g2 lattice gauge theory at finite density and temperature · g 2 lattice gauge theory at finite...

57
G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University Jena collaboration with A. Maas, L. von Smekal, B. Wellegehausen (C. Wozar) 5th International Conference on New Frontiers in Physics , Kolymbari, July 2016 Andreas Wipf (Jena) G 2 Lattice Gauge Theory at Finite Density and Temperature

Upload: others

Post on 13-Mar-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

G2 Lattice Gauge Theory at Finite Density andTemperature

Andreas Wipf

Theoretisch-Physikalisches InstitutFriedrich-Schiller-University Jena

collaboration withA. Maas, L. von Smekal, B. Wellegehausen (C. Wozar)

5th International Conference on New Frontiers in Physics , Kolymbari, July 2016

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 2: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

1 G2-Gluodynamics

2 G2 Yang-Mills-Higgs Theory and SSB

3 G2 Gauge Theory with Dynamical Fermions

4 Spectroscopy

5 Finite Temperature and DensityPhase diagram – deconfinement transitionPhase diagram – baryon numberHigh-precision simulations for two-flavor SU(2) in two dimensions

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 3: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Bjoern Wellegehausen,Jena/Gießen

Axel MaasGraz

Lorenz von Smekal,Gießen

eff. Polyakov Loop dynamicsPhys. Rev. D80 (2009) 065028

Casimir Scaling/string breakingPhys. Rev. D83 (2011) 016001

phase diagram YMHPhys. Rev. D83 (2011) 114502

phase diagram with fermions Phys. Rev. D86(2012) 111901

phase diagram, spectroscopyPhys. Rev. D89 (2014) 056007

earlier papers with C. Wozar.

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 4: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Expected QCD phase diagram 4 / 57

various condensates, quark density, Polyakov-loops, . . .almost no first principle results for large baryon density

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 5: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

In this talk: Lattice approach 5 / 57

space-time latticefinite volume

V = (aNt )× (aNs)d−1

β = aNt , L = aNs

functional integrals→finite-dimensional integralswithout quarks:accurate resultson large lattices ≈ 1284

with quarks:fermionic determinantnon-local integrandextrapolation (a,mF )sign problem for µ 6= 0

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 6: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Gluodynamics and QCD 6 / 57

zero baryon-density: accessible to simulationswithout quarks⇒weakly first order PT with order parameterMC method applicable, relatively cheapwith quarks⇒masses of hadrons, glueballs, . . . , matrix elements, life-times,equation of state, . . .expensive simulations

large baryon density: not accessible to simulationsnot much known (effective models)ideas/proposals on exotic phases of cold dense matterrelevant for n∗ (equation of state)

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 7: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Why G2-Gauge Theory 7 / 57

no sign problem⇒ simulations at finite density feasiblerepresentations are realbaryon and meson spectrum similar to QCDsimilar glueball spectrum as SU(3) Wellegehausen, Wozar, AW

G2 contains SU(3) as subgroup⇒smooth interpolation G2 −→ SU(3) by SSBconfinement↔ center of gauge group? Hollands, Minkowski, Pepe, Wiese

smallest (simply connected) Lie group with trivial center

only gauge theory with fermionic baryons whichhas been simulated at high baryon density

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 8: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Color-singlet states and branching to SU(3) 8 / 57

expected colour-singlet bound states

{7} ⊗ {7} = {1} ⊕ {7} ⊕ {14} ⊕ {27}{7} ⊗ {7} ⊗ {7} = {1} ⊕ 4 · {7} ⊕ 2 · {14} ⊕ . . .{14} ⊗ {14} = {1} ⊕ {14} ⊕ {27} ⊕ . . . ,

{14} ⊗ {14} ⊗ {14} = {1} ⊕ {7} ⊕ 5 · {14} ⊕ . . . ,{7} ⊗ {14} ⊗ {14} ⊗ {14} = {1} ⊕ . . .

SSB G2 → SU(3) (cp. GUTS)

fermions: {7} −→ {3} ⊕ {3} ⊕ {1},gauge bosons: {14} −→ {8} ⊕ {3} ⊕ {3}.

