fzk/irs-as w. hering, ch. homann1 forschungszentrum karlsruhe in der helmholtz-gemeinschaft 11th...

16
FZK/IRS-AS W. Hering, Ch. Homann 1 Forschungszentrum Karlsruhe in der Helmholtz- Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering, Ch. Homann W. Hering, Ch. Homann Forschungszentrum Karlsruhe Programme NUKLEAR P.O. Box 3640, D-76021 Karlsruhe, Germany 11th International QUENCH Workshop, October 25-27 2004 Table of Contents Table of Contents Motivation and objectives Imbedding of Q-11 into Reflood Database Status of Q-11 preparation Summary and conclusions Pre-test calculations of Pre-test calculations of QUENCH-11 QUENCH-11 (Q-L2) using S/R5 and ASTEC (Q-L2) using S/R5 and ASTEC

Upload: araceli-livsey

Post on 01-Apr-2015

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 1

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

W. Hering, Ch. HomannW. Hering, Ch. Homann

Forschungszentrum KarlsruheProgramme NUKLEAR

P.O. Box 3640, D-76021 Karlsruhe, Germany

11th International QUENCH Workshop, October 25-27 2004

Table of Contents Table of Contents

• Motivation and objectives• Imbedding of Q-11 into Reflood Database • Status of Q-11 preparation • Summary and conclusions

Pre-test calculations of QUENCH-11 Pre-test calculations of QUENCH-11 (Q-L2) using S/R5 and ASTEC (Q-L2) using S/R5 and ASTEC

Pre-test calculations of QUENCH-11 Pre-test calculations of QUENCH-11 (Q-L2) using S/R5 and ASTEC (Q-L2) using S/R5 and ASTEC

Page 2: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 2

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Motivation and objectives

• Open issues in SFD core refloodOpen issues in SFD core reflood

– Reduction in H2 uncertainty

– Perform a dry-out-reflood sequence test (Q-11)– Reflood with low capability systems (Q-11)– Assess risk of unintended core reflood (in case of LOOP)

• Pre-test work for QUENCH-11Pre-test work for QUENCH-11– Feasibility study (QWS-10)– Upgrade facility to meet requirements – First results of Q-11 pre-test experiments (Juri Stuckert)– Specification of step-by step approach to meet

requirements of QUENCH-11 (“Vorversuche”)

Page 3: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 3

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Data baseData base

– EU-Programs– FZK Experiments– IRSN Phebus– OECD/NEA– USNRC– Plant accidents– LUTCH

Reactor typeReactor type

– PWR– VVER– BWR

Imbedding of Imbedding of Q-11 into Reflood Q-11 into Reflood

DatabaseDatabase

Core damage state prior to refloodinitiation

Re

ac

tor

typ

e

In

tac

t /

loc

. b

all

oo

nin

g

Ab

so

rbe

r d

am

ag

ed

Fu

el

rod

da

ma

ge

d

Me

tall

ic m

elt

re

loc

ate

d

Lo

ca

l d

eb

ris

Lo

ca

l d

eb

ris

/po

ol

Glo

ba

l d

eb

ris

/po

ol

Ma

teri

al

relo

ca

tio

n -

>L

H

PC

T p

rio

r to

re

flo

od

PC

T d

uri

ng

te

st

Pre

ss

ure

at

refl

oo

d

He

at-

up

ra

te

Ste

am

sta

rva

tio

n p

rio

r to

re

flo

od

(D

ura

tio

n)

Te

mp

era

ture

in

cre

as

ed

uri

ng

sta

rva

tio

n p

eri

od

Re

flo

od

me

diu

m

Re

flo

od

me

diu

m a

nd

RM

FR

Fra

cti

on

of

tota

l H 2

ma

ss

re

lea

se

d d

uri

ng

qu

en

ch

AS

TE

C-I

np

ut

Data source 0 1 2 3 4 5 6 7 K K/s sec K g   s*rod

%

CODEX 3/1 V 1420 / 1430 L 0,3 W 0,9 1

CODEX 3/2 V 1773 / 1916 L 0,6 W 0,9 <5

PARAMETR 1 V 1700 / ~1700 L ? Yes W 7 ?

PARAMETR 2 V B 1700 / ~2700 L ? No W 5 ?

