gan hemt characterization and modeling using asm -hemthome.iitk.ac.in/~chauhan/kdf2020.pdf · gan...

1

Upload: others

Post on 27-Jul-2021

37 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

GaN HEMT Characterization and Mode ling using ASM-HEMT

Ahtisham Pampori and Yogesh S. ChauhanNanolab, Department of Electrical Engineering

IIT Kanpur, IndiaEmail: [email protected]

Homepage – http://home.iitk.ac.in/~chauhan/

Page 2: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Contents

Nanolab – Characte rization and Mode ling Capabilitie s

An introduction to ASM-HEMT

Mode ling Powe r De vice s using ASM-HEMT

Mode ling RF De vice s using ASM-HEMT

Characte rizing Se lf He ating and its Mode ling

Trapping m ode ls in ASM-HEMT

Nanolab , Ind ian Ins titute of Te chnology Kanpur 2

Page 3: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Contents

Nanolab – Characte rization and Mode ling Capabilitie s

An introduction to ASM-HEMT

Mode ling Powe r De vice s using ASM-HEMT

Mode ling RF De vice s using ASM-HEMT

Characte rizing Se lf He ating and its Mode ling

Trapping m ode ls in ASM-HEMT

Nanolab , Ind ian Ins titute of Te chnology Kanpur 3

Page 4: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Nanolab:Characte rization and Mode ling

Capabilitie s− About Nanolab

− Hardware Capabilities− EDA Capabilities

Page 5: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

About Nanolab: Some Stats

− Postdoc – 5− Ph.D. – 27 − Te n PhDs graduate d

Curre nt Me m b e rs2020 2019 2018 2017 2016 2015

Books 1 1

Journal 16 14 20 19 18 9

Conference 9 15 19 11 30 30

Publications

− Gove rnm e nt Age ncie s− Industry Partne rs− Com pact Mode l Coalition (CMC)

Fund ing

Nanolab , Ind ian Ins titute of Te chnology Kanpur 5

Page 6: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

About Nanolab: Collaborations

Nanolab , Ind ian Ins titute of Te chnology Kanpur 6

Page 7: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

About Nanolab: Areas of Research

Nanolab , Ind ian Ins titute of Te chnology Kanpur 7

Page 8: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Hardware Capabilities I

Ke ysig h t Se m ic ond u c t or De vic e Ana lyze r (B1500A) Me a su re m e nt c a p a b ilit ie s :

− IV, CV, pulse / d ynam ic IV range of 0 .1 fA - 1 A / 0 .5 µV - 200 V− Evaluation of de vice s, m ate ria ls , se m iconductors ,

ac tive / passive com pone nts− AC capacitance m e asure m e nt in m ulti fre que ncy from 1 kHz to

5 MHz− Pulse d IV m e asure m e nt m in 10 ns gate pulse wid th with 2 ns

rise and fall tim e s with 1 µs curre nt m e asure m e nt re solution

Ma u ry Mic row a ve s / AMCAD AM3221

− Bipolar ±25V/ 1A (gate ) and high-voltage 250V/ 30A (d rain) m ode ls

− Pulse wid ths down to 200ns− Synchronize d pulse d S-param e te r m e asure m e nts− Conne ct syste m s in se rie s for synchronizing 3+ pulse d

channe ls− Long pulse s into the te ns and hundre ds of se conds for

trapp ing and the rm al characte rization

Nanolab , Ind ian Ins titute of Te chnology Kanpur 8

Page 9: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Hardware Capabilities II

Ke ysig h t PNA-X (N5244A) 10 MHz t o 43.5 GHz

− High Fre que ncy De vice Characte rization (Microwave Ne twork Analyze r)

− 100Khz to 8.5 GHz and 10 MHz to 43.5 GHz− 2-port and 4-ports with two built-in source s− High output powe r (+16 dBm )− Be st dynam ic accuracy: 0 .1 dB com pre ssion with +15 dBm

input powe r a t the re ce ive r− Low noise floor of -111 dBm at 10 Hz IF bandwid th

Ke ys ig h t ENA (E5071C) 100KHz t o 8 .5 GHz

− 9 kHz to 4.5/ 6 .5/ 8.5/ 14/ 20 GHz− 2- or 4-port, 50-ohm , S-param e te r te st se t− Im prove accuracy, yie ld and m arg ins with wide dynam ic range

130 dB, fast m e asure m e nt spe e d 8m s and e xce lle nt te m pe rature s tab ility 0 .005 dB/ °C

Nanolab , Ind ian Ins titute of Te chnology Kanpur 9

Page 10: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Hardware Capabilities III

Ke ysig h t Pow e r De vic e Cha ra c t e riza t ion Sys t e m : B1505

− Powe r de vice characte rization up to 1500 A & 10 kV− Me dium curre nt m e asure m e nt with high voltage b ias (e .g . 500 m A at 1200 V)− μΩ on-re sistance m e asure m e nt capab ility− Accurate , sub-p icoam p le ve l, curre nt m e asure m e nt a t high voltage b ias− Fully autom ate d Capacitance m e asure m e nt a t up to 3000 V of DC b ias− High powe r pulse d m e asure m e nts down to 10 μs− High voltage / high curre nt fast switch op tion to characte rize GaN curre nt collapse e ffe c t− Fully autom ate d the rm al te sting from -50 ℃ to +250 ℃

Ke ysig h t N8975B Noise Fig u re Ana lyze r

− Fre que ncy range 10 MHz to 26.5 GHz in a one -box solution− Include s Spe ctrum Analyze r and IQ Analyze r (Basic) m ode s− SNS se rie s noise source N4002A− U7227C 100 MHz to 26.5 GHz Exte rnal USB Pre am plifie r inc lude d

Nanolab , Ind ian Ins titute of Te chnology Kanpur 10

Page 11: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Load Pull Characterization

Ma u ry Loa d Pu ll Cha ra c t e riza t ion sys t e m

− A fundam e ntal passive load pull syste m capab le of pe rform ing load pull characte rization up to 15W.