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 9: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

G2 Yang-Mills theory has 9 / 57

quark gluon plasma at high Tconfinement of color at low Tteaches us about role of center for confinementtests ideas/proposals on exotic phases of cold dense matterallows for a test quality of frequently used approximations:MF-type, hopping-parameter expansions, strong-coupling expansions,effective models, renormalization group, . . .condensates and nB distinguish between different phasessuggestions are welcome

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 10: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

G2 gauge theory without fermions: what is known 10 / 57

1st order confinement/deconfinement PT Hollands, Minkowski, Pepe, Wiese 2003

Cossu, D’Elia, di Giacomo, Lucini, Pica 2007

Casimir scaling Greensite, Langfeld, Olejnik, Reinhardt, Tok 2007; Liptak, Olejnik 2008

effective Polyakov loop dynamics Wellegehausen, AW, Wozar 2009

chiral restoration in quenched theory at same Tc Danzer, Gattringer, Maas 2009

G2 monopoles (Shnir), semiclassical dyon picture (Diakonov, Petrov 2010), . . .string breaking, gluelump spectrum Wellegehausen, AW, Wozar 2011

SSB G2 →SU(3) Wellegehausen, AW, Wozar 2012

topological properties, instantons Maas, Olejnik, Ilgenfritz 2013

equation of state, 〈Tµµ 〉T ∝ T 2

Bruno, Caselle, Panero, Pellegrini 2015

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 11: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

simulations: first order PT (local HMC, moderate 163 × 6 lattice)

rapid change with β ∝ 1/g2

histogram in vicinity of βc ≈ 9.65first order transition

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 12: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Casimir scaling 12 / 57

static quark-antiquark potential representation R

VR(R) = γR −αRR

+ σRR

e−βV (R) varies over ≈ 50 orders of magnitude until string breaksCasimir scaling hypothesis for string tensions:

σRcR

=σR′

cR′

−2

−1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

VR/µ

µR

R = 7, β = 30, N = 483R = 14, β = 30, N = 483R = 7, β = 20, N = 323R = 14, β = 20, N = 323

(scaled) string tensions (µ2 = σ7) Liptak, Olejnik; WWW: N = 48, β = 30

aAndreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 13: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram of finite-temperature G2 Higgs Model 13 / 57

lattice action with normalized 7-component Higgs ϕ

SYMH[U , ϕ] = −β∑2

(1− 1

7tr U2

)− κ

∑ϕT

x Ux,µϕx+µ

spontaneous symmetry breaking G2 → SU(3):{14} −→ {8} ⊕ {3} ⊕ {3} gluons ⊕ massive Vector bosonsκ = 0: pure G2 gauge theory: 1st order deconfinement transitionκ =∞: pure SU(3) gauge theory: 1st order deconfinement transitioncomplete phase diagram of G2 YMH theory:average plaquette action, Higgs action and Polyakov loopsusceptibilities (and higher derivatives), finite size analysis≤ 5× 105 configurations, on grid ≤ β = 5 . . . 10, κ = 0 . . . 104

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 14: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram: global picture 14 / 57

βcrit = 9.55(5) , κcrit = 1.50(4)

0

100

101

102

103

5 10 15 30 ∞

κ

β

SO(7) broken

SU(3) deconfinement

SO(7) unbroken

G2 deconfinement

confinement

3

456

163 × 6-lattice

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 15: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Gap in first order line? 15 / 57

00.5 6 7 8 900.5 6 7 8 9 9.39.49.59.69.79.89.9 10β

20 30 60 ∞20 30 60 ∞

11.21.41.61.82κ

101001000∞101001000∞ SO(7) brokenSU(3) de on�nement

SO(7) unbrokenG2 de on�nement on�nement

Summarizing the phase diagram of G2 YMH-theoryWellegehausen, Wozar, AW

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 16: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

G2 QCD with dynamical fermions 16 / 57

collaboration with Axel Maas, Lorenz von Smekal and Bjoern Wellegehausen

det D(U, µ,m] ≥ 0 for any Nf

⇒ simulations at finite T and µ possiblemeasure chiral/di-quark condensate, baryon-density, Polyakov loop,. . .interpretation of phase transitions and condensates⇒ need particle spectrum at T = 0 Tglueballsmesonsbaryons: nq = 1,2,3exotic particles

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 17: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

global symmetries and possible breakings for Nf = 1 17 / 57

SU(2) U(1)Bm

U(1)B U(1)Bm

µ µ

enlarged chiral symmetry (Pauli-Gürsey)Goldstone bosons

d(0++) ∼ ψCγ5ψ + ψγ5ψC and d(0+−) ∼ ψCγ5ψ − ψγ5ψ

C

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 18: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Spectroscopy – lattice setup 18 / 57

Wilson fermions, Symanzik improved gauge action, RHMC-algorithmβ = 0.96, κ = 0.159 fixedensemble for Spectroscopy16× 83 latticeProton mass mN = 938 MeV, diquark mass md(0+) = 247 MeV

Lattice spacing a = 0.343 fm ∼ (575 MeV)−1

ensembles at finite temperature and densityLattice size: Nt × 83 with Nt = 2 . . . 16T = 36 . . . 287 MeV, 9 valuesµ = 0 . . . .354 MeV, 60 values below lattice saturation

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 19: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Interpolating operators: Mesons nq = 0 19 / 57

{7} ⊗ {7} = {1} ⊕ . . .

