gangguan kabel bawah tanah-syamsir abduh

29
GANGGUAN PADA KABEL BAWAH TANAH Syamsir Abduh Jurusan Teknik Elektro, FTI-Universitas Trisakti Jl. Kyai Tapa No 1 Jakarta, 11440 [email protected] 5.1 Jenis-jenis Gangguan pada Kabel Bawah Tanah Gangguan pada kabel bawah tanah dapat disebabkan oleh kerusakan pada konduktor, bahan isolasi atau kadang- kadang terjadi dua-duanya. Akibatnya dapat terjadi kondisi sebagai berikut : 1. Gangguan konduktor putus (hubungan terbuka) 2. Gangguan Seri, yaitu adanya tahanan gangguan yang terhubung seri. 3. Gangguan antar fasa. 4. Gangguan fasa ke tanah. Keempat kondisi tersebut dapat digambarkan seperti pada gambar 5.1 Gambar 5.1. 86

Upload: syamsirabduh

Post on 19-Jun-2015

3.158 views

Category:

Education


16 download

DESCRIPTION

Gangguan pada kabel bawah tanah dapat disebabkan oleh kerusakan pada konduktor, bahan isolasi atau kadang-kadang terjadi dua-duanya. Akibatnya dapat terjadi kondisi sebagai berikut : (1)Gangguan konduktor putus (hubungan terbuka). (2) Gangguan Seri, yaitu adanya tahanan gangguan yang terhubung seri. (3) Gangguan antar fasa. (4) Gangguan fasa ke tanah.

TRANSCRIPT

Page 1: Gangguan kabel bawah tanah-Syamsir Abduh

GANGGUAN PADA KABEL BAWAH TANAH

Syamsir Abduh

Jurusan Teknik Elektro, FTI-Universitas TrisaktiJl. Kyai Tapa No 1 Jakarta, 11440

[email protected]

5.1 Jenis-jenis Gangguan pada Kabel Bawah Tanah

Gangguan pada kabel bawah tanah dapat disebabkan oleh kerusakan pada konduktor, bahan isolasi atau kadang-kadang terjadi dua-duanya. Akibatnya dapat terjadi kondisi sebagai berikut :

1. Gangguan konduktor putus (hubungan terbuka)2. Gangguan Seri, yaitu adanya tahanan gangguan yang terhubung seri.3. Gangguan antar fasa.4. Gangguan fasa ke tanah.

Keempat kondisi tersebut dapat digambarkan seperti pada gambar 5.1

Gambar 5.1.

Kondisi Gangguan Kabel

A adalah fasa yang sehat, B hubung terbuka, C hubung tanah, D mendapat gangguan

serie, E dan F hubungan singkat, selain itu F juga putus hubung tanah. G menyatakan

selubung logam (timah) atau tanah. Kondisi seperti di atas dapat diketahui dengan

pengukuran-pengukuran yang dilakukan dari salah satu atau lebih terminalnya.

86

Page 2: Gangguan kabel bawah tanah-Syamsir Abduh

Gangguan seri, termasuk konduktor putus, jarang terjadi pada kabel tanah.

Yang lebih sering terjadi adalah gangguan antar fasa dan hubung tanah. Kedua jenis

gangguan ini diklasifikasikan sebagai gangguan shunt yang akan dipakai sebagai

ukuran dalam menilai setiap penyimpangan kabel dari kondisi normalnya.

Menurut Maloney, setiap gangguan shunt dapat direpresentasikan dengan

rangkaian ekivalen seperti pada gambar 5.2 berikut ini.

Gambar 5.2

Rangakaian Ekivalen Gangguan Shunt

Tahanan R dan gap G masing-masing merepresentasikan tahanan gangguan dan

kekuatan breakdownnya. Harga R berkisar antara 0 sampai beberapa mega ohm dan

kekuatan breakdownnya dapat berharga dari 0 sampai ribuan volt.

5.2 Penyebab Kerusakan Kabel Bawah Tanah

Gangguan dapat terjadi karena kerusakan mekanis akibat pekerjaan-pekerjaan

(penggalian) di dekat lintasan kabel. Hal ini dapat segera menimbulkan gangguan,

tetapi jika kerusakannya sedikit gangguan dapat terjadi beberapa bulan kemudian.