− XT982GL01 – 0 .6 to 18 GHz Load tune r

− Plan to e xpand to a 3 harm onic hybrid load pull syste m soon.

Nanolab , Ind ian Ins titute of Te chnology Kanpur 11

Page 12: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Atomistic Simulations

EDA CapabilitiesSP

ICE

SIM

ULA

TOR

SR

F

TCAD

Nanolab , Ind ian Ins titute of Te chnology Kanpur 12

Page 13: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Contents

Nanolab – Characte rization and Mode ling Capabilitie s

An introduction to ASM-HEMT

Mode ling Powe r De vice s using ASM-HEMT

Mode ling RF De vice s using ASM-HEMT

Characte rizing Se lf He ating and its Mode ling

Trapping m ode ls in ASM-HEMT

Nanolab , Ind ian Ins titute of Te chnology Kanpur 13

Page 14: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

An introduction to ASM -HEMT− About ASM-HEMT and its core

− Extraction flow− Other models incorporated into the core

− Geometric Scaling

Page 15: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

A brief history of HEMT models

Nanolab , Ind ian Ins titute of Te chnology Kanpur 15

Page 16: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Various classes of compact models

Advanced SPICE Model for GaN HEMTs (ASM-HEMT)

Compact Models (GaN HEMT)

Table Based

Empirical

Physics Based

Threshold Voltage Based

Surface Potential Based(ASM-HEMT)

Charge Based(MVSG)

Nanolab , Ind ian Ins titute of Te chnology Kanpur 16

www.iitk.ac .in/ asm

Page 17: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

ASM-HEMT Te am

Nanolab , Ind ian Ins titute of Te chnology Kanpur 17

Dire

ctor

s

Prof. Yogesh Singh Chauhan

Dev

elop

ers

Dr. Sudip Ghosh Dr. Aamir Ahsan Dr. Avirup Dasgupta

Raghvendra DangiAhtisham Pampori

Prof. Sourabh Khandelwal

Page 18: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

ASM-HEMT: Sum m ary

Analytical Solution of Schrod ige r’s & Poisson’s

SP-Base d Curre nt & Charge Mode l

Noise , Trapping , Se lf-He ating , Fie ld Plate

2-DEG Charge , Ef,Surface Pote ntial

I-V, C-V, DIBL, Rd , Rs, Ve l. Sat., ...

DC, AC, Transie ntHarm onic Sim .,

Noise , ...

Electrostatics

Transport

Higher-order Effects

Nanolab , Ind ian Ins titute of Te chnology Kanpur 18

Page 19: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

ASM-HEMT: Core Mode l

Real Device Effects Incorporated into the Model

Core Model Parameters

Parameter Description Extracted Value𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 Cutoff Voltage −2.86 𝑉𝑉

𝑁𝑁𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹 Subthreshold Slope Factor 0.202

𝐶𝐶𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷 SS Degradation Factor 0.325 𝑉𝑉−1

𝜂𝜂0 DIBL Parameter 0.117

𝑈𝑈0 Low Field Mobility 33.29 𝑚𝑚𝑚𝑚2/𝑉𝑉𝑉𝑉

𝑁𝑁𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷 AR 2DEG Density 1.9𝑒𝑒 + 17 /𝑚𝑚2

𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷 AR saturation velocity 157.6𝑒𝑒 + 3 𝑐𝑐𝑚𝑚/𝑉𝑉

𝑅𝑅𝐹𝐹𝑇𝑇0 Thermal Resistance 22 Ω

Core d rain curre nt e xpre ssion

Nanolab , Ind ian Ins titute of Te chnology Kanpur 19

[1] S. A. Ahsan e t al., IEEE J. Ele ctron De vice s Socie ty, Se p ., [2017]

Page 20: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Extraction Flow I

Set L, W, NF, TbarDevice Dimensions

Extract VOFF, NF, CDSCD,ETA from log -IDVG, LINEAR

And Saturation

Extract U0, UA, UB and RDS from IDVG-LIN

Extract VSAT, Improve ETA

From LINEAR IDVG

Extract LAMBDA, ImproveVSAT, ETA from IDVD

Temperature Parameters

Capacitance Modeling

Nanolab , Ind ian Ins titute of Te chnology Kanpur 20

[1] S. A. Ahsan e t al., IEEE J. Ele ctron De vice s Socie ty, Se p ., [2017]

Page 21: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Extraction Flow II

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 , 𝑁𝑁𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹,𝐶𝐶𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑈𝑈0) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑁𝑁𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑅𝑅𝐹𝐹𝑇𝑇0)

[1] S. A. Ahsan et al., MOS-AK Workshop, Shanghai, [2016]Nanolab , Ind ian Ins titute of Te chnology Kanpur 21

Page 22: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Extraction from Id -Vg curve s

Nanolab , Ind ian Ins titute of Te chnology Kanpur 22

Start with 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 characte ris tics in the log scale

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 – DIBL Param e te r

𝑵𝑵𝑵𝑵𝑬𝑬𝑵𝑵𝑬𝑬𝑵𝑵𝑵𝑵 – Sub-thre shold slope param e te r

𝑵𝑵𝑪𝑪𝑪𝑪𝑵𝑵𝑪𝑪 – Cap ture s the d rain voltage de pe nde nce on the sub-thre shold slope .

𝑽𝑽𝑵𝑵𝑵𝑵𝑵𝑵 – Cut-Off Voltage

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 characte ris tics in the line ar scale

𝑼𝑼𝑬𝑬 – Low fie ld m obility

𝑼𝑼𝑬𝑬,𝑼𝑼𝑼𝑼 – Mobility de gradation param e te rs

[1] S. A. Ahsan e t al., IEEE J. Ele ctron De vice s Socie ty, Se p ., [2017]

Page 23: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Extraction from Id -Vd curve s

Nanolab , Ind ian Ins titute of Te chnology Kanpur 23

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 characteristics

𝑽𝑽𝑪𝑪𝑬𝑬𝑬𝑬 – Velocity saturation parameter

𝑼𝑼𝑬𝑬, 𝑼𝑼𝑼𝑼 – Mobility degradation parameters

Access Region Parameters extracted from 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 characteristics:

𝑵𝑵𝑪𝑪𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑪𝑪(𝑪𝑪) – 2DEG density in the access region.