QUENCH IBS05 P 1700 / 1750 L ? --- W 2,6 30

QUENCH-01 " 1830 / 1900 L 0,7 60 W 1,8 7 I

QUENCH-02 " 2470 / 2500 L " W 1,7 90

QUENCH-03 " Tiny 2450 / 2500 L " W 1,4 (85)

QUENCH-04 " 2110 / 2340 L " S 1,7 16 F

QUENCH-05 " Partial 2020 / 2270 L " S 1,7 7 G

Q-06 (ISP45) " 2060 / 2150 L " W 1,5 11 I/F

QUENCH-07 " B4C 2100 />2300 L " S 0,6 (68)

QUENCH-08 " Partial 2070 />2300 L " S 0,6 45 F

QUENCH-09 " B4C Tiny 2100 />2500 L " Yes S 1,8 87

QUENCH-10 (Q-L1) " 2180 / 2300 L " Air W 1,8 10 F

QUENCH-11 (Q-L2) " L 0.5 ? W 0.6 F

QUENCH-12 V t.b.d.

PBF SFD ST " ? / >2700 L 0.1 ? W 0,5 50

Phb SFD B9R2 " ? / 2150 L <0.2 Yes S S ?

CORA-12 " SIC ~2000 / 2300 L 1 --- W 1,4 ?

CORA-13 (ISP-31) " SIC Tiny ~2100 / 2500 L 1 --- W 1,4 48

CORA-17 B B4C ~2000 / 2300 L 1 Yes W 1,4 79

CORA-12 P SIC ? ? / >2400 L 2.2 --- W 130 75

TMI-2 P SIC ? / >2800 H 0.5 ? H 50-180 ~30 I

Paks (CTI) V 1600 / ? L 0.1 ? L W: ? ?

Page 4: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 4

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Accident Termination Released Hydrogen fraction A

bso

rber

dam

ag

ed

Fu

el ro

d d

am

ag

ed

Fu

el re

locate

d

Meta

llic

blo

ckag

es

Lo

cal d

eb

ris/p

oo

l

Glo

bal d

eb

ris

/po

ol

Relo

ca

tio

n->

LP

Ab

so

rber

dam

ag

ed

Fu

el ro

d d

am

ag

ed

Fu

el re

locate

d

Meta

llic

blo

ckag

es

Lo

cal d

eb

ris/p

oo

l

Glo

bal d

eb

ris

/po

ol

Relo

ca

tio

n->

LP

Flow rate (g/s*rod) 1 2 3 4 5 6 7 1 2 3 4 5 6 7

TMI-2: 50-180 (BPT) T T T T TLoft LP-FP2: 130 L L L ? ? L L ? ?very high (> 9.0) ? ? ? ? ? ? ?

All HP-SI + LP-SI ? ? ? ? ? ? ?high (2.0 - 9.0) P P ? ? ? P P ? ? ? ?

All LP-SI Q ? ? ? Q ? ? ? ?medium (1.0 - 2.0) C Q Q ? ? C Q Q ? ?

All HP-SI Q C C ? ? Q C C ? ?low ( 0.6... 1.0) Q Q ? ? ? Q Q ? ? ?

single HP-SI X Q ? ? ? ? X Q ? ? ? ?very low (< 0.7) ? Q-L2 ? ? ? ? ? ? ? ?

other ? ? ? ? ? ? ? ? ? ? ? ? ? ?Accident progression

Core damage state prior to refloodinitiation

Re

fllo

d m

as

s f

low

ra

te -

->

Q-L2 in the reflood map Q-L2 in the reflood map Experimental data base: Depending on Experimental data base: Depending on Reflood Mass Flow RateReflood Mass Flow Rate (RMFR) and (RMFR) and Core Damage State (CDS)Core Damage State (CDS)

Steam Steam starvedstarved(PARAMETR) (PARAMETR)

Q-11 Q-11 (Q-L2)(Q-L2)Q-11 Q-11 (Q-L2)(Q-L2)

Color codingA H2< 20%

B 20 < H2 < 50%

C H2 > 50%

Cat A & B

Cat B & C

Data sourcesC CORAQ QUENCHX CODEXP ParametrL LOFT LP-FP2T TMI-2

Page 5: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 5

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Step-by-step approach to QUENCH-11Step-by-step approach to QUENCH-11

Test objectives Test objectives - Extend QUENCH facility to low mass flow rate scenarios Extend QUENCH facility to low mass flow rate scenarios

(ceasing pumps or AMM)(ceasing pumps or AMM)

- Prepare facility for experiments with free water surfacePrepare facility for experiments with free water surface

- Investigate scenario with low steam availability Investigate scenario with low steam availability (app. 1g/s 0.04 g/rod*s)

Stepwise approachStepwise approach

- Component tests q11v1Component tests q11v1 - Guidance and control test q11v2 (T < 600 K)Guidance and control test q11v2 (T < 600 K)

qualification of input decks qualification of input decks

- Design basis reflood test q11v3 (T < 1400 K) Design basis reflood test q11v3 (T < 1400 K) extend database also for DBA codes extend database also for DBA codes update of input decks update of input decks

