game theory and its applications to networks · game theory and its applications to networks - part...

41
Game Theory and its Applications to Networks - Part II: General Games Corinne Touati Master ENS Lyon, Fall 2010

Upload: others

Post on 12-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Game Theory and its Applications toNetworks -

    Part II: General Games

    Corinne Touati

    Master ENS Lyon, Fall 2010

  • Game in Extensive Form

    An n-person extensive form game is a finite tree structure with:

    I A vertex indicating the starting point of the game,

    I A pay-off function assigning a n-vector to each terminalvertex of the tree,

    I A partition of the nodes of the tree into n + 1 sets (with N i

    the set of player i),

    I A probability distribution, defined at each vertex of S0, amongthe immediate followers of this vertex,

    I A subpartition of each player set N i into information sets ηijsuch that all nodes of a information set has the same numberof children and that no node follows another node of the sameinformation set.

    Corinne Touati (INRIA) Strict Competition Games in Extensive Form 2 / 17

  • Game in Extensive Form

    An n-person extensive form game is a finite tree structure with:

    I A vertex indicating the starting point of the game,

    I A pay-off function assigning a n-vector to each terminalvertex of the tree,

    I A partition of the nodes of the tree into n + 1 sets (with N i

    the set of player i),

    I A probability distribution, defined at each vertex of S0, amongthe immediate followers of this vertex,

    I A subpartition of each player set N i into information sets ηijsuch that all nodes of a information set has the same numberof children and that no node follows another node of the sameinformation set.

    Corinne Touati (INRIA) Strict Competition Games in Extensive Form 2 / 17

    Equilibrium

    Every finite n-person game with perfectinformation has an equilibrium n-tuple ofstrategies

  • Game in Extensive Form

    An n-person extensive form game is a finite tree structure with:

    I A vertex indicating the starting point of the game,

    I A pay-off function assigning a n-vector to each terminalvertex of the tree,

    I A partition of the nodes of the tree into n + 1 sets (with N i

    the set of player i),

    I A probability distribution, defined at each vertex of S0, amongthe immediate followers of this vertex,

    I A subpartition of each player set N i into information sets ηijsuch that all nodes of a information set has the same numberof children and that no node follows another node of the sameinformation set.

    Corinne Touati (INRIA) Strict Competition Games in Extensive Form 2 / 17

    Be careful

    A B

    Player 2

    RL

    Player 1

    (2, 1)(0, 0)

    (1, 2)

    L R

    A (0, 0) (2, 1)

    B (1, 2) (1, 2)

    There are 2 Nash equilibria! ((A,R) and (B,L))BUT, only (A,R) is a subgame perfect equilibrium

  • Surprising Examples

    Corinne Touati (INRIA) Strict Competition Games in Extensive Form 3 / 17

    Forward Induction

    ConcertBook

    1, 30, 0

    0, 03, 12, 2

    Strategic form:B S

    Book (2, 2) (2, 2)B (3, 1) (0, 0)S (0, 0) (1, 3)

    Chain-Store Game: short-termversus long term

    F

    CS k

    C

    OutIn

    k

    CS

    (5, 1)

    (2, 2)(0, 0)

    Centripede Game

    SSSSS

    C C C C C C

    S(6, 5)

    (3, 1) (4, 6)(5, 3)(0, 2)(1, 0) (2, 4)

  • Surprising Examples

    Corinne Touati (INRIA) Strict Competition Games in Extensive Form 3 / 17

    Forward Induction

    Book Concert

    1, 30, 0

    0, 03, 12, 2

    Strategic form:B S

    Book (2, 2) (2, 2)B (3, 1) (0, 0)S (0, 0) (1, 3)

    Chain-Store Game: short-termversus long term

    F

    CS k

    C

    OutIn

    k

    CS

    (5, 1)

    (2, 2)(0, 0)

    Centripede Game

    SSSSS

    C C C C C C

    S(6, 5)

    (3, 1) (4, 6)(5, 3)(0, 2)(1, 0) (2, 4)

  • Stackelberg Equilibrium

    Definition.

    A Stackelberg game is a two-player extensive game with perfectinformation in which a ”leader” chooses an action from a set A1and a ”follower”, informed of the leader’s choice, chooses anaction from a set A2. The Stackelberg equilibria are solutions ofthe problem:

    max(a1,a2)∈A1×A2

    u1(a1, a2) s.t. a2 ∈ argmaxa′2∈A2u2(a1, a′2)

    Example:Level 1

    Level 2

    a b c

    y n y n y n

    (0, 0) (0, 0) (0, 2) (0, 0)(1, 1)(2, 0)

    Corinne Touati (INRIA) Strict Competition Games in Extensive Form 4 / 17

  • Game in Normal Form

    Definition: Nash Equilibrium.

