gas-chromatography/mass spectrometry (gc -ms ...aug 17, 2015  · gas-chromatography/mass...

57
Gas-chromatography/mass spectrometry (GC-MS) Interpretation of EI spectra Jeremy Keirsey CCIC MSP Mass Spec Summer Workshop August 17, 2015

Upload: others

Post on 20-Oct-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

  • Gas-chromatography/mass spectrometry (GC-MS) Interpretation of EI spectra

    Jeremy Keirsey CCIC MSP

    Mass Spec Summer Workshop August 17, 2015

  • Important goals in chromatography - Achieve the best separation

    - Little band-broadening – narrow chromatogram peaks – efficient column - “Dynamic range”

    - Separate and detect the “small” in the close vicinity of the “big” - Reproducibility

    - Stable peak positions, retention times

    Even with the best column diffusion always plays a role! Parameters to control diffusion Particle size (Column type) Flow rate

    Gas Chromatography

  • The Van Deemter Equation HETP = A + (B/u) + (Cs + Cm) × u

    HETP = height equivalent to a theoretical plate -a measure of the resolving power of the column

    H = L/N

  • •HETP = height equivalent to a theoretical plate, a measure of the resolving power of the column [m] (Height = Length/number of plates=L/N) •A = Eddy-diffusion parameter, related to channeling through a non-ideal packing [m] •B = diffusion coefficient of the eluting particles in the longitudinal direction, resulting in dispersion [m2 s−1] •C = Resistance to mass transfer coefficient of the analyte between mobile [m] and stationary phase [s]

    •u = Linear Velocity [m s−1]

    Original paper: Van Deemter JJ, Zuiderweg FJ and Klinkenberg A (1956). "Longitudinal diffusion and resistance to mass transfer as causes of non ideality in chromatography". Chem. Eng. Sc. 5: 271–289 Youtube: https://www.youtube.com/watch?v=8i_4-OMCANE

    The Van Deemter Equation

    HETP = A + (B/u) + (Cs + Cm) × u

    http://en.wikipedia.org/wiki/HETPhttp://en.wikipedia.org/wiki/Eddy-diffusionhttp://en.wikipedia.org/wiki/Diffusion_coefficienthttp://en.wikipedia.org/wiki/Dispersion_relationhttp://en.wikipedia.org/wiki/Mass_transfer_coefficienthttp://en.wikipedia.org/w/index.php?title=Linear_Velocity&action=edit&redlink=1

  