Name Operator Pos. Spin Colour Flavour J Pη uγ5u S A S S 0 -f uu S A S S 0 +ω uγµu S S S A 1 -h uγ5γµu S S S A 1 +π uγ5d S A S S 0 -a ud S A S S 0 +ρ uγµd S S S A 1 -b uγ5γµd S S S A 1 +

unquenched or partially quenched in one-flavor simulations

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 20: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Interpolating operators: Baryons nq = 1 20 / 57

{7} ⊗ {7} ⊗ {7} = {1} ⊕ . . .{7} ⊗ {14} ⊗ {14} ⊗ {14} = {1} ⊕ . . .

Name Operator Pos. Spin Col. Flav. J PHybrid εabcdefguaF p

µνF qµνF r

µνT bcp T de

q T fgr S S A S 1/2 ±

∆ T abc(uaγµ287ub)uc S S A S 3/2 ±N T abc(uaγ5db)uc S A A A 1/2 ±

hybrid-spectroscopy difficultmη −mdiquark = disconnected contributions

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 21: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Interpolating operators: Baryons nq = 2 21 / 57

{7} ⊗ {7} = {1} ⊕ . . .

Name Operator Pos. Spin Colour Flavour J P Cd(0++) uCγ5u + uγ5uC S A S S 0 + +d(0+−) uCγ5u − uγ5uC S A S S 0 + -d(0−+) uCu + uuC S A S S 0 - +d(0−−) uCu − uuC S A S S 0 - -

d(1++) uCγµd + uγµdC S S S A 1 + +d(1+−) uCγµd − uγµdC S S S A 1 + -d(1−+) uCγ5γµd + uγ5γµdC S S S A 1 - +d(1−−) uCγ5γµd − uγ5γµdC S S S A 1 - -

diquark masses are degenerate (cc)no sources for diquarks needed

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 22: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Interpolating operators: Baryons nq = 3 22 / 57

{7} ⊗ {7} ⊗ {7} = {1} ⊕ . . .

Name Operator Pos. Spin Colour Flavour J P∆ T abc(uC

a γµub)uc S S A S 3/2 ±N T abc(uC

a γ5db)uc S A A A 1/2 ±

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 23: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Masses of mesons and baryons 23 / 57

Wellegehausen, Maas, Smekal, AW (2013)

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 24: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Low temperature: baryon density vs. chemical potential 24 / 57

silver blazediquark BEcondensationmd(0+) = 247 MeVplateaus visible forlarger nq

three transitionshadronic phase atm∆ ≈ mN

Wellegehausen, Maas, Smekal, AW (2013)

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 25: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

(Preliminary) interpretation 25 / 57

low density: in accordance with silver blazetwo small jumps at diquark thresholds⇒ two (probably) second order PT?two plateaus after thresholdsBose-condensates of diquarks?one (probably) first order PT at ≈ ∆ thresholdhadronic phase for higher nq (under investigation)aµ & 1: lattice artifacts, e.g. saturation effects

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 26: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – Deconfinement transition (µ = 0) 26 / 57

Polyakov loop 〈P〉 and susceptibility ∂〈P〉∂T at µ = 0

Deconfinement transition at Tc(µ = 0) ≈ 137 MeV(cubic splines, no thermalization at 80 MeV)

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 27: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – deconfinement transition (selected µ’s) 27 / 57

Polyakov loop 〈P〉 and susceptibility ∂〈P〉∂T

deconfinement transition shifts to smaller T for larger µpeak of susceptibility increases

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 28: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – deconfinement transition 28 / 57

Polyakov loop 〈P〉 and susceptibility ∂〈P〉∂T (60 µ’s)

deconfinement transition shifts to smaller T for larger µpeak of susceptibility increases, consistent with T ′c(µ)

∣∣µ=0 = 0

Tc(µ)

Tc(0)∼ 1 + 0.001(8)

µ

Tc(0)− 0.031(6)

Tc(0)

)2

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 29: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

scanning (T , µ) space 29 / 57

temperatures: T = 287, 192, 144, 115, 96, 82, 72, 48, 36 MeVchemical potential: 60 µ-values between 0 and 354 MeV for each T

100 200 300 400 500 600

50

100

150

200

250

300

00

Tin

MeV

µ in MeV

deconf

conf

vacuum

diquark

cond

nuclear

matter

underway

latticesaturation

?

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 30: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryon number 30 / 57

quark number density

T = 287 MeV

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 31: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryon number 31 / 57

quark number density

T = 192 MeV

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 32: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryon number 32 / 57

quark number density

T = 144 MeV

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 33: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryon number 33 / 57

quark number density

T = 115 MeV, µdeconf = 317 MeV

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 34: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryon number 34 / 57

quark number density

T = 96 MeV, threshold effects?