    In a Nash equilibrium, no player has incentive to unilaterallymodify his strategy.

    strategy utility

    s∗ is a Nash equilibrium iff:

    ∀p,∀ sp , up(s∗1, . . . , s∗p , . . . s∗n) ≥ up (s∗1, . . . , sp , . . . , s∗n)

    In a compact form:∀p,∀sp, up(s∗−p, s∗p) ≥ up(s∗−p, sp)

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 5 / 17

  • Nash Equilibrium: Examples

    Find the Nash equilibria of these games (with pure strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)

    ⇒ not efficient

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)

    ⇒ not unique

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    ⇒ No equilibrium

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 6 / 17

  • Nash Equilibrium: Examples

    Find the Nash equilibria of these games (with pure strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)⇒ not efficient

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)

    ⇒ not unique

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    ⇒ No equilibrium

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 6 / 17

  • Nash Equilibrium: Examples

    Find the Nash equilibria of these games (with pure strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)⇒ not efficient

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)⇒ not unique

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    ⇒ No equilibrium

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 6 / 17

  • Nash Equilibrium: Examples

    Find the Nash equilibria of these games (with pure strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)⇒ not efficient

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)⇒ not unique

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    ⇒ No equilibrium

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 6 / 17

  • Nash Equilibrium: Examples

    Find the Nash equilibria of these games (with pure strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)⇒ not efficient

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)⇒ not unique

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)⇒ No equilibrium

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 6 / 17

  • Mixed Nash Equilibria

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 7 / 17

    Definition: Mixed Strategy Nash Equilibria.

    A mixed strategy for player i is a probability distribution over the set ofpure strategies of player i.An equilibrium in mixed strategies is a strategy profile σ∗ of mixedstrategies such that: ∀p,∀σi, up(σ∗−p, σ∗p) ≥ up(σ∗−p, σp).

    Theorem 1.

    Any finite n-person noncooperative game has at least one equilibriumn-tuple of mixed strategies.

    Proof.

    Kakutani fixed point theorem: Let S be a non-empty, compact andconvex subset of a Euclidean space. Let f : S → P(S) (the power set ofS) with a closed graph and such that ∀x ∈ S, f(x) is non-empty andconvex. Then f has a fixed point.

    Apply Kakutani to f :

    {[0, 1]N → P([0, 1]N )σ 7→ ⊗i∈{1,N}Bi(σi)

    with Bi(σi)

  • Mixed Nash Equilibria

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 7 / 17

    Definition: Mixed Strategy Nash Equilibria.

    A mixed strategy for player i is a probability distribution over the set ofpure strategies of player i.An equilibrium in mixed strategies is a strategy profile σ∗ of mixedstrategies such that: ∀p,∀σi, up(σ∗−p, σ∗p) ≥ up(σ∗−p, σp).

    Theorem 1.

    Any finite n-person noncooperative game has at least one equilibriumn-tuple of mixed strategies.

    Proof.

    Kakutani fixed point theorem: Let S be a non-empty, compact andconvex subset of a Euclidean space. Let f : S → P(S) (the power set ofS) with a closed graph and such that ∀x ∈ S, f(x) is non-empty andconvex. Then f has a fixed point.

    Apply Kakutani to f :

    {[0, 1]N → P([0, 1]N )σ 7→ ⊗i∈{1,N}Bi(σi)

    with Bi(σi)

    Consequence:

    I The players mixed strategies are independant randomizations.

    I In a finite game, up(σ) =∑a

    ∏p′

    σp′(ap′)

    ui(a).I Function ui is multilinear

    I In a finite game, σ∗ is a Nash equilibrium iff ∀ai in the supportof σi, ai is a best response to σ

    ∗−i

  • Mixed Nash Equilibria: Examples

    Find the Nash equilibria of these games (with mixed strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)

    ⇒ No strictly mixed equilibria

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)

    σ1 = (2/3, 1/3), σ2 = (1/3, 2/3)

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    σ1 = σ2 = (1/3, 1/3, 1/3)

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 8 / 17

  • Mixed Nash Equilibria: Examples

    Find the Nash equilibria of these games (with mixed strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)

    ⇒ No strictly mixed equilibria

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)