QUENCH-11 (Q-L2)QUENCH-11 (Q-L2)

Page 6: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 6

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Best simulation of reactor conditions

with Q-L2

ReactorReactor Consider real volumes

in the RPV: Contribution of downcomer: additional 80 to 120 % of the free core flow area

• Pre-test calculationsPre-test calculations– Pre-test experiments to

assess input decks

– Check independent control of: 1. evaporation rate and 2. bundle heat-up

Page 7: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 7

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Tools for pre-test calculations and Tools for pre-test calculations and post-test analysespost-test analyses

SCDAP/RELAP5 mod 3.2.irs:SCDAP/RELAP5 mod 3.2.irs:specially modified for out-of-pile facilities specially modified for out-of-pile facilities basic toolbasic tool

ASTEC V1.x (contribution to SARNET):ASTEC V1.x (contribution to SARNET): Check more possible test scenarios Check more possible test scenarios

(after qualification using S/R5) (after qualification using S/R5)

Parameter studies (fast running code)Parameter studies (fast running code)

Due to manpower restrictions: Due to manpower restrictions: Code validation focussed on DIVA (~ICARE2) Code validation focussed on DIVA (~ICARE2)

Page 8: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 8

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Pre-test Q-11v2

• Objectives:

Steam flow control with Auxiliary heater power

Control bundle heat-up

Response time of additional water inflow

Qualification of fluid measurement

Test low mass flow-rate reflood (< 0.7g/s*rod)

Page 9: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 9

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

First post test analysis

• Draft findings:

Water ejected due to flashing even

Bundle voided z> 0.25 m

Temperature rise linearly until bundle power reduced

Not observed in experiment

Page 10: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 10

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Post-test Q-11v2

• Draft findings:

Boil-off rate larger: z > 0.5 m,smaller: z < 0.5 m

Bundle temperatures underestimated

Flashing observed (due to initial conditions)

Check initial conditions and heat losses to environment at “low” temperatures

Page 11: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 11

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Whole scenario

Pre-test calculationPre-test calculation(before Q-11v2):(before Q-11v2):

– Q-11v3 delivers50-60 µm oxide layer(reactor specific)

– Q-11v3 reflood phase simulates Accumulator driven core reflood

– Max temperatures: - Q-11v3: < 1350 K - Q-11 ~ 2600 K

Next steps:Next steps:

1. update input deck

2. Check sequence Q-11v3 and Q-11

Page 12: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 12

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Reasonable simulation of axial temperature profile during heat-up phase

Onset of final transient OK (t< 7000s)

Temperature peak prior / during reflood underestimated (like most of the codes in ISP-45)

ASTEC V1.2 in work

Validation: ASTEC results for ISP-45Validation: ASTEC results for ISP-45

Page 13: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 13

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

ASTEC: draft

results for Quench-11

Comparable to S/R5 calculations

Deviations during cool-down are due to lacking reflood model in (ASTEC V1.1)

Much faster than S/R5

Shows Temperature evolution in the core as well as shroud insulation

Page 14: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 14

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Summary and conclusions (1)

Post test analysis identified unexpected deviations Post test analysis identified unexpected deviations in the S/R5 facility model: in the S/R5 facility model: not required before because experiments not required before because experiments

start at higher temperaturesstart at higher temperatures

Q-11v2 proved successfully step-by-step Q-11v2 proved successfully step-by-step approach to prepare Q-11approach to prepare Q-11

Free water level and steam mass flow rate Free water level and steam mass flow rate could be controlled, although predictions of pre-could be controlled, although predictions of pre-calculations differ from experiment calculations differ from experiment

QUENCH facility, originally not designed for a free water QUENCH facility, originally not designed for a free water level at lower end of the bundle is now able to simulate level at lower end of the bundle is now able to simulate that featurethat feature

Page 15: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 15

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany

Q-11v3 – Q11 pre-test calculations initiated Q-11v3 – Q11 pre-test calculations initiated using results of Q-11v2using results of Q-11v2

– Q-11 can be performed as proposed (QWS-10)– Database will be released to LACOMERA partners– Post-test analyses with ASTEC will be continued

with know-how from S/R5

SFD-Research focused on: SFD-Research focused on: SARNET: Validation of ASTEC V1.x by code to code

and code to data

Improvement and extension of the FZK reflood map

Detailed simulation with S/R5 to supply integral codes with reliable boundary conditions for Q-11

Summary and conclusions (2)

Page 16: FZK/IRS-AS W. Hering, Ch. Homann1 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 11th International QUENCH Workshop, Karlsruhe, Germany W. Hering,

FZK/IRS-AS W. Hering, Ch. Homann 16

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

11th International QUENCH Workshop, Karlsruhe, Germany