𝑽𝑽𝑪𝑪𝑬𝑬𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑪𝑪 – Saturation velocity in the access region.

𝑼𝑼𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑪𝑪(𝑪𝑪) – Low field mobility in the access region.

𝑼𝑼𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑪𝑪(𝑪𝑪) independently tunes the access region resistance around Vds = 0 and helps extract 𝑔𝑔𝑑𝑑𝑑𝑑 at that point.

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]

Page 24: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Bias-de pe nde nt acce ss re g ion re sistance m ode l: Ove rvie w

Nonlinear variation of source/ drain access resistances with Ids extracted from TCAD simulation and comparison with model.

Nanolab , Ind ian Ins titute of Te chnology Kanpur 24

[1] S. Ghosh e t al., IEEE Inte rnational Confe re nce on Ele ctron De vice s and Solid -State Circuits (EDSSC), [2016]

Page 25: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Bias-de pe nde nt acce ss re g ion re sistance m ode l: Re sults

Id - Vg and trans -conductance for the Toshiba power HEMT. Different slopes above Voff in

gm -Vg: self-heating governs the first slope while velocity

saturation in access region affects second slope.

Ids-Vds and reverse Ids -Vds fitting with experimental data. The non -linear Rs/d model shows correct behavior for the higher Vg curves in the Id -

Vd plot; the S -P based model can accurately capture the reverse output characteristics.

Effect of high access region resistance at high V g

Nanolab , Ind ian Ins titute of Te chnology Kanpur 25

[1] S. Ghosh e t al., IEEE Inte rnational Confe re nce on Ele ctron De vice s and Solid -State Circuits (EDSSC), [2016]

Page 26: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Bias-de pe nde nt acce ss re g ion re sistance m ode l: Te m pe rature scaling

The temperature dependence of R d/s model is extremely important as it increases significantly with increasing temperature

Temperature dependence of 2 -DEG charge density in the drain or source side access region:

Temperature dependence of Saturation Velocity:

Temperature dependence of electron Mobility:

Nanolab , Ind ian Ins titute of Te chnology Kanpur 26

[1] S. Ghosh e t al., IEEE Inte rnational Confe re nce on Ele ctron De vice s and Solid -State Circuits (EDSSC), [2016]

Page 27: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

ASM-HEMT: Te m pe rature scaling re sults

Nanolab , Ind ian Ins titute of Te chnology Kanpur 27

Id - Vg at 100℃

Id - Vg at -20℃

Id - Vd at 100℃

Id - Vd at -20℃

ASM-HEMT fe ature s a robust te m pe rature scaling m ode l which has be e n validate d

across a b road range of de vice te m pe rature s .

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇

= 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 −𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁

− 1 � 𝑲𝑲𝑬𝑬𝑲𝑲 + 𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇

⋅ 𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑈𝑈𝑈 𝑇𝑇 = 𝑈𝑈𝑈 ⋅𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁

𝑼𝑼𝑬𝑬𝑬𝑬

𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 𝑇𝑇 = 𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 ⋅𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁

𝑬𝑬𝑬𝑬

[1] S. Ghosh e t al., IEEE Inte rnational Confe re nce on Ele ctron De vice s and Solid -State Circuits (EDSSC), [2016]

Page 28: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Geometric Scaling I

Nanolab , Ind ian Ins titute of Te chnology Kanpur 28

Charge Scaling Current Scaling

Access Region Resistance Scaling

Page 29: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Geometric Scaling II

Nanolab , Ind ian Ins titute of Te chnology Kanpur 29

Thermal Noise and Flicker Noise Scaling

Gate Current Scaling

Page 30: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Contents

Nanolab – Characte rization and Mode ling Capabilitie s

An introduction to ASM-HEMT

Mode ling Powe r De vice s using ASM-HEMT

Mode ling RF De vice s using ASM-HEMT

Characte rizing Se lf He ating and its Mode ling

Trapping m ode ls in ASM-HEMT

Nanolab , Ind ian Ins titute of Te chnology Kanpur 30

Page 31: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling Power Devices using ASM -HEMT

− Modeling DC− Modeling field plates

− Model comparison with a mixed mode device

Page 32: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: Room Temperature Output Characteristics

Nanolab , Ind ian Ins titute of Te chnology Kanpur 32

Output Characteristics at T=25 ℃

Output conductance ve rsus Vd

De rivative of output conductance ve rsus Vd

ASM-HEMT accurately captures the IV

characteristics of a power GaN HEMT

device.

Page 33: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: Room Temperature Reverse Output Characteristics

Nanolab , Ind ian Ins titute of Te chnology Kanpur 33

Reverse Output Characteristics at T=25℃

Re ve rse Output conductance ve rsus Vd

De rivative of re ve rse output conductance ve rsus Vd

Page 34: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: Room Temperature Transfer Characteristics

Nanolab , Ind ian Ins titute of Te chnology Kanpur 34

Vd @ 0.1, 0.5, 1 and 10V

Vg (V) [E+0]

-6 -4 -2 0 2 40.0

0.2

0.4

0.6

0.8

1.0

Id (A

)

Vd @ 0.1, 0.5, 1 and 10V

Vg (V) [E+0]

-6 -4 -2 0 2 40

50

100

150

200

g m(m

A/V)

vg [E+0]

gm

' (m

/s) [

E-3]

/

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.00

50

100

150

200

Transfer Characteristics at T=25℃

Transconductance ve rsus Vg

De rivative of transconductance ve rsus Vg

Page 35: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: Room Temperature IV – Log Scale

Nanolab , Ind ian Ins titute of Te chnology Kanpur 35

Log (Id) - Vds (Vd>0) T=25℃

Log (Id ) - Vds (Vd<0) T=25℃

Id (A

)

Log (Id ) - Vgs T=25℃

Page 36: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: Output Characteristics @ T=-20℃

Nanolab , Ind ian Ins titute of Te chnology Kanpur 36

Id (A

)

The model scales accurately to sub-zero temperatures.

