be reduced to help prolong battery life

    Digital Camera Example

  • Super-heterodyne Receiver

    BPF LNA BPFVGA

    LO2LO1

    Digital Output

    RF(0.45-5 GHz)

    High IF(100-200 MHz)

    Antenna

    LPF Baseband ADC

    Baseband(< 20 MHz)

    Invented by Armstrong in 1918 Hardware specific radio architectureExtensive filtering to relax ADC specsSuitable for narrow-band applications

  • Design issues for multi-standard solutions

    Excessive power at the front-end (Linearity issues)Extensive down conversions: LO and mixers increase both

    noise and power consumptionExtensive filtering: Area, Power and Noise issuesNot fully compatible for the Telecoms roadmap

    Limited by flicker noise

    Not flexible

    Hardware intensiveBPF LNA BPFVGA

    LO2LO1

    Digital Output

    RF(0.45-5 GHz)

    High IF(100-200 MHz)

    Antenna

    LPF Baseband ADC

    Baseband(< 20 MHz)

  • Current Multi-standard designs

    BPF LNA BPFVGA

    LO2LO1

    RF(1-2 GHz)

    IF(100-200 MHz)

    Antenna

    RFSwitch

    Receiver for standard 1

    BPF LNA BPFVGA

    LO2LO1

    RF(1-2 GHz)

    IF(100-200 MHz)

    Receiver for standard 2

    Minimum sharing of blocks

    Area and powerconsumption overhead

    Not Flexible at all

    Limited number of standards can be accommodated

  • Introduction to Analog-to-Digital Converters

    • Analog-to-Digital Converters (ADC) are necessary to convert real world signals (which are analog in nature) to their digital equivalents for easy processing.

    • Common applications for ADCs are communication systems, TV receivers, Digital Oscilloscopes, Audio applications..

    Analog

  • Efficient radio transceiver: Direct Conversion

    Direct conversion + broadband ADC (1 receiver per service) Lowpass filter is required (~ 50-100 mW) 13-14 bits 80 MHz Lowpass ADC (500 mW from ADI) Bank of receivers, filters and ADCs

    Antenna

    RFsignal

    Software Platform

    DSP

    or

    FPGAs

    LNA & VGA

    16-Channel Multiband Digital Receiver

    RF Filter 1 ADC 1IF Filter 180 MHz

    4-channel digital

    receiver

    4-channel digital

    receiver

    ADC 2IF Filter 24-

    channel digital

    receiver

    4-channel digital

    receiver

    Antenna

    RFsignal

    LNA & VGARF Filter 2

    Optional

    Mixer

    Mixer

    Frequency Synthesizer

  • Recent Approaches to Broadband Receivers Sample rate, downsampling and filteringR. Crochiere and L. Rabiner, Multirate Digital Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

    1983.

    Sampling with built-in anti-aliasing Y. S. Poberezhskiy et.al. “Sampling and signal reconstruction circuits performing internal

    antialiasing filtering and their influence on the design of digital receivers and transmitters,” TCASI, Jan. 2004.

    A discrete-time RF sampling receiverR. B. Staszewski, et. al. “All-digital TX frequency synthesizer and discrete-time receiver for

    Bluetooth radio in 130-nm CMOS,” IEEE J. Solid-State Circuits, Dec. 2004.

    SDR receiverAbidi, “The path to software-defined radio receiver”, IEEE JSSC, May 2007

    Frequency-domain-sampling receiversS. Hoyos and B. M. Sadler, “Ultra-wideband analog to digital conversion via signal expansion,” IEEE

    Transactions on Vehicular Technology, Sept. 2006.

  • A. Abidi, “The path to software-defined radio receiver”, IEEE JSSC, May 2007

    Direct conversion with tunable LO in the freq. range 800 MHz to 6 GHz.

    Cascade of sincN filters followed by decimation to achieve the initializing needed.

    Good for narrowband signals as a single ADC can handle the bandwidth. But SDR should also be good for wideband and ultra-wideband signals. Need parallel ADC to sample at a fraction of Nyquist rate. Parallelization of the front-end will be needed if want to keep the ADC sampling rate down.

    UCLA SDR receiver

  • x A/D

    A/Dx

    jĵ̂( 1m+∫( 1m+

    ∫1

    Tc

    0R

    Frequency-Domain ADC Based on Fourier Coefficients

    Mixers and integrators. Lower frequency sample and

    hold requirements.

    No signal reconstruction. Parallel digital processing.

    Optimal bit allocation minimizes quantization error. Some samples may

    not be quantized at all.

    F0 F1 FN-1F2

    1R2R

    1NR −

    S. Hoyos and B. M. Sadler, “Ultra-wideband analog to digital conversion via signal expansion,” IEEE Transactions on Vehicular Technology, Sept. 2006.