    σ1 = (2/3, 1/3), σ2 = (1/3, 2/3)

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    σ1 = σ2 = (1/3, 1/3, 1/3)

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 8 / 17

  • Mixed Nash Equilibria: Examples

    Find the Nash equilibria of these games (with mixed strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)

    ⇒ No strictly mixed equilibria

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)

    σ1 = (2/3, 1/3), σ2 = (1/3, 2/3)

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    σ1 = σ2 = (1/3, 1/3, 1/3)

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 8 / 17

  • Mixed Nash Equilibria: Examples

    Find the Nash equilibria of these games (with mixed strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)

    ⇒ No strictly mixed equilibria

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)

    σ1 = (2/3, 1/3), σ2 = (1/3, 2/3)

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    σ1 = σ2 = (1/3, 1/3, 1/3)

    Corinne Touati (INRIA) Strict Competition Games in Normal Form 8 / 17

  • Mixed Nash Equilibria: Examples

    Find the Nash equilibria of these games (with mixed strategies)

    The prisoner dilemma

    collaborate deny

    collaborate (1, 1) (3, 0)deny (0, 3) (2, 2)

    ⇒ No strictly mixed equilibria

    Battle of the sexes

    Paul / Claire Opera Foot

    Opera (2, 1) (0, 0)Foot (0, 0) (1, 2)

    σ1 = (2/3, 1/3), σ2 = (1/3, 2/3)

    Rock-Scisor-Paper

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    σ1 = σ2 = (1/3, 1/3, 1/3)Corinne Touati (INRIA) Strict Competition Games in Normal Form 8 / 17

  • Nash Equilibrium with Chance Move

    Corinne Touati (INRIA) Strict Competition Chance Moves 9 / 17

    Nature take decision w1 or w2 with probability 1/2.(w1) a b

    a (0, 0) (6,−3)b (−3, 6) (5, 5)

    (w2) a b

    a (−20,−20) (−7,−16)b (−16,−7) (−5,−5)

    Nash equilibrium if:

    I aucun des joueurs ne connâıtl’état:

    EN: (b, b), utilité :(0, 0)

    I les deux joueurs sont informés:

    EN: ((a, a)|w1), ((b, b)|w2),utilité: (−2.5,−2.5)

    I Seul le joueur 1 est au courant:

    EN: ((a, a)|w1) , ((b, a)|w2),utilité (−8,−3, 5)

    Nature

    (0, 0) (−5,−5)(−16, 7)(−7,−16)(−20,−20)(5, 5)(−3, 6)(6,−3)

    ⇒Information can bedetrimental

  • Nash Equilibrium with Chance Move

    Corinne Touati (INRIA) Strict Competition Chance Moves 9 / 17

    Nature take decision w1 or w2 with probability 1/2.(w1) a b

    a (0, 0) (6,−3)b (−3, 6) (5, 5)

    (w2) a b

    a (−20,−20) (−7,−16)b (−16,−7) (−5,−5)

    Nash equilibrium if:

    I aucun des joueurs ne connâıtl’état:EN: (b, b), utilité :(0, 0)

    I les deux joueurs sont informés:

    EN: ((a, a)|w1), ((b, b)|w2),utilité: (−2.5,−2.5)

    I Seul le joueur 1 est au courant:

    EN: ((a, a)|w1) , ((b, a)|w2),utilité (−8,−3, 5)

    Nature

    (0, 0) (−5,−5)(−16, 7)(−7,−16)(−20,−20)(5, 5)(−3, 6)(6,−3)

    ⇒Information can bedetrimental

  • Nash Equilibrium with Chance Move

    Corinne Touati (INRIA) Strict Competition Chance Moves 9 / 17

    Nature take decision w1 or w2 with probability 1/2.(w1) a b

    a (0, 0) (6,−3)b (−3, 6) (5, 5)

    (w2) a b

    a (−20,−20) (−7,−16)b (−16,−7) (−5,−5)

    Nash equilibrium if:

    I aucun des joueurs ne connâıtl’état:EN: (b, b), utilité :(0, 0)

    I les deux joueurs sont informés:

    EN: ((a, a)|w1), ((b, b)|w2),utilité: (−2.5,−2.5)

    I Seul le joueur 1 est au courant:

    EN: ((a, a)|w1) , ((b, a)|w2),utilité (−8,−3, 5)

    Nature

    (−5,−5)(0, 0) (6,−3) (−3, 6) (5, 5) (−20,−20)(−7,−16)(−16, 7)