Masuknya kelembaban ke dalam kabel adalah alasan utama untuk gangguan jenis ini.

Alasan-alasan lain yang menjadi rusaknya kabel dapat diringkas sebagai berikut:

1. Korosi selubung kabel, hal ini juga menyebabkan masuknya kelembaban

ke dalam kabel.

2. Penggerakan tanah, menyebabkan putusnya kabel.

3. Kerusakan akibat getaran, hal ini dapat mematahkan mantel timah.

4. Pekerjaan yang tidak baik, seperti belokan yang terlalu tajam, tetapi

terutama pada pengerjaan sambungan dan terminasi/mof.

5. Dan lain-lain.

87

Page 3: Gangguan kabel bawah tanah-Syamsir Abduh

5.3 Menentukan Perkiraan Lokasi Gangguan Kabel Bawah Tanah

5.3.1 Umum

Metoda-metoda yang digunakan untuk menentukan lokasi gangguan pada

kabel tanah dapat dibagi dalam dua kelompok. Kelompok pertama, disebut metoda

terminal, meliputi pengukuran-pengukuran yang dilakukan dari satu atau lebih

terminal kabel untuk mendapatkan jarak gangguan. Metoda ini cepat, tapi

ketelitiannya rendah. Kelompok yang lain, disebut metoda pelacakan, berupa

pengiriman sinyal-sinyal tertentu yang secara fisis dilacak sepanjang kabel dengan

instrumen pendeteksi sampai titik gangguannya ditemukan. Metoda ini memakan

banyak waktu tapi tingkat ketelitiannya baik. Gabungan metoda terminal dan metoda

pelacakan melahirkan suatu prosedur yang mampu melokalisir gangguan secara cepat

dan tepat. Prosedur ini dimulai dengan menentukan jenis gangguan yang terjadi,

kemudian mengukur jarak gangguan untuk menentukan lokasi perkiraannya dan

terakhir menentukan lokasi gangguan secara tepat.

Sub bab ini akan membahas cara menentukan jenis gangguan dan cara

menentukan lokasi perkiraan dari gangguan dengan cara pengukuran-pengukuran

yang dilakukan dari satu terminal kabel atau lebih untuk mendapatkan jarak gangguan

ini dikenal beberapa metode yang dapat dipilih sesuai dengan kondisi.

Dapat disebut disini beberapa metode diantaranya:

1. Metoda jembatan arus searah (Murray, Murray-Fisher, Varley, Hilborn,

Werren, dan sebagainya).

2. Metoda jembatan arus bolak-balik.

3. Metoda gelombang berdiri.

4. Metoda relaksasi.

5. Metoda “Shock Discharge”.

88

Page 4: Gangguan kabel bawah tanah-Syamsir Abduh

6. Metoda pemantulan pulsa.

Dalam sub-bab ini akan dijelaskan hanya metoda pemantulan pulsa.

5.3.2 Peralatan yang Dipergunakan

Alat yang dipergunakan untuk mengukur gangguan pada kabel bawah tanah adalah:

Reflektometer, merk: Seba Dynatronik, type LMG 1000 dan lain-lain.

Alat ini digunakan untuk mengukur perkiraan jarak gangguan (pra-lokasi)

dengan metoda pemantulan pulsa. Peralatan ini terdiri dari tiga bagian yang terpadu

menjadi satu unit, yaitu: osiloskop, generator pulsa dan alat hitung elektronik. Serta

digunakan pula alat bantu pendektesian yaitu head phone set (untuk mendengar

kekuatan sinyal) yang diperkuat oleh amplifier.