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 35: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryon number 35 / 57

quark number density

T = 82 MeV

estimater problem for small µ when 〈nB〉 ≈ 10−3 − 10−4

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 36: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryon number 36 / 57

quark number density

T = 72 MeV

〈nB〉 may jump at thresholds

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 37: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryonic matter transition 37 / 57

quark number density

T = 48 MeV

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 38: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Phase diagram – baryonic matter transition 38 / 57

quark number density

T = 36 MeV

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 39: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Simulation at higher µ and lower T required 39 / 57

G2-QCD phase diagram with V = (2.7 fm)3 and md(0+) = 247 MeV

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 40: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

High-precision model calculations: two-flavor SU(2) in two dimensions 40 / 57

4-dimensions: parameter study in (µ,T ) plane very expensiveas today low T and finite µ not accessible in 4-dimensional theoriesdetailed studies of µ-dependence for interpretation⇒ lower-dimensional theories as test-bedshere: two-flavor SU(2) in two dimensionsno sign problembehaves (not only qualitatively) similar to G2 QCDin two dimensions: no breaking of continuous symmetry!

earlier studies in 4d: Simon Hands et al., von Smekal et al.

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 41: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

no SSB of continuous symmetry, π not lightest particle,lightest particle: vector diquark (as for G2)scale: µc defined by silver blaze, µc = 1

2 md

mass of vector diquark in lattice units 0.22complete mass-spectrum: in progressSimulation parameters:

simulations at fixed β = 3.8 and κ = 0.27 and Ns = 16Nt ∈ {2, 4, 6, 8, 10, 12, 14, 16, 24, 32, 48, 128}, 12 temperaturesµ from 0 to 1.15 in steps ∆µ = 0.002, fine gridcolor-plots in T -variable interpolatedtypical 1000 configurations, HMC, Wilson fermions,

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 42: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

µ-dependence of chiral condensate for different T 42 / 57

steps are washed out at higher temperaturesvarious types of diquarks can condensevery high resolution in µ, small statistical errors

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 43: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot 〈ψψ〉, gobal picture 43 / 57

µc defined by silver blazeµ ≥ 7µc : lattice artifacts, saturation

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 44: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot 〈ψψ〉, intermediate µ 44 / 57

µ < µc : explicit breaking of chiral symmetryµ ' µc : chiral condensate rotates into diquark condensate

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 45: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot 〈ψψ〉, small µ 45 / 57

line emanating from µ = µc bends ’to the right’

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 46: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot ∂µ〈ψψ〉, small µ 46 / 57

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 47: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

T -dependence of 〈P〉, several µ 47 / 57

staggered fermions 〈P〉 = 0, not true for Wilson fermionscan probe very low temperature (not yet feasible in 4 dimensions)

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 48: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot 〈P〉, all µ 48 / 57

lattice artifacts for µ > 7µc

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 49: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot 〈P〉, intermediate µ 49 / 57

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 50: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

µ-dependence of nq for different T 50 / 57

only states with vanishing total momentum contributesaturation for large µ, Nsat = 2× 16 = 32onset at µ = µc , steps of 2steps washed out with increasing T

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 51: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot nq , global picture 51 / 57

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 52: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot nq , intermediate µ 52 / 57

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 53: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot nq , small µ 53 / 57

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 54: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot ∂µnq , intermediate µ 54 / 57

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 55: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

color-plot ∂T nq , intermediate µ 55 / 57

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 56: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Conclusions and outlook 56 / 57

finite size/low temperature for high-density G2 in four dimensions?

evidence for first order nuclear matter transition

chiral symmetry restoration vs. confinement/deconfinement:

to this day not conclusive

deconfinement transition at lower temperatures / critical endpoint?

hybrid spectroscopy (difficult)

diquark condensation in 4d G2 and 2d two-flavour SU(2) at work

equations of state for µ ≤ 350 MeV

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature

Page 57: G2 Lattice Gauge Theory at Finite Density and Temperature · G 2 Lattice Gauge Theory at Finite Density and Temperature Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University

Summary 57 / 57

G2 QCD is a useful laboratoryinterpolation G2-QCD→ QCD with Higgs-mechanism possiblefull phase diagram (in principle) accessible to simulationsfirst order(?) transition line (critical end point?)deformation vs. sign problem?testbed for model buildingtestbed for alternative approaches (expansions, renormalization group)?comparison with strong coupling / hopping parameter expansionsome of these questions can be answered in lower dimensions

Andreas Wipf (Jena) G2 Lattice Gauge Theory at Finite Density and Temperature