    ⇒Information can bedetrimental

  • Nash Equilibrium with Chance Move

    Corinne Touati (INRIA) Strict Competition Chance Moves 9 / 17

    Nature take decision w1 or w2 with probability 1/2.(w1) a b

    a (0, 0) (6,−3)b (−3, 6) (5, 5)

    (w2) a b

    a (−20,−20) (−7,−16)b (−16,−7) (−5,−5)

    Nash equilibrium if:

    I aucun des joueurs ne connâıtl’état:EN: (b, b), utilité :(0, 0)

    I les deux joueurs sont informés:EN: ((a, a)|w1), ((b, b)|w2),utilité: (−2.5,−2.5)

    I Seul le joueur 1 est au courant:

    EN: ((a, a)|w1) , ((b, a)|w2),utilité (−8,−3, 5)

    Nature

    (−5,−5)(0, 0) (6,−3) (−3, 6) (5, 5) (−20,−20)(−7,−16)(−16, 7)

    ⇒Information can bedetrimental

  • Nash Equilibrium with Chance Move

    Corinne Touati (INRIA) Strict Competition Chance Moves 9 / 17

    Nature take decision w1 or w2 with probability 1/2.(w1) a b

    a (0, 0) (6,−3)b (−3, 6) (5, 5)

    (w2) a b

    a (−20,−20) (−7,−16)b (−16,−7) (−5,−5)

    Nash equilibrium if:

    I aucun des joueurs ne connâıtl’état:EN: (b, b), utilité :(0, 0)

    I les deux joueurs sont informés:EN: ((a, a)|w1), ((b, b)|w2),utilité: (−2.5,−2.5)

    I Seul le joueur 1 est au courant:

    EN: ((a, a)|w1) , ((b, a)|w2),utilité (−8,−3, 5)

    Nature

    (−5,−5)(0, 0) (6,−3) (−3, 6) (5, 5) (−20,−20)(−7,−16)(−16, 7)

    ⇒Information can bedetrimental

  • Nash Equilibrium with Chance Move

    Corinne Touati (INRIA) Strict Competition Chance Moves 9 / 17

    Nature take decision w1 or w2 with probability 1/2.(w1) a b

    a (0, 0) (6,−3)b (−3, 6) (5, 5)

    (w2) a b

    a (−20,−20) (−7,−16)b (−16,−7) (−5,−5)

    Nash equilibrium if:

    I aucun des joueurs ne connâıtl’état:EN: (b, b), utilité :(0, 0)

    I les deux joueurs sont informés:EN: ((a, a)|w1), ((b, b)|w2),utilité: (−2.5,−2.5)

    I Seul le joueur 1 est au courant:EN: ((a, a)|w1) , ((b, a)|w2),utilité (−8,−3, 5)

    Nature

    (−5,−5)(0, 0) (6,−3) (−3, 6) (5, 5) (−20,−20)(−7,−16)(−16, 7)

    ⇒Information can bedetrimental

  • Nash Equilibrium with Chance Move

    Corinne Touati (INRIA) Strict Competition Chance Moves 9 / 17

    Nature take decision w1 or w2 with probability 1/2.(w1) a b

    a (0, 0) (6,−3)b (−3, 6) (5, 5)

    (w2) a b

    a (−20,−20) (−7,−16)b (−16,−7) (−5,−5)

    Definition: Bayesian Games.

    A Bayesian game consists of:

    I (N,A,U), the sets of players, actions and associated utilities

    I Ω a set states of natureI For each player:

    I A probability measure pi on Ω: a priori belief about the state of nature.I A set of signals TiI A function τi : Ω→ Ti (partial observation)

    Then, the posterior belief of player i is

    0 if ω 6∈ τ−1i (ti)pi(ω)

    pi(τ−1i (ti))

    else.

  • Correlated Equilibria

    Definition: Correlated Equilibria.

    A correlated equilibrium for the bimatrix game A is a correlatedstrategy P s.t.

    ∀i, ∀k,∑j

    aijpij ≥∑j

    akjpij

    ∀i, ∀`,∑i

    bijpij ≥∑i

    bi`pij

    Proposition:

    Let (aij , bij){1..N},{1..M} a game. Consider a zero-sum matrixgame C with entries:

    c(i,j),(h,k) =

    {aij − akj if i = h ∈M,k ∈Mbij − bik if j = h ∈ N, k ∈ N

    Then, an optimal mixed strategy for player I of this game is acorrelated equilibrium for the original game.