  • Dout

    Antenna

    LNA & VGARF Filter BP-Σ∆-ADC RF

    signalVin

    Software radio transceiver: Design Issues

    Makes it sense to have a multi-standard solution based on this architecture?

    Bandwidth required? Dynamic range required? DTV SNRsignal=25 dB; Blockers > 45 dB; Crest factor > 20 dB LNA+VGA+ADC Dynamic Range over 90 dB (practical ?) Can you use tracking filters? (back to the past)

  • Ultimate goal: Reality or Dream

    Antenna

    RF signalDSP

    Filter+

    LNA

    T/R switch

    Linear RF Power

    amplifierDAC

    Reconfigurableprograms

    ADC

    Concept introduced in 1991Modulation/demodulation waveforms in software Flexible multi-standard software architecture

  • 1

    2

    3

    LNA

    RF Filter

    RF

    Anti-Aliasing

    Filter

    A/D

    SCF, GmCOP-RC

    Anti-Aliasing

    Filter

    A/D

    Dig. Filter

    DSP

    DSPRF

    RF Filter

    RF Filter

    A/D

    Dig. Filter

    DSPG

    Dig. Mod.RF

    IF or BB

    DR

    DR

    BB

    How much RF processing should be done before the ADC? The front-end must be scalable and configurable to fit multiple standards

    Roadmap for high-resolution Receivers

  • The single-chip Transceiver Paradigm25

    Critical Analog components must be minimized

    • Modern technologies:“Digital intensive” System-on-Chip (SOC) environmentScaling of transistor dimensions in digital CMOS

    technologiesIncreased intra-die variability from device scalingDefect densities increase in newer technologiesYields decrease as SOC chip sizes increaseYield impact on analog specifications leads to

    process corner-based overdesignto allow for analog parameter variations Increased test cost

    M. Onabajo, 2011

  • Fast CMOS ADC’s: State of the art

    Freq (GHz)

    Spec

    turm

    5.42.421.91.00.05 0.8

    16

    14

    12

    10

    8

    6

    4

    10 MS/s 100MS/s 1GS/s 10GS/s 100GS/s

    Flash

    Pipeline Interleaved

    Sampling rate

    Resolution

    Trends:Extensive use of parallelism

    Time interleavedReduced supply voltages make analog

    more challengingHeadroom for amplifiersLittle room for cascodingPoor devices if VDS is further reduced

    Use techniques that take advantage of digital trendsDigital circuitry is “cheap and fast”Tendency is Digitally Assisted Analog

    Circuits

    Research Goal

    Pipeline

    Calibrated Pipeline

    BP Sigma-delta

  • R. Walden, 1999

  • LTE

    Where we were in 99? Where we are?

  • A Little bit of History

  • A Little bit of History

  • Jitter and noise limitations on ENOB

  • Classic FoM to compare ADCs

    Recent Σ∆ modulators

  • Bandwidth (Nyquist) vs. SNDR

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    1.E+07

    1.E+08

    1.E+09

    1.E+10

    1.E+11

    10 20 30 40 50 60 70 80 90 100 110 120

    BW

    [Hz]

    SNDR [dB]

    ISSCC 1997-2009VLSI 1997-2009ISSCC 2009Jitter=1psrmsJitter=100fsrms

    B. Murmann, "ADC Performance Survey 1997-2010, http://www.stanford.edu/~murmann/adcsurvey.html.

  • Energy per conversion at Nyquist rate

    1.E-01

    1.E+00

    1.E+01

    1.E+02

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    1.E+07

    10 20 30 40 50 60 70 80 90 100 110 120

    P/f s

    [pJ]

    SNDR [dB]

    ISSCC 2010ISSCC 1997-2009VLSI 1997-2009FOM=100fJ/conv-stepFOM=10fJ/conv-step

    B. Murmann, "ADC Performance Survey 1997-2010, http://www.stanford.edu/~murmann/adcsurvey.html.

  • The quantized signal presents a finite number of output values that are associated with digital codes

    Data Converters: The main issue

  • What the problem is?

  • The quantized signal presents a finite number of output values that are associated with digital codes

    Issues: Sampling, Holding and conversion

  • Properties of the Fourier Series

  • Properties of the Fourier Series

    Modulation properties

    Convolution in time

  • Relevant properties of the Fourier Series

    Product in time

  • Relevant properties of the Fourier Series

  • Additional properties of the Fourier Series

  • Define the problem: Sampling Operation

  • Sampling Operation: Nyquist Rate

    According to the sampling theorem: If no alias issues, then

    Ideal sampling does not add distortion but replicas of the original spectrum

  • Signal Sampling Theorem

    Time domain sampling

    Frequency Spectrum

  • Signal Sampling employing a train of pulsesTime domain sampling with pulses

    Spectrum

  • Alias issue if undersampling

  • Under-sampling of a broadband signal

  • The sampling and Held operations generate alias frequency components and (sinc) signal distortion, respectively

    Error is an odd function (no even harmonic distortions, why?)

