gan-1 doc

21
Gallium Nitride (GaN) Gallium Nitride (GaN) PHYS 571 Gugun Gunardi Heath Kersell Damilola Daramola

Upload: jesus-aguilar

Post on 04-Oct-2015

219 views

Category:

Documents


3 download

DESCRIPTION

for

TRANSCRIPT

  • Gallium Nitride (GaN)PHYS 571Gugun GunardiHeath KersellDamilola Daramola

  • Gallium Nitride (GaN)IntroductionPropertiesCrystal StructureBonding TypeApplication

  • IntroductionThe next important semiconductor material after silicon. Can be operated at high temperatures.The key material for the next generation of high frequency and high power transistors.Wide band gap energy.

    http://www.phy.mtu.edu/yap/images/galliumnitride.jpg

  • Properties

    PROPERTY / MATERIAL . Cubic (Beta) GaN . Hexagonal (Alpha) GaN . Structure Zinc Blende Wurzite Stability Meta-stable Stable Lattice Parameter(s) at 300K 0.450 nm a0 = 0.3189 nm c0 = 0.5185 nm Density at 300K 6.10 g.cm-3 6.095 g.cm-3Nature of Energy Gap Eg Direct Direct Energy Gap Eg at 293-1237 K 3.556 - 9.9x10-4T2 / (T+600) eV Ching-Hua Su et al, 2002

  • Properties

    Energy Gap Eg at 300 K 3.23 eV Ramirez-Flores et al 1994 . 3.25 eV Logothetidis et al 1994 3.44 eV Monemar 1974 . 3.45 eV Koide et al 1987 . 3.457 eV Ching-Hua Su et al, 2002 Energy Gap Eg at ca. 0 K3.30 eV Ramirez-Flores et al1994 Ploog et al 1995 3.50 eV Dingle et al 1971 Monemar 1974

  • PropertiesComparison between Common Semiconductor Material Properties and GaN

    Material Bandgap (eV) Electron Mobility (cm2/Vs) Hole Mobility (cm2/Vs) Critical Field Ec (V/cm) Thermal Conductivity sT (W/mK) Coefficient of Thermal Expansion (ppm/K) InSb 0.17, D 77,000 850 1,000 18 5.37 InAs 0.354, D 44,000 500 40,000 27 4.52 GaSb 0.726, D 3,000 1,000 50,000 32 7.75 InP 1.344, D 5,400 200 500,000 68 4.6 GaAs 1.424, D 8500 400 400,000 55 5.73 GaN 3.44, D 900 10 3,000,000 110 (200 Film) 5.4-7.2 Ge 0.661, I 3,900 1,900 100,000 58 5.9 Si 1.12, I 1,400 450 300,000 130 2.6 GaP 2.26, I 250 150 1,000,000 110 4.65 SiC (3C, b) 2.36, I 300-900 10-30 1,300,000 700 2.77 SiC (6H, a) 2.86, I 330 - 400 75 2,400,000 700 5.12 SiC (4H, a) 3.25, I 700 3,180,000 700 5.12 C (diamond) 5.46-5.6, I 2,200 1,800 6,000,000 1,300 0.8

  • Crystal StructureGaN grown in

    Wurtzite crystal structure Zinc-blende crystal structureThe band gap, Eg, effected by crystal structure

  • Wurtzite Crystal Structure

    Wurtzite crystal structure is a member of the hexagonal crystal system The structure is closely related to the structure of hexagonal diamond. Energy gap: 3.4 eV

    http://en.wikipedia.org/wiki/Image:Wurtzite-unit-cell-3D-balls.png

  • Wurtzite Crystal StructureAn ideal angle: 1090Nearest neighbor: 19.5 nmEnergetically favorableSeveral other compounds can take the wurtzite structure, including Agl, ZnO, CdS, CdSe, and other semiconductors.

  • Zinc-blendeCrystal Structure Energy gap 3.2 eV An ideal angle: 109.470 Nearest neighbor: 19.5 nm

    http://en.wikipedia.org/wiki/Image:Sphalerite-unit-cell-depth-fade-3D-balls.png

  • Tetrahedral bonds

    sp3 hybridizationBonding angle: 109.47Bond Length: 19.5 nmGa-N bonds significantly stronger than Ga-Ga interactions (based on distance)

    GaN Bonding Properties

  • IonicityGaN exhibits mixed ionic-covalent bondingIonicity of a bond is the fraction fi of ionic character compared to the fraction of fh of covalent characterBy Paulings definition

    Modern definition is the ionicity phase angle

    1http://www.bcpl.net/~kdrews/bonding/bonding2.html

  • GaN Bonding PropertiesBased on calculations using both methods, typical values are2J.C. Phillips, Bonds and Bands in Semiconductors 1973Bond Character dependent on electronegativityN >> P > As > Sb

    CompoundPauling ionicityModern ionicity2AlN0.4300.449AlP0.0860.307AlAs0.0610.274GaN0.3870.500GaP0.0610.327GaAs0.0390.310InN0.3450.578InP0.0390.421InAs0.0220.357NaCl0.668> 0.9C (Diamond)00

  • GaN Bonding PropertiesBonding strength determines energy gap sizeLarge band gap evidence of strong bonding in GaNStrongly Ionic Compounds (also insulators)LiF 11eV; NaCl 8.5eV; KBr 7.5 eVOther III-V compoundse.g. GaN 3.2 eV/3.4 eV GaP 2.3 eV AlSb 1.5 eV InP 1.3 eV

  • ApplicationsGallium Nitride Typical Applications: New Kind of Nanotube

    Laser diodes

    High-resolution Printings

    Microwave radio-frequency power amplifiers

    Solar Cells

  • New Kind of NanotubeSingle Crystal Nanotubes Fabricated

    Gallium Nitride nanotubes have diameter between 30 200 nm

    Potential for mimicking ion channels

  • GaN Laser DiodeNormally emit ultraviolet radiationIndium doping allows variation in band gap sizeBand gap energies range from 0.7eV 3.4eV

    http://www.lbl.gov/Science-Articles/Archive/assets/images/2002/Dec-17-2002/indium_LED.jpg

  • GaN Laser DiodesApplications in:

    Blu-Ray technology

    Laser Printing

    http://www.aeropause.com/archives/Blu-ray-cover_plat.jpg

  • GaN Solar CellsIndium doped (InGaN)Conversion of many wavelengths for energy

    Theoretical 70% maximum conversion rate.

    Multiple layers attain higher efficiency.Need many layers to attain 70%

    Lattice matching not an issue

  • GaN Solar CellsAdvantages:High heat capacityResistant to effects of strong radiationHigh efficiency

    Difficulties:Too many crystal layers create system damaging stressToo expensive

  • Referenceshttp://www.reade.com/Products/Nitrides/Gallium-Nitride-(GaN)-Powder-&-Crystals.htmlhttp://www.semiconductors.co.uk/nitrides.htm#GaNhttp://www.onr.navy.mil/sci_tech/31/312/ncsr/materials/gan.asphttp://www.lbl.gov/Science-Articles/Archive/MSD-gallium-nitride-nanotube.htmlhttp://www.lbl.gov/Science-Articles/Archive/MSD-full-spectrum-solar-cell.htmlhttp://www.lbl.gov/Science-Articles/Archive/blue-light-diodes.html http://www.ioffe.ru/SVA/NSM/Semicond/GaN/bandstr.html#Basichttp://nsr.mij.mrs.org/4S1/G6.3/article.pdfhttp://nsr.mij.mrs.org/news/industapp97.html