    Corinne Touati (INRIA) Strict Competition Correlated Equilibria 10 / 17

  • Correlated Equilibria

    Definition: Correlated Equilibria.

    A correlated equilibrium for the bimatrix game A is a correlatedstrategy P s.t.

    ∀i, ∀k,∑j

    aijpij ≥∑j

    akjpij

    ∀i, ∀`,∑i

    bijpij ≥∑i

    bi`pij

    Proposition:

    Let (aij , bij){1..N},{1..M} a game. Consider a zero-sum matrixgame C with entries:

    c(i,j),(h,k) =

    {aij − akj if i = h ∈M,k ∈Mbij − bik if j = h ∈ N, k ∈ N

    Then, an optimal mixed strategy for player I of this game is acorrelated equilibrium for the original game.

    Corinne Touati (INRIA) Strict Competition Correlated Equilibria 10 / 17

    Example

    Game

    ((−10,−10) (5, 0)

    (0, 5) (−1,−1)

    ).

    Two pure Nash equilibria (1, 0), (0, 1) and (0, 1), (1, 0).One mixed equilibria (1/16, 5/16), (1/16, 5/16) with an expectedpayoff −5/8.

    The correlated equilibria are or the form P =

    (p11 p12p21 p22

    ). with

    p11 + p12 + p21 + p22 = 1, max(2.5p11, 0.4p22) ≥ min(p12, p21).

    For instance,

    (0 0.50.5 0

    )gives an expected payoff 2.5.

  • Correlated Equilibria

    Definition: Correlated Equilibria.

    A correlated equilibrium for the bimatrix game A is a correlatedstrategy P s.t.

    ∀i, ∀k,∑j

    aijpij ≥∑j

    akjpij

    ∀i, ∀`,∑i

    bijpij ≥∑i

    bi`pij

    Proposition:

    Let (aij , bij){1..N},{1..M} a game. Consider a zero-sum matrixgame C with entries:

    c(i,j),(h,k) =

    {aij − akj if i = h ∈M,k ∈Mbij − bik if j = h ∈ N, k ∈ N

    Then, an optimal mixed strategy for player I of this game is acorrelated equilibrium for the original game.Corinne Touati (INRIA) Strict Competition Correlated Equilibria 10 / 17

  • Correlated Equilibria

    Definition: Correlated Equilibria.

    A correlated equilibrium for the bimatrix game A is a correlatedstrategy P s.t.

    ∀i, ∀k,∑j

    aijpij ≥∑j

    akjpij

    ∀i, ∀`,∑i

    bijpij ≥∑i

    bi`pij

    Proposition:

    Let (aij , bij){1..N},{1..M} a game. Consider a zero-sum matrixgame C with entries:

    c(i,j),(h,k) =

    {aij − akj if i = h ∈M,k ∈Mbij − bik if j = h ∈ N, k ∈ N

    Then, an optimal mixed strategy for player I of this game is acorrelated equilibrium for the original game.Corinne Touati (INRIA) Strict Competition Correlated Equilibria 10 / 17

    Example

    Game

    ((−10,−10) (5, 0)

    (0, 5) (−1,−1)

    ).

    Two pure Nash equilibria (1, 0), (0, 1) and (0, 1), (1, 0).One mixed equilibria (1/16, 5/16), (1/16, 5/16) with an expectedpayoff −5/8.

    The correlated equilibria are or the form P =

    (p11 p12p21 p22

    ). with

    p11 + p12 + p21 + p22 = 1, max(2.5p11, 0.4p22) ≥ min(p12, p21).

    For instance,

    (0 0.50.5 0

    )gives an expected payoff 2.5.

    Matrix C =

    −10 0 0 −104 0 10 00 10 0 40 −4 −4 0

  • Fictitious Plays Fail

    Example

    1/2 P R S

    P (0, 0) (1,−1)(−1, 1)R (−1, 1) (0, 0) (1,−1)S (1,−1)(−1, 1) (0, 0)

    1

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0 0.2 0.4 0.6 0.8 0

    Corinne Touati (INRIA) Strict Competition Computing Nash Equilibria 11 / 17

  • Is learning Nash Equilibria simple?

    ⇒ A natural approach is using Best Response dynamics

    This does not always converge to a Nash equilibrium:(17, 8) (4, 9) (3, 4)

    (10, 10) (6, 5) (2, 4)

    (8, 0) (1, 2) (5,5)

    Known to converge in some class of games (for instance, potentialgames)

    Corinne Touati (INRIA) Strict Competition Computing Nash Equilibria 12 / 17

  • Is learning Nash Equilibria simple?