Karakteristik alat:

a. Tenaga

Peralatan dilengkapi dengan Ni-Cad battery yang dapat dicharge secara otomatis

dari sumber utama 110/220/240 Volt AC, juga dapat digunakan battery 12 Volt.

b. Pembangkit Pulsa

Pulsa yang dibangkitkan bervariasi tergantung keinginan, yaitu:

Dari 0,04 - 0,2 - 1 - 5 µs dengan amplitudo maksimum dari pulsa dapat mencapai

60 – 150 Volt.

c. Pengukuran waktu

Waktu perambatan dari pulsa dapat diukur pada CRT yang dilengkapi dengan

skala waktu. Sebelum pelaksanaan pengukuran, skala waktu harus disesuaikan

dengan panjang kabel total sehingga seluruh panjang kabel dapat terlihat atau

terukur.

1. Interval pengukuran 0 – 20.000 meter

2. Beam I 0,2 – 0,6 – 2 – 6 – 20 – 50 µs

3. Beam II (extension) 0,07 – 0,2 – 0,6 - 2 – 6 – 20 µs

Dengan menaikkan kecepatan scanning dengan faktor 5 x diperoleh interval

pengukuran:

1. Beam I 1 – 3 – 10 – 30 – 100 – 250 µs

2. Beam II (extension) 0,35 – 1 – 3 – 10 – 30 – 100 µs

89

Page 5: Gangguan kabel bawah tanah-Syamsir Abduh

5.3.3 Metoda dan Prinsip Kerja

Peralatan pemantulan pulsa atau sering disebut reflektometer digunakan untuk

mengukur perkiraan gangguan kabel secara cepat. Gangguan kabel

didefinisikan sebagai perubahan yang heterogen disebabkan oleh perubahan

struktur dielektrik dan konduktor putus, hubung singkat dan diskontinuitas

yang disebabkan oleh tahanan shunt.

Gangguan yang dideteksi dengan metoda pemantulan pulsa pada prinsipnya

adalah pengukuran jarak gangguan dari titik pengukuran sampai dengan titik

gangguan dengan mengalikan antara waktu perambatan pulsa dengan setengah

harga dari kecepatan propagasi dari jenis kabel tertentu.

Pada kabel listrik pulsa yang mengalir dengan kecepatan tertentu tergantung

pada karakteristik kabel. Kecepatan perambatan (V) pada peralatan digunakan

untuk menentukan panjang kabel dan titik gangguan, jadi jika kecepatan

perambatan (V) diketahui, yang harus diukur hanyalah waktu perambatan

antara pulsa yang dikirim dan yang dikembalikan untuk mengukur jarak

antara ujung kabel dan titik refleksi, hal ini dapat dilihat dengan mudah pada

osiloskop.

Tampilan dari kecepatan propagasi ( ) m/det, perhitungan untuk menentukan

lokasi gangguan adalah :

L = x t (5.1)

=

L = jarak gangguan dalam meter

t = waktu dalam µs

Lg = total panjang kabel

90

Page 6: Gangguan kabel bawah tanah-Syamsir Abduh

Sedangkan alat bantu yaitu head phone set digunakan untuk mendengar

getaran (vibrasi dan suara) yang berasal dari titik gangguan yang telah diukur

jaraknya, untuk memperkuat sinyalnya maka dipergunakan amplifier. Ini dilakukan

untuk memastikan letak gangguan sebelum diadakan penggalian.

5.4 Menentukan Jenis GangguanJenis gangguan pada kabel tanah dapat ditentukan dengan pengukuran dan

pengujian berikuti ini:

5.4.1. Mengukur Tahanan Isolasi Kabel Dengan alat ukur tahanan isolasi (megger) yang diukur adalah:

a. Tahanan isolasi antara inti dengan inti (gambar 5.3)b. Tahanan isolasi antara inti dengan tanah atau mantel kabel (gambar 5.4)

Harga tahanan isolasi yang terukur dapat mempunyai harga dari ratusan megaohm/infinite (isolasi baik) sampai mendekati nol (isolasi gagal).

Gambar 5.3Mengukur Tahanan Isolasi Antara Fasa-Fasa R-S, R-T, T-S

91

Page 7: Gangguan kabel bawah tanah-Syamsir Abduh

Gambar 5.4.Mengukur Tahanan Isolasi Antara Fasa R, S, T dengan tanah

5.4.2 Pemeriksaan Kontinuitas

Ketiga inti kabel pada salah satu ujung kabel dihubung singkat dan dihubungkan dengan tanah, kemudian dari ujung kabel lainnya diukur tahanan konduktornya, antara fasa dengan fasa, dengan memakai megger. Adanya gangguan seri pada kabel dapat diperiksa dengan menggunakan sebuah ohm-meter (gambar 5.5) Tahanan yang terukur dapat mempunyai harga dari mendekati nol (konduktor baik) sampai tak terhingga (konduktor putus sempurna).