Output conductance ve rsus Vd @ -20℃

De rivative of output conductance ve rsus Vd @ -20℃

Output Characte ris tics

@ -20℃

Log Output Characte ris tics

@ -20℃

Page 37: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: Reverse Output Characteristics @ T=-20℃

Nanolab , Ind ian Ins titute of Te chnology Kanpur 37

Vg from -12 to 3 V @ 0.5V step

Reverse Output conductance versus Vd @ -20℃

Derivative of reverse output conductance versus Vd @ -20℃

Reverse Output Characteristics

@ -20℃

Log Output Characteristics

@ -20℃

The model scales accurately to sub-zero temperatures.

Page 38: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: Transfer Characteristics @ T=-20℃

Nanolab , Ind ian Ins titute of Te chnology Kanpur 38

Id (m

A)

Id (A

)

Transfer Characteristics @ T=-20℃

Transconductance @ T=-20℃

Derivative of Transconductance @ T= -20℃

Transfer Characteristics (Log) @ T=-20℃

The model scales accurately to sub-zero temperatures.

Page 39: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: IV Characteristics @ T=100℃

Nanolab , Ind ian Ins titute of Te chnology Kanpur 39

Id (m

A)

Id (m

A)

Id (m

A)

Output Characteristics @ T=100℃

Transfer Characteristics @ T=100℃

Transfer Characteristics (Log) @ T=100℃

The model can accurately capture high temperature operation of the device.

This is particularly important for power devices which generate a lot of heat.

Page 40: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling DC: Reverse Output Characteristics @ T=150℃

Nanolab , Ind ian Ins titute of Te chnology Kanpur 40

Vg from -12 to 3 V @ 0.5V step

The model can accurately capture high temperature operation of the device.

This is particularly important for power devices which generate a lot of heat.

Re ve rse Output conductance ve rsus Vd @ 150℃

De rivative of re ve rse output conductance ve rsus Vd @ 150℃

Re ve rse Output Characte ris tics @

150℃

Log Output Characte ris tics @

150℃

Page 41: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling field plates: Structure

A Gate Field Plate (GFP) and a Source Field Plate (SFP) structure modeled as transistors in series.

Field plates flatten out the peak in the electric field caused by the sudden drop in potential at the gate edge. TCAD showing field fluctuations leading to

a distributed field inside the device.

Nanolab , Ind ian Ins titute of Te chnology Kanpur 41

[1] S. A. Ahsan e t al., IEEE Transactions on Ele ctron De vice s (Spe cial Issue ), [2017]

Page 42: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling field plates: Trends w.r.t Drain Voltage

Nanolab , Ind ian Ins titute of Te chnology Kanpur 42

Terminal Capacitance: Reverse (Crss)

Activation of different series transistors with increasing drain voltage at a fixed gate bias

Terminal Capacitance: Input side ( Ciss)

Terminal Capacitance: Output side ( Coss)

The plateaus in each capacitance curve denote the switching -off of one of the transistors in series as depicted in the

previous slide.

[1] S. A. Ahsan e t al., IEEE Transactions on Ele ctron De vice s (Spe cial Issue ), [2017]

Page 43: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Field Plate Models: Trends w.r.t temperature

Nanolab , Ind ian Ins titute of Te chnology Kanpur 43

Terminal Capacitance: Input side ( Ciss) with drain voltage

Terminal Capacitance: Output side ( Coss)

Terminal Capacitance: Input side (Ciss) with gate voltage

Terminal Capacitance: Reverse (Crss)

Increasing temperature shifts the threshold voltage in the negative direction – leading to a corresponding shift in the capacitance curves.

[1] S. A. Ahsan e t al., IEEE Transactions on Ele ctron De vice s (Spe cial Issue ), [2017]

Page 44: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Mixed mode TCAD circuit using ATLAS

Nanolab , Ind ian Ins titute of Te chnology Kanpur 44

− Schematic for Mixed-mode simulation using the numerical GaN FP device generated in Atlas.

− The FP-HEMT is put as the DUT with 7 V and 0 V pulses of 1 MHz at gate.

− The pulse has a pulse-width of 480 ns 20 ns rise and fall times.

− Supply voltage of 50 V is chosen to capture the maximum effect of cross coupling capacitances on switching transients while an inductive load is put at the drain.

[1] S. A. Ahsan e t al., IEEE Transactions on Ele ctron De vice s (Spe cial Issue ), [2017]

Page 45: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Voltage waveforms

The model accurately predicts drain overshoots due to LC ringing, Miller

plateaus due to accurate prediction in sharing of the

gate drive current to charge Cgs and Cgd and the associated gate -drain

charge, and the damping of the oscillations.

Nanolab , Ind ian Ins titute of Te chnology Kanpur 45

Turn-on by switching applied gate signal from 7 V to 0 V (FP vs no FP)

Turn-on by switching applied gate signal from 7 V to 0 V (Mixed -mode vs Model)

Turn-off by switching applied gate signal from 0 V to 7 V, keeping applied drain voltage fixed at 50 V (FP vs No FP)

Turn-off by switching applied gate signal from 0 V to 7 V, keeping applied drain voltage fixed at 50 V (Mixed -mode

vs Model)[1] S. A. Ahsan et al., IEEE Transactions on Electron Devices (Special Issue), [2017]

Page 46: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Current Waveforms

Comparison of modeled time -domain waveforms during turn -off with and without cross -coupling and substrate capacitances.