    Quantization generates harmonic distortioncomponents when sinusoidal input signals are used

    S/H and Quantization errors

    Freq Freq

    Error signal

    Quantized signal

    ( ) ( ) ( )tErrortStS qin +=

  • Distortion due to quantization errors

  • ADC metrics: Quantization error• Signal is sampled at given instants• Signal is encoded to a limited number of codes resulting in quantization noise

    (random signals) and distortion (periodic signals)

  • What the fundamental problem is?Mapping an infinite resolution analog signal into a digital but finite resolution representation

  • Quantization noise for Random (Ramp) input signal

  • ( ) dB.N./

    /P

    /APP

    SQNRN

    noisenoise

    signalideal 76102612

    2222

    22

    +=∆⋅∆

    ===

    The maximum Signal-to-Quantization Noise ratio (SQNR) for an N-bit ADC:

    02.676.1)dB(SNDRENOB −=

    • For an ADC with a measured SNDR, the effective number of bits is defined as:

    ADC metrics: SQNR

  • The dynamic range of a system is equal to the signal to noise ratio measured over a bandwidth equal to half of the sampling (Nyquist) frequency

    Then,

    Is the total while the quantization noise density (quantization noise measured in a bandwidth of 1 Hz)

    s

    2

    s

    2

    22

    f6q

    f2densityNoise

    12q

    ==

    =

    σ

    σ

    Quantization noise density

    fs/2-fs/2

  • Incommensurate fs and fin Sampling frequency fs is fixed.

    Input frequency fin is chosen to satisfy (a) integernumber of cycles C and (b) N / C = fs / fin isincommensurate. An easy way is to make N a power of 2 and C a prime number. Additionally to guarantee thatthe input frequency falls on a DFT freq. bin use fin = fs/2-kfs/N, where k is an integer. Then checkinconmesurate requirement.

    Windowing lifts the need to have an integer numberof cycles. Good for measurements.

    Pick N depending on noise floor requirements: TheDFT noise floor is 10*log10(N/2) below the noise floor. Then DFT noise floor = -SNR_0dFS -10*log10(N/2).

  • Practical Limitations

  • Digital to Analog Converters

  • Practical Definitions

  • Practical Limitations

  • Practical Limitations

    Quite critical issue! Usually not a major issue

  • Practical Limitations: Offset error

  • Practical Limitations

    Usually not a major issue Quite critical issue!

  • Practical Limitations: Gain error

  • Practical Limitations: Differential Error

  • Practical Limitations

  • Practical Limitations: Integral error

  • Practical Limitations

  • Practical Limitations: Absolute Accuracy

  • Analog to Digital Converters

    Usually the effects of

    the systematic offsets

    can be minimized

    through calibration or

    accounted in digital

    domain

  • Digital to Analog Converters

  • Practical Limitations

  • Practical Limitations

  • Practical Limitations

    DNL must be smaller or equal to 1 LSB

  • Practical Limitations

  • Offset Voltages

  • Practical Limitations

  • Slide Number 1Slide Number 2The Smartphone marketMulti-standard Wireless SystemsSlide Number 5Bandwidth requirements for higher connectivityWhat is an Analog-to-Digital Converter (ADC)?Slide Number 8How does an ADC work?How does an ADC work?ADCs: Yesterday vs. TodayADCs: Tomorrow?Design Challenges of Pipeline ADCs in Advanced CMOS Technologies (Summary)Super-heterodyne ReceiverDesign issues for multi-standard solutionsCurrent Multi-standard designsIntroduction to Analog-to-Digital ConvertersSlide Number 18Recent Approaches to Broadband ReceiversSlide Number 20Slide Number 21Slide Number 22Ultimate goal: Reality or DreamSlide Number 24The single-chip Transceiver ParadigmSlide Number 26Slide Number 27Slide Number 28Slide Number 29A Little bit of HistoryA Little bit of HistorySlide Number 32Slide Number 33Bandwidth (Nyquist) vs. SNDREnergy per conversion at Nyquist rate Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50S/H and Quantization errorsDistortion due to quantization errorsADC metrics: Quantization errorSlide Number 54Slide Number 55Quantization noise for Random (Ramp) input signalSlide Number 57ADC metrics: SQNRQuantization noise densitySlide Number 60Incommensurate fs and finSlide Number 62Slide Number 63Practical LimitationsDigital to Analog ConvertersPractical DefinitionsPractical LimitationsPractical LimitationsSlide Number 69Practical LimitationsSlide Number 71Slide Number 72Practical LimitationsSlide Number 74Practical LimitationsSlide Number 76Analog to Digital ConvertersDigital to Analog ConvertersPractical LimitationsPractical LimitationsPractical LimitationsPractical LimitationsOffset VoltagesPractical LimitationsSlide Number 85Slide Number 86Slide Number 87Slide Number 88Slide Number 89