.

Gambar 5.5.\Pemeriksaan Kontiunuitas

5.4.3. Pengujian Isolasi Kabel

Adanya gangguan shunt pada kabel tanah yang tahanan gangguannya sangat besar tidak diketahui melalui pengukuran biasa (megger). Jadi kabel seakan-akan tidak mendapat gangguan. Tetapi apabila kabel tersebut dibebani tegangan kerja peralatan proteksi akan bekerja membuka pemutus beban (PMT), karena terjadi break-down di titik gangguan. Dengan kata lain gangguan ini timbul bila kabel dialiri tegangan kerjanya. Jenis gangguan seperti ini dikenal sebagai gangguan flashing.

Untuk mengetahui adanya gangguan yang demikian dilakukan pengujian terhadap isolasi kabel dengan menggunakan tegangan tinggi searah. Besarnya

92

Page 8: Gangguan kabel bawah tanah-Syamsir Abduh

tegangan dan lamanya waktu pengujian ditetapkan berdasarkan standard yang berlaku dan tidak boleh melebihi batas maksimal yang diijinkan, untuk menghindari timbulnya kerusakan isolasi pada bagian yang lemah tapi belum menimbulkan gangguan. Terjadinya kegagalan pada isolasi kabel selama pengujian ditandai oleh arus yang mendadak naik dan penurunan tegangan pada kabel yang diuji.

Skema pengujian isolasi kabel dengan tegangan tinggi searah dapat ditunjukkan pada gambar 5.6. berikut.

Gambar 5.6Skema Pengujian Isolasi Kabel Dengan Tegangan Tinggi Searah

Gambar 5.7 menjelaskan keadaan transian arus kabel

Gambar 5.7Keadaan Transian Pada Arus Kabel

Untuk mengukur arus bocor dapat digunakan miliampermeter yang halus, misalnya range 0-1 mA dan untuk mengukur arus yang tiba-tiba naik bila terjadi kegagalan dapat digunakan miliampermeter yang batas ukurnya lebih besar lagi, tergantung pada

93

Page 9: Gangguan kabel bawah tanah-Syamsir Abduh

kemampuan arus dari generator. Untuk pengamatan terhadap arus lebih generator yang digunakan harus mempunyai proteksi khusus ( tersendiri ).

Pengujian isolasi kabel pada dasarnya dapat dilakukan sebagai berikut:Tegangan generator dinaikkan sedikit demi sedikit sampai tercapai tegangan ujinya.

Pada tahap ini dapat terjadi dua kemungkinan yaitu:

1. Tegangan tetap stabil selama pengujian. Miliampermeter tidak membaca arus bocor kecuali arus bocor yang kecil.

a. Dalam hal kabel baru saja dipasang ( pasangan baru ). Berarti keadaan kabel baik.

b. Dalam hal kabel telah menyebabkan alat proteksi bekerja (trip) berarti kabel telah normal kembali dengan sendirinya (self reinsulate). Pemberian tegangan yang lebih tinggi lagi akan menyebabkan gangguan muncul kembali, tetapi dalam hal ini ada bahaya kerusakan isolasi ditempat lain.

2. Tegangan mendadak jatuh dan miliampermeter mendadak membaca arus yang lebih besar dari pada arus bocor, baik konstan maupun terputus-putus. Peristiwa ini juga dapat terjadi pada saat tegangan generator dinaikkan, yaitu ketika masih dibawah tegangan testing. Dalam hal ini kabel mendapat gangguan. Selanjutnya turunkan

3. tegangan sampai tegangan menjadi stabil, kemudian dinaikkan lagi dengan perlahan-lahan sampai arus tiba-tiba melonjak naik.