Solid lines = Cross-Coupling(CC) and substrate model includedDotted lines = CC and substrate model excluded.

Nanolab , Ind ian Ins titute of Te chnology Kanpur 46

Turn-on by switching app lie d gate s ignal from 7 V to 0 V (Mixe d-m ode vs Mode l)

Turn-off by switching app lie d gate s ignal from 0 V to 7 V, ke e p ing app lie d d rain voltage fixe d at 50 V (Mixe d-m ode

vs Mode l)

[1] S. A. Ahsan e t al., IEEE Transactions on Ele ctron De vice s (Spe cial Issue ), [2017]

Page 47: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Contents

Nanolab – Characte rization and Mode ling Capabilitie s

An introduction to ASM-HEMT

Mode ling Powe r De vice s using ASM-HEMT

Mode ling RF De vice s using ASM-HEMT

Characte rizing Se lf He ating and its Mode ling

Trapping m ode ls in ASM-HEMT

Nanolab , Ind ian Ins titute of Te chnology Kanpur 47

Page 48: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Modeling RF Devices using ASM -HEMT− Extracting DC Parameters

− RF Model Extraction− Large signal simulations

− Load Pull Simulations

Page 49: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Extracting DC Parameters

Nanolab , Ind ian Ins titute of Te chnology Kanpur 49

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 , 𝑁𝑁𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹,𝐶𝐶𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑈𝑈0) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑁𝑁𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑅𝑅𝐹𝐹𝑇𝑇0)

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]

Page 50: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

RF Model & Extraction I

𝐿𝐿𝑥𝑥𝑔𝑔𝑔𝑔

𝐿𝐿𝑥𝑥𝑥𝑥 𝑥𝑥

𝐿𝐿𝑥𝑥𝑉𝑉

𝑉𝑉

GMF

SMF

DMF

Extrinsic

Manifolds

Overlap

𝐶𝐶𝑔𝑔𝑑𝑑,𝑖𝑖𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝐶𝐶𝑔𝑔𝑑𝑑,𝑖𝑖

𝑔𝑔𝑚𝑚

𝑅𝑅𝑔𝑔 𝑅𝑅𝑥𝑥

𝑅𝑅𝑉𝑉

𝑔𝑔𝑥𝑥𝑉𝑉

ASM-GaN-HEMT

𝑔𝑔𝑖𝑖𝑉𝑉𝑖𝑖

𝑥𝑥𝑖𝑖

𝐶𝐶𝐷𝐷𝐷𝐷𝑂𝑂𝐶𝐶𝑑𝑑𝑑𝑑,𝑖𝑖

𝑔𝑔𝑖𝑖

𝑉𝑉𝑖𝑖

𝑥𝑥𝑖𝑖

𝑥𝑥𝑑𝑑PDK

Mod e l− Core surface pote ntia l base d PDK− Acce ss re g ion re sis tance s inc lude d in core− Bus-inductance s in e xtrinsics

Pad -le ve l Sm all Signal Equivale nt Circuit Mode l

De vice Layout

Thre e s te p m e thod olog y− De -e m be d m anifolds − Extract the intrinsic core m ode l - Using low fre que ncy Y-param e te rs− Extract Inductance s - Using high fre que ncy Y-param e te rs

Nanolab , Ind ian Ins titute of Te chnology Kanpur 50

[1] S. A. Ahsan e t al., IEEE J. Ele ctron De vice s Socie ty, Se p ., [2017]

Page 51: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

RF Model & Extraction II: Pad ParasiticsManifold s / Pad s

− Use d to p robe the de vice− Fe e d the s ignal to gate , d ra in & source bus-inductance s− Me asure m e nts ob ta ine d using TRL Calib ration− Transm ission line type m ode l− Re cip rocal (m ay/ m ay not be sym m e tric)− De -e m be dde d using “de e m be d” s2p com pone nts in ADS

Sym m e tric ne twork use d for GMF/ DMF Sing le port SMF ne twork

Y-param e te rs for DMF

Y-param e te rs for GMF

Y-param e te rs for SMF

Nanolab , Ind ian Ins titute of Te chnology Kanpur 51

[1] S. A. Ahsan e t al., IEEE J. Ele ctron De vice s Socie ty, Se p ., [2017]

Page 52: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

RF Model & Extraction III: Bus Inductances Ke y Pointe rs

− The e ffe c t of bus-inductance s is ignore d at low fre que ncie s (assum ption)

− Drain & Source acce ss re g ion re sis tance s ignore d from hand analysis (not an assum ption, it is an advantage )

− Ignore som e te rm s at low fre que ncy (~ 10 GHz) (assum ption)

− Ve ry sim ple – only ne e d to ad just ove rlap capacitance s & gate finge r re sis tance s (advantage )

[1] I. Kwon e t al., IEEE Trans. Microw. The ory Te chn., 50 (6), [2002]

[1]

[1]

Nanolab , Ind ian Ins titute of Te chnology Kanpur 52

Page 53: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Fitting core model parameters using ADS

Extract 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

Extract 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝑔𝑔𝑚𝑚 d ispe rsion hand le d by trap m ode l

𝑔𝑔𝑑𝑑𝑑𝑑 d ispe rsion hand le d by trap m ode l

[1] S. A. Ahsan e t al., IEEE J. Ele ctron De vice s Socie ty, Se p ., [2017] Nanolab , Ind ian Ins titute of Te chnology Kanpur 53

Page 54: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Bus Inductance fitting

Resonant peaks due to interaction of inductances with intrinsic capacitances

𝑉𝑉11 & 𝑉𝑉22 (5V) 𝑉𝑉12 & 𝑉𝑉21 (5V)

𝑉𝑉11 & 𝑉𝑉22 (20V) 𝑉𝑉12 & 𝑉𝑉21 (20V)

[1] S. A. Ahsan e t al., IEEE J. Ele ctron De vice s Socie ty, Se p ., [2017] Nanolab , Ind ian Ins titute of Te chnology Kanpur 54