    ⇒ A natural approach is using Best Response dynamics

    This does not always converge to a Nash equilibrium:(17, 8) (4, 9) (3, 4)

    (10, 10) (6, 5) (2, 4)

    (8, 0) (1, 2) (5,5)

    Known to converge in some class of games (for instance, potentialgames)

    Corinne Touati (INRIA) Strict Competition Computing Nash Equilibria 12 / 17

  • Is learning Nash Equilibria simple?

    ⇒ A natural approach is using Best Response dynamics

    This does not always converge to a Nash equilibrium:(17, 8) (4, 9) (3, 4)

    (10, 10) (6, 5) (2, 4)

    (8, 0) (1, 2) (5,5)

    Known to converge in some class of games (for instance, potentialgames)

    Corinne Touati (INRIA) Strict Competition Computing Nash Equilibria 12 / 17

  • Is learning Nash Equilibria simple?

    ⇒ A natural approach is using Best Response dynamics

    This does not always converge to a Nash equilibrium:(17, 8) (4, 9) (3, 4)

    (10, 10) (6, 5) (2, 4)

    (8, 0) (1, 2) (5,5)

    Known to converge in some class of games (for instance, potentialgames)

    Corinne Touati (INRIA) Strict Competition Computing Nash Equilibria 12 / 17

  • The Flow Control Problem

    Imagine a system with:

    I n individual users aiming at optimizing their throughput xnI A routing matrix A giving the set of paths followed by each

    connection: Ai,j =

    {1 if connection iuses link j0 otherwise

    I Capacity constraints on each link C`

    I What is the Nash equilibrium of the game? What protocoldoes it corresponds to?

    I How can we implement fairness in a distributed way?

    Corinne Touati (INRIA) Strict CompetitionThe General Flow Control

    Problem 13 / 17

  • The Flow Control Problem:The Non Cooperative Game

    Example: A simple network with 3 links

    (namSimple.mpeg)

    n0→2 = 2, n1→2 = 3, n2→3 = 4Throughput of flow i:

    λi.capa

    λ1 + λ2

    Corinne Touati (INRIA) Strict CompetitionThe General Flow Control

    Problem 14 / 17

    namSimple.mpegMedia File (video/mpeg)

  • The Flow Control Problem:The Non Cooperative Game

    Linksequations:

    λ′2 =λ2C

    λ2 + λ′1λ′′2 =

    λ′2C

    λ3 + λ′2= C−λ′3

    Throughputreceived byflow 2:

    λ′′2 = C−λ3C

    λ3 +C

    1+λ′1/λ2

    =C2

    C + λ3(1 + λ′1/λ′2)

    1

    4

    3

    2

    λ3λ′′1

    λ2

    λ′1λ1

    λ′′2

    λ′′2

    λ′3

    λ′′1

    λ′2

    Corinne Touati (INRIA) Strict CompetitionThe General Flow Control

    Problem 15 / 17

  • The Flow Control Problem:The Non Cooperative Game

    (namUDP.mpeg)

    Ring topology network, Nidentical links with capacity CSource i uses links i and i+ 1(mod N), hypothesis C >> λ

    Exit throughput of flow i:

    λ′′ =C2

    C + λ(1 + λ′/λ′), and

    λ′

    λ=

    1

    2

    (√1 +

    4C

    λ− 1

    )∼ Cλ

    Then λ′′ ∼ C2

    λ

    Corinne Touati (INRIA) Strict CompetitionThe General Flow Control

    Problem 16 / 17

    namCercleUDP.mpegMedia File (video/mpeg)

  • The Flow Control Problem:The Non Cooperative Game

    This is network collapse:I The network is fullI Little or no useful information is going through (here

    λ′′ ∼ C2

    λ→λ→∞ 0)

    Observed in 1984 (cf RFC 896) with TCP flows: the protocoldetects a loss, so it retransmits the packet, hence increasing itsincoming throughput...

    Since then a flow control mechanism has been impremented inTCP ,

    Why hadn’t we observe this kind of phenomena before withtelephony?Corinne Touati (INRIA) Strict Competition

    The General Flow ControlProblem 17 / 17

    Games in Extensive FormGames in Normal FormChance MovesCorrelated EquilibriaComputing Nash EquilibriaThe General Flow Control Problem