Dari pengukuran tahanan isolasi, pemeriksaan kontinuitas dan pengujian dielektrik diatas, dapat diketahui fasa mana yang terganggu dan apa saja jenis gangguannya, yaitu apakah gangguan hubung tanah, gangguan antar fasa, konduktor putus, kombinasi dari ketiganya atau gangguan yang bersifat spark-gap atau flashing, sekaligus dapat diketahui besar tahanan gangguannya dan besar tengangan tembus dari gangguan.

Menurut standard IEC (pub 55-1 1965) mengenai standard pengujian terhadap kabel berisolasi kertas dan bermantel logam, harga tegangan uji dan waktu pengujian yang direkomendasikan adalah sebagai berikut :

1. Kabel dengan arah medan radial (kabel berinti satu dan kabel dengan mantel terpisah).

a. Tegangan bolak balik sebesar 2,5 Eo selama 15 menit ataub. Tegangan searah sebesar 6 Eo selama 15 menit dimana Eo adalah

tegangan rating antara konduktor dan mantel logamnya

94

Page 10: Gangguan kabel bawah tanah-Syamsir Abduh

2. Kabel dengan medan tidak radial

a. Pengujian tiga fasaHanya direkomendasikan dengan menggunakan tegangan bolak-balik sebagai berikut :Besar tegangan testingnya adalah 2,5 E selama 15 menit, dimana E adalah rating kabel antara konduktor dengan konduktor.

b. Pengujian per-fasa

Pengujian dilakukan dengan tegangan bolak-balik sebesar 1,25 x (E0 + E) selama 15 menit.

Pengujian dilakukan antara konduktor dengan konduktor, dengan koonduktor lainnya dihubungkan dengan mantel logam dari kabel.

5.5 Menentukan Perkiraan Lokasi Gangguan Pada Kabel Bawah Tanah dengan Metoda Pemantulan Pulsa

5.5.1 Prinsip Metoda Pemantulan Pulsa

Suatu saluran dengan impedansi karakteristik Zc dan dicatu oleh generator pulsa dengan impedansi dalam Zi. Panjang saluran adalah L meter dan ujung saluran terbuka. Pada saat T0 generator mengirimkan sebuah gelombang tegangan pulsa yang kemudian merambat sepanjang saluran dengan kecepatan propagasi Vp sebesar :

m/µs (5.2)

Seperti seakan yang diperhatikan pada gambar 5.8 berikut.

Gambar 5.8

Rangkaian Pengukuran Metode Pemantulan Pulsa

95

Page 11: Gangguan kabel bawah tanah-Syamsir Abduh

Setelah selang waktu T1 pulsa mencapai ujung saluran dan dipantulkan balik kearah generator. Waktu untuk mencapai generator dari ujung terbuka juga T1, karena kecepatan propagasinya konstan.

Dari hubungan jarak = kecepatan x T1

2L = Vp x T1

Lamanya waktu antara saat pengiriman pulsa dan saat penerimaan pantulannya adalah

T = 2T1. Jika waktu yang diukur adalah T maka diperoleh persamaan :

x T meter (5.2)

Dengan Vp dalam m/μs.

Persamaan (5.2) merupakan dasar penentuan lokasi gangguan pada kabel dengan metoda pemantulan pulsa. Bila kecepatan Vp diketahui dan waktu dapat diukur, maka jarak L dapat ditentukan dengan persamaan (5.2) diatas.

Pengukuran waktu T dilakukan dengan menggunakan osiloskop yang mempunyai time base tertentu sehingga pada layar tergambar gelombang pulsa yang dikirim dan yang dipantulkan. Jarak antara kedua pulsa ini dalam dimensi waktu yaitu T. Untuk mendapatkan gambar yang stabil pada layar, pulsa ini harus repetitive dengan frekuensi tertentu. Pengukuran waktu T secara skematik ditunjukkan pada gambar 5.9

Gambar 5.9

Skema Pengukuran Waktu Propagasi Gelombang Pulsa Dengan Menggunalan Osiloscope

5.5.2 Bentuk Pulsa Yang Dipergunakan

Pada dasarnya gelombang yang digunakan pada metoda pemantulan pulsa adalah gelombang-gelombang yang mudah diteliti waktu