Page 55: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Large Signal HB Simulations

Harmonic balance drive -up characteristics showing Pout, PAE & Gain

Time domain waveforms of drain voltage & current. Load line contours spanning the IV plane

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017] Nanolab , Ind ian Ins titute of Te chnology Kanpur 55

Page 56: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Validation – Re al and Im aginary Loads

Nanolab , Ind ian Ins titute of Te chnology Kanpur 56

Pout & PAE against load resistance (real load)

Pout & PAE against load reactance (imaginary load)

Fairly accurate in predicting the maxima for Pout & PAE

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]

Page 57: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Load Pull simulations using ASM -HEMT

ADS Schematic for simulation of load -pull contours 22 dBm signal @ 10 GHz

Pout & PAE load pull contours for 10 mA/mm Pout & PAE load pull contours for 100 mA/mm

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017] Nanolab , Ind ian Ins titute of Te chnology Kanpur 57

Page 58: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Contents

Nanolab – Characte rization and Mode ling Capabilitie s

An introduction to ASM-HEMT

Mode ling Powe r De vice s using ASM-HEMT

Mode ling RF De vice s using ASM-HEMT

Characte rizing Se lf He ating and its Mode ling

Trapping m ode ls in ASM-HEMT

Nanolab , Ind ian Ins titute of Te chnology Kanpur 58

Page 59: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Characterizing Self Heating and its Mode ling

− Self heating Model− Characterization

Page 60: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Self- He ating Mode l

Self-Heating Effect

Nanolab , Ind ian Ins titute of Te chnology Kanpur 60

− The se lf-he ating c ircuit is de fine d in a the rm al d isc ip line .

− For the the rm al d isc ip line , powe r is the e quivale nt of “curre nt” and te m pe rature is the e quivale nt of “voltage ”

𝑇𝑇 𝑅𝑅𝑡𝑡𝑡 =𝑇𝑇𝑒𝑒𝑚𝑚𝑣𝑣(𝑅𝑅𝑡𝑡𝑡)𝑅𝑅𝑇𝑇𝑅𝑅𝑈

𝑇𝑇 𝑅𝑅𝑡𝑡𝑡 =𝑥𝑥𝑥𝑥𝑑𝑑

𝑇𝑇𝑒𝑒𝑚𝑚𝑣𝑣(𝑅𝑅𝑡𝑡𝑡) � 𝐶𝐶𝑇𝑇𝑅𝑅𝑈

𝑈𝑈𝑈𝑈𝑥𝑥𝑒𝑒𝑈𝑈 𝑑𝑑𝑡𝑒𝑒𝑉𝑉𝑒𝑒 𝑐𝑐𝑣𝑣𝑈𝑈𝑥𝑥𝑐𝑐𝑑𝑑𝑐𝑐𝑣𝑣𝑈𝑈𝑉𝑉, 𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑐𝑐𝑈𝑈𝑔𝑔 𝐾𝐾𝐶𝐶𝐿𝐿𝑣𝑣𝑈𝑈 𝑑𝑑𝑡𝑒𝑒 𝑑𝑑𝑡𝑒𝑒𝑈𝑈𝑚𝑚𝑣𝑣𝑎𝑎 𝑉𝑉𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑈𝑈𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑,𝑤𝑤𝑒𝑒 𝑡𝑣𝑣𝑣𝑣𝑒𝑒:

Page 61: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Characterization𝑇𝑇𝐽𝐽1 = 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,1 + 𝑅𝑅𝑡𝑡𝑡 × 𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑1

𝑇𝑇𝐽𝐽2 = 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,2 + 𝑅𝑅𝑡𝑡𝑡 × 𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑2

Ids

Vds

DC @ 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,1

Pulsed (0,0) @ 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,2

Extracting Rth. Both curves are measured at the same Vgs. The intersection point denotes a

common junction temperature.

⇒ 𝑅𝑅𝑡𝑡𝑡= ∆𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁/∆𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑

At the intersection point:𝑇𝑇𝐽𝐽1 = 𝑇𝑇𝐽𝐽2

And 𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑2 = 0 (Pulsed at (0,0))

Nanolab , Ind ian Ins titute of Te chnology Kanpur 61

With the ASM-HEMT m ode l, the param e te r RTH0 is tune d till the s im ulate d inte rse ction

point ove rlaps with the m e asure d inte rse ction point afte r the rm al param e te rs like UTE, AT and

KT1 have be e n e xtrac te d .

[1] T. Pe yre taillade e t al.,1997 IEEE MTT-S Inte rnational Microwave Sym posium Dige st, De nve r, CO, USA, 1997. doi: 10 .1109/ MWSYM.1997.596619.

𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,2 > 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,1

Page 62: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Contents

Nanolab – Characte rization and Mode ling Capabilitie s

An introduction to ASM-HEMT

Mode ling Powe r De vice s using ASM-HEMT

Mode ling RF De vice s using ASM-HEMT

Characte rizing Se lf He ating and its Mode ling

Trapping m ode ls in ASM-HEMT

Nanolab , Ind ian Ins titute of Te chnology Kanpur 62

Page 63: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Trapping models in ASM -HEMT− Trapping Models in ASM-HEMT

− Extraction using pulsed measurements

Page 64: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Trapping Models in ASM -HEMT: TRAPMOD I

Nanolab , Ind ian Ins titute of Te chnology Kanpur 64

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 + (𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 � 𝑒𝑒− 1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐)

𝑅𝑅𝐷𝐷 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝑅𝑅𝐷𝐷 + (𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝑉𝑉 + 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝑉𝑉 � 𝑒𝑒− 1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐)

𝑅𝑅𝐷𝐷 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝑅𝑅𝐷𝐷 + (𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝐴𝐴 + 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝐴𝐴 � 𝑒𝑒− 1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐)

𝜂𝜂0 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝜂𝜂0 + (𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑈 + 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑈 � 𝑒𝑒− 1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐)

𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 = 𝑣𝑣(𝑉𝑉𝑑𝑑)𝑉𝑉𝑐𝑐𝑡𝑡𝑡𝑡

Ke y h ig h lig h t s

− De pe nde nt on d rain voltage only− Bias-de pe nde nt and b ias-inde pe nde nt op tions− Scale s with s ignal powe r le ve ls− Suitab le for RF− Affe cts thre shold voltage , DIBL, AR Re sis tance .

Page 65: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Trapping Models in ASM -HEMT: TRAPMOD II

Nanolab , Ind ian Ins titute of Te chnology Kanpur 65

Ke y h ig h lig h t s

− De pe nde nt on both gate and d rain voltage s− Modulate s just the d rain s ide acce ss re g ion re sis tance− Suitab le for PIV sim ulation− Affe cts thre shold voltage , DIBL, Sub thre shold Slope ,

AR Re sis tance .

Page 66: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Trapping Models in ASM -HEMT: TRAPMOD III

Nanolab , Ind ian Ins titute of Te chnology Kanpur 66

𝑅𝑅𝐷𝐷 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝑅𝑅𝐷𝐷 +𝑉𝑉(𝑑𝑑𝑈𝑈𝑣𝑣𝑣𝑣𝑡)𝑉𝑉𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇

�𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁

𝐹𝐹𝐹𝐹𝐷𝐷𝑇𝑇𝑇𝑇𝐹𝐹

Ke y h ig h lig h t s

− De pe nde nt on both gate and d rain voltage s− Modulate s just the d rain s ide acce ss re g ion re sis tance for

dynam ic Ron− Suitab le for s im ulating Powe r De vice s− Incorporate s te m pe rature de pe nde nce .

Page 67: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Extraction using pulsed measurements

Nanolab , Ind ian Ins titute of Te chnology Kanpur 67

− Pulse d IV charac te rization in dual-pulse m ode a t a pulse fre que ncy of 1000 Hz with a duty-cycle of 0 .02 % is pe rform e d unde r m ultip le quie sce nt d ra in and gate b ias cond itions such that both the gate and the d rain voltage s are pulse d s im ultane ously from the quie sce nt b ias point.

− The pulse wid th of 200 ns and the m e asure m e nt window of 40 ns within the se 200 ns is short e nough to e nsure iso-the rm al and iso-dynam ic m e asure m e nt of the pulse d -IV charac te ristics.

Pulse d -IV Sche m e use d to s im ulate the P-IV Characte ris tics

Pulse d – IV chacte ris tics for

m ultip le quie sce nt cond itions – using

TRAPMOD II

Page 68: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Related Publications

Page 69: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Publications

Nanolab , Ind ian Ins titute of Te chnology Kanpur 69

1 S. Khandelwal, Y. S. Chauhan, T. A. Fjeldly, S. Ghosh, A. Pampori, D. Mahajan, R. Dangi, and S. A. Ahsan, "ASM GaN: Industry Standard Model for GaN RF and Power Devices - Part-I: DC, CV, and RF Model", IEEE Transactions on Electron Devices, 2019.

2 S. A. Albahrani, D. Mahajan, J. Hodges, Y. S. Chauhan, and S. Khandelwal, "ASM GaN: Industry Model for GaN RF and Power Devices - Part-II: Modeling of Charge Trapping", IEEE Transactions on Electron Devices, 2019.

3 A. Pampori, S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Physics-based Compact Modeling of MSM-2DEG GaN-based Varactors for THz Applications", IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, Japan, Mar. 2018.

4 S. A. Ahsan, A. Pampori, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "A New Small-signal Parameter Extraction Technique for large gate-periphery GaN HEMTs", IEEE Microwave and Wireless Components Letters, Vol. 27, Issue 10, Oct. 2017.

5 S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Physics-based Multi-bias RF Large-Signal GaN HEMT Modeling and Parameter Extraction Flow", IEEE Journal of the Electron Devices Society, Vol. 5, Issue 5, Sept. 2017.

6 S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Pole-Zero Approach to Analyze and Model the Kink in Gain-Frequency Plot of GaN HEMTs", IEEE Microwave and Wireless Components Letters, Vol. 27, Issue 3, Mar. 2017.

7 S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Analysis and Modeling of Cross-Coupling and Substrate Capacitance in GaN HEMTs for Power-Electronic Applications", IEEE Transactions on Electron Devices (Special Issue), Vol. 64, Issue 3, Mar. 2017.

8 S. Ghosh, S. A. Ahsan, S. Khandelwal, A. Pampori, R. Dangi, and Y. S. Chauhan, "Physics Based Analysis and Modeling of Capacitances in a Dual Field Plated Power GaN HEMT", International Workshop on Physics of Semiconductor Devices (IWPSD), Delhi, India, Dec. 2017.

9 S. A. Ahsan, S. Ghosh, S. Khandelwal, A. Pampori, R. Dangi, and Y. S. Chauhan, "A Scalable Physics-based RF Large Signal Model for Multi-Finger GaN HEMTs", International Workshop on Physics of Semiconductor Devices (IWPSD), Delhi, India, Dec. 2017.

10 S. Khandelwal, S. Ghosh, S. A. Ahsan and Y. S. Chauhan, "Dependence of GaN HEMT AM/AM and AM/PM Non-Linearity on AlGaN Barrier Layer Thickness", IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, Nov. 2017.

Page 70: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Publications

Nanolab , Ind ian Ins titute of Te chnology Kanpur 70

11 S. A. Ahsan, S. Ghosh, S. Khandelwal and Y. S. Chauhan, "Surface-potential-based Gate-periphery-scalable Small-signal Model for GaN HEMTs", IEEE Compound Semiconductor IC Symposium (CSICS), Miami, USA, Oct. 2017.

12 S. A. Ahsan, S. Ghosh, A. Dasgupta, K. Sharma, S. Khandelwal, and Y. S. Chauhan, "Capacitance Modeling in Dual Field Plate Power GaN HEMT for Accurate Switching Behaviour", IEEE Transactions on Electron Devices, Vol. 63, Issue 2, Feb. 2016.

13 S. Ghosh, S. A. Ahsan, A. Dasgupta, S. Khandelwal, and Y. S. Chauhan, "GaN HEMT Modeling for Power and RF Applications using ASM-HEMT", IEEE International Conference on Emerging Electronics (ICEE), Mumbai, India, Dec. 2016.

14 S. Ghosh, A. Dasgupta, A. K. Dutta, S. Khandelwal, and Y. S. Chauhan, "Physics based Modeling of Gate Current including Fowler-Nordheim Tunneling in GaN HEMT", IEEE International Conference on Emerging Electronics (ICEE), Mumbai, India, Dec. 2016.

15 S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Statistical Simulation for GaN HEMT Large Signal RF performance using a Physics-based Model", IEEE International Conference on Emerging Electronics (ICEE), Mumbai, India, Dec. 2016.

16 A. Dasgupta, S. Ghosh, S. A. Ahsan, S. Khandelwal, N. Defrance, and Y. S. Chauhan, "Modeling DC, RF and Noise behavior of GaN HEMTs using ASM-HEMT Compact Model", IEEE International Microwave and RF Conference (IMaRC), Delhi, India, Dec. 2016.

17 S. Ghosh, S. A. Ahsan, S. Khandelwal and Y. S. Chauhan, "Modeling of Source/Drain Access Resistances and their Temperature Dependence in GaN HEMTs", IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, Aug. 2016.

18 S. A. Ahsan, S. Ghosh, S. Khandelwal and Y. S. Chauhan, "Modeling of Kink-Effect in RF Behaviour of GaN HEMTs using ASM-HEMT Model", IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, Aug. 2016.

19 R. Nune, A. Anurag, S. Anand and Y. S. Chauhan, "Comparative Analysis of Power Density in Si MOSFET and GaN HEMT based FlybackConverters", IEEE International Conference on Compatibility and Power Electronics, Bydgoszcz, Poland, June 2016.

20 S. Ghosh, A. Dasgupta, S. Khandelwal, S. Agnihotri, and Y. S. Chauhan, "Surface-Potential-Based Compact Modeling of Gate Current in AlGaN/GaN HEMTs", IEEE Transactions on Electron Devices, Vol. 62, Issue 2, Feb. 2015.

Page 71: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Publications

Nanolab , Ind ian Ins titute of Te chnology Kanpur 71

21 S. Agnihotri, S. Ghosh, A. Dasgupta, A. Ahsan, S. Khandewal, and Y. S. Chauhan, "Modeling of Trapping Effects in GaN HEMTs", IEEE India Conference (INDICON), New Delhi, India, Dec. 2015.

22 S. Ghosh, S. Agnihotri, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, "Analysis and Modeling of Trapping Effects in RF GaN HEMTs under Pulsed Conditions", International Workshop on Physics of Semiconductor Devices (IWPSD), Bangalore, India, Dec. 2015.

23 K. Sharma, S. Ghosh, A. Dasgupta, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, "Capacitance Analysis of Field Plated GaN HEMT", International Workshop on Physics of Semiconductor Devices (IWPSD), Bangalore, India, Dec. 2015.

24 S. A. Ahsan, S. Ghosh, J. Bandarupalli, S. Khandelwal, and Y. S. Chauhan, "Physics based large signal modeling for RF performance of GaN HEMTs", International Workshop on Physics of Semiconductor Devices (IWPSD), Bangalore, India, Dec. 2015.

25 S. A. Ahsan, S. Ghosh, K. Sharma, A. Dasgupta, S. Khandelwal, and Y. S. Chauhan, "Capacitance Modeling of a GaN HEMT with Gate and Source Field Plates", IEEE International Symposium on Compound Semiconductors (ISCS), Santa Barbara, USA, June 2015..

26 A. Dasgupta, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "ASM-HEMT: Compact model for GaN HEMTs", IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, June 2015.

27 K. Sharma, A. Dasgupta, S. Ghosh, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, "Effect of Access Region and Field Plate on Capacitance behavior of GaN HEMT", IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, June 2015.

28 C. Yadav, P. Kushwaha, S. Khandelwal, J. P. Duarte, Y. S. Chauhan, and C. Hu, "Modeling of GaN based Normally-off FinFET", IEEE Electron Device Letters, Vol. 35, Issue 6, June 2014.

29 C. Yadav, P. Kushwaha, H. Agarwal, and Y. S. Chauhan, "Threshold Voltage Modeling of GaN Based Normally-Off Tri-gate Transistor", IEEE India Conference (INDICON), Pune, India, Dec. 2014.

30 S. Khandelwal, C. Yadav, S. Agnihotri, Y. S. Chauhan, A. Curutchet, T. Zimmer, J.-C. Dejaeger, N. Defrance and T. A. Fjeldly, "A Robust Surface-Potential-Based Compact Model for GaN HEMT IC Design", IEEE Transactions on Electron Devices, Vol. 60, Issue 10, Oct. 2013.

Page 72: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Publications

Nanolab , Ind ian Ins titute of Te chnology Kanpur 72

31 S. Agnihotri, S. Ghosh, A. Dasgupta, S. Khandewal, and Y. S. Chauhan, "A Surface Potential based Model for GaN HEMTs", IEEE PrimeAsia, Visakhapatnam, Dec. 2013.

32 S. Khandelwal, Y. S. Chauhan, and T. A. Fjeldly, "Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices", IEEE Transactions on Electron Devices, Vol 59, Issue 8, Oct. 2012.

Page 73: GaN HEMT Characterization and Modeling using ASM -HEMThome.iitk.ac.in/~chauhan/KDF2020.pdf · GaN HEMT Characterization and Modeling using ASM -HEMT Ahtisham Pampori and Yogesh S

Thank You!Questions