96

Page 12: Gangguan kabel bawah tanah-Syamsir Abduh

propagasinya. Seperti yang telah dijelaskan sebelumnya tentang adanya deformasi bentuk gelombang impuls selama perambatannya, yaitu berkurangknya amplitude dan bertambah panjangnya ekor gelombang. Jadi puncak dan ekor gelombang akan terus bertmabah selama propagasinya. Oleh karena itu titik asal sebagai patokan, diperlukan gelombang impuls yang muka gelombangnya curam. Energi gelombang impuls merupakan fungsi dari amplitude dan lebar impuls. Makin besar amplitudo makin besar pula energinya. Energy yang besar diperlukan apabila metoda ini dipakai untuk mengukur jarak yang jauh, sedangkan untuk mengukur jarak yang pendek energinya dapat lebih kecil, yaitu dengan mempersempit lebar impulsnya. Lebar impuls yang sempit ini bermanfaat untuk mempertajam pemisahan, agar antara impuls yang dikirim dan yang diterima tida saling bertumpangan (over lap).

Dari pertimbangan berikut, impuls yang ideal untuk keperluan metoda ini adalah yang berbentuk eksponen sederhana e = E e-at seperti yang digambarkan pada gambar 5.10, tetapi karena kesulitan dalam membangkitkan gelombang pulsa yang rise timenya (waktu antara 10% sampai 90% dari tegangan puncak) sangat pendek, maka dipergunakan bentuk yang mendekati bentuk eksponen sederhana, dengan rise time beberapa nanodetik. Bentuk gelombang impuls yang dapat dipergunakan dalam metoda ini ditunjukkan pada gambar 4.8 dengan rise time sekitar 10 ns dan lebar impuls antara 0,1 µs sampai 3 μs.

Gambar 5.10

97

Page 13: Gangguan kabel bawah tanah-Syamsir Abduh

Bentuk Gelombang Impuls yang Dipergunakan

5.5.3. Pelaksanaan Pengukuran

5.5.3.1. Prosedur pengiriman gelombang pulsa

Prosedur operasi pengiriman gelombang pulsa dapat diuraikan sebagai berikut :

a. Langkah pendahuluan1. Kabel yang diuji harus dipisahkan dari system.2. Kabel yang diuji di discharge ketanah.3. Kedua ujung kabel diamankan dari kemungkinan bahaya sentuh, baik

terhadap manusia maupun terhadap benda-benda lain.b. Kabel yang akan diuji dihubungkan ke alat pengujian.c. Operasi pengiriman pulsa pada kabel dilaksanakan. Operator mengamati

perubahan bentuk gelombang yang terjadi seteliti mungkin.d. Akhir pengoperasian

1. Menghentikan sinyal trigger.2. Menurunkan tegangan ke nol dan mematikannya.3. Mentanahkan semua peralatan yang mungkin menyimpan tegangan tinggi,

yatu: i. Output generatorii. Kapasitoriii. Inti kabel yang diuji.

Sebelum memulai pengukuran harus diyakinkan bahwa kabel telah bebas sama sekali dari tegangan dan telah ditanahkan. Stelah itu barulah dibuat rangkaian pengukurannya.

Kabel yang diuji dihubungkan dengan peralatan pengukuran (osiloskop dan generator pulsa) melalui tiga buah kabel koaksial, masing-masing untuk ketiga intinya. Konduktor luar dari kabel koaksial ini harus saling dihubungkan dengan selubung logam (timah) dari kabel yang diuji. Generator pulsa dan osiloskop untuk keperluan penentuan lokasi gangguan kabel coaxial tadi dihubungkan ke terminal.Terminal pada unit tersebut. Fasa yang akan diamati dapat dilihat dengan selektor. Skema rangkaian ditunjukkan pada gambar 5.11.

Pemakaian kabel penghubung yang panjang akan mempengaruhi pengukuran waktu propagasi sepanjang kabel penghubung ikut terukur. Jadi hasil pengukuran harus dikoreksi. Untuk dapat membuat koreksi, panjang kabel penghubung dan kecepatan propagasi pada kabel penghubung harus diketahui. Perhitungan koreksinya adalah sebagai berikut:

.

98

Page 14: Gangguan kabel bawah tanah-Syamsir Abduh

Gambar 5.11Rangkaian Pengukuran

A-B: Kabel penghubung panjangnya L1 dan kecepatan propagasinya Vp1 serta waktu untuk menempuh jarak L1 pergi-pulang adalah T1, atau:

= (5.3)

B-C: Kabel yang diuji panjangnya L2, kecepatan propagasinya Vp2 dan waktu untuk menjalani L2 pergi-pulang adalah T2 atau:

= (5.4)

Misalkan dititik A dikirimkan gelombang pulsa dan dari osiloskop diperoleh gambar yang sketsanya dilukiskan pada gambar 5.12. Dimisalkan pula impedansi karakteristik kabel penghubung lebih besar daripada impedansi karakteristik kabel yang diuji, sehingga pantulan oleh sambungan (titik B) adalah negatip.

99

Page 15: Gangguan kabel bawah tanah-Syamsir Abduh

Gambar 5.12Sketsa Gelombang Pulsa

Interval waktu antara saat pengiriman pulsa dan penerimaan kembali pantulannya adalah T. Maka panjang kabel dari A sampai C dengan kecepatan dasar Vp2 adalah:

Lu = ( )

Tetapi T = T1 + T2, sehingga:

Lu = ( + ) )

Atau,

Lu = + (5.5 )

Panjang kabel yang diuji adalah , yaitu:

adalah faktor koreksi yang harus diberikan untuk mendapatkan harga yang

benar.

Cara lain untuk menghilangkan pengaruh kabel penghubung adalah dengan mengukur waktu propagasi antara pantulan oleh titik B sampai pantulan oleh titik C, yaitu T2. Dalam hal ini panjang L2 dapat dihitung langsung dengan persamaan

=

Jadi, panjang kabel penghubung tidak lagi mempengaruhi pengukuran. Masalahnya sekarang adalah bahwa waktu T lebih mudah diamati dan diukur daripada T2 karena dua alasan, yaitu:1. Pantulan yang disebabkan oleh titik sambungan tak selalu mudah diamati,

terutama apabila impedansi karakteristik kabel penghubung tidak banyak berbeda atau sama dengan impedansi karakteristik kabel yang diuji.

2. Panjang kabel relatif sangat pendek dibandingkan dengan kabel yang diuji, sehingga pantulan oleh titik sambungan menjadi sangat dekat atau bahkan over lap dengan pulsa yang dikirim.

100

Page 16: Gangguan kabel bawah tanah-Syamsir Abduh

Dari alasan diatas, pengukuran waktu total T lebih disukai karena lebih mudah, untuk selanjutnya diberikan koreksi seperlunya.

5.5.3.2 Pengukuran Kecepatan Propagasi Vp Pada Kabel

Apabila ada fasa yang masih baik dan panjang kabel diketahui, maka kecepatan propagasi Vp ditentukan dengan mengukur waktu propagasi sepanjang kabel yang dikirim dan pantulannya dari ujung terbuka memenuhi layar osiloskop dengan memilih scanning speed ms/divinisi yang tepat

Untuk dapat melakukan pengukuran dengan baik, osiloskop yang dipakai minimal harus mempunyai fungsi-fungsi dasar sebagai berikut:

1. Fokus yang tajam dan intensitas yang cukup terang.2. Mampu menjaga gambar tetap stabil.3. Sensitivitas: Volt/divinisi yang dapat dipilih.4. Time base: scanning speed ms/divisi yang dapat dipilih5. Pengatur posisi vertikal dan horizontal.6. Lebar bidang frekuensi (bandwidth) yang cukup lebar. Mengenai

bandwidth ini tidak ada standard yang pasti, tetapi dapat dilihat dari hubungan rise time dan bandwidth (bw) berikut:

Rise time = 0.35(bw)

=Dimana Trs adalah rise time sinyal yang ditampilkan pada layar osiloskop.Sebagai contoh, osiloskop dengan BW 10 MHz mempunyai rise time 35 ns.

Apabila osiloskop ini dipakai untuk mengamati gelombang pulsa dengan rise time 10ns, maka gambar yang tampak pada layar akan mempunyai rise time 36,4 ns. Jadi sinyal mengalami distorsi tetapi mengingat metoda ini terutama mengamati gelombang pantul yang rise timenya cukup panjang, maka osiloskop dengan BW 10 MHz dapat dipergunakan.

Sebagai ilustrasi, misalnya dalam pengukuran ini tersedia peralatan dengan karakteristik sebagai berikut:

1. Osiloskopa. Sensitivitas : 10 V/div sampai 2 mV/div dengan sequence 1,2,5,10.b. Time base : 0,2-0,5-1-2-5-10-20-50 ms/dis, dengan faktor 5x untuk

menaikkan scanning speed menjadi: 0,04-0,1-0,2-0,4-1-2-4-10 ms/divc. Layar dibagi menjadi B divisi vertikal dan 10 divisi horisontal

2. Gelombang pulsaa. Rise time: 10nsb. Amplitudo: 10-20-50-100 voltc. Lebar pulsa: 0,1-0,5-1,5-3,0 ms

Dengan peralatan ini akan ditentukan kecepatan propagasi pada kabel tanah berisolasi kertas yang panjangnya 1200 meter. Sebagai kabel

101

Page 17: Gangguan kabel bawah tanah-Syamsir Abduh

penghubung dipakai tiga buah kabel koaksial yang panjangnya 25 meter dan Vp = 190 m/ms

Sketsa bentuk tegangan yang diperoleh dari osiloskop dilukiskan pada gambar 4.11.

Dengan time/div yang lebih kecil dapat diperoleh ketelitian yang lebih baik dan Vp dihitung dari data berikut:

Gambar 5.13(a). x=5 µs/div, Y=5V/ µs

T=3div=15 µs

102

Page 18: Gangguan kabel bawah tanah-Syamsir Abduh

Gambar 5.13(b). x-2 µs/div, Y=5V/div

T=7,6div= 15,2 µs

Dengan persamaan (5.6):

Diperoleh Vp2 = 160,6 m/µs

5.5.3.3 Menentukan lokasi gangguan

103

Page 19: Gangguan kabel bawah tanah-Syamsir Abduh

Dengan peralatan yang sama akan ditentukan lokasi gangguan pada kabel

yang kondisinnya dilukiskan pada gambar 4.12. Fasa R putus dititik F1, Fasa S baik

dan Fasa T hubungan tanah. Kabel berisolasi kertas dengan Vp=160,6 m/µs yang

diketahui dari pengukuran terdahulu.

Dari osiloskop diperoleh bentuk gelombang pada fasa R dan T yang sketsannya

ditujukan pada gambar 5.14

Gambar 5.14

Kondisi gangguan

104

Page 20: Gangguan kabel bawah tanah-Syamsir Abduh

Gambar 5.15(a), Fasa R: x=0,5 µs/div, Y=5V/div

TR=5.5div= 2,75 µs

Gambar 5.15(b) Fasa T:x=2 µs /div, Y=5V/div

TT=6,2div=12,4 µs

Dari gambar yang tampak [ada osiloskop dapat dihitung jarak gangguannya, yaitu:

Fasa R putus di

L = 160.6/2xTR)-(25x160,6/190)

= (160,6/2x2,75)-(25x160,6/190)

= 221 meter

Fasa T hubungan tanah di

L = (160,6/2xTT)-(25x160,6/190)

= (160,6/2x12,4)-(25x160,6/190)

= 975 meter

Maka lokasi gangguan kabel tanah diketahui yaitu pada fasa R di 221 meter,sedang

pada fasa T di 975 meter. Langkah selanjutnya adakah memperbaiki gangguan

tersebut dan menggali lokasi yang telah dideteksi. Panggilan dilakukan dengan

ketentuan 3 meter ke depan dan 3 meter ke belakang. Langkah selanjutnya

105

Page 21: Gangguan kabel bawah tanah-Syamsir Abduh

memperbaiki kabel tersebut secara cepat agar konsumen dapat menikmati energy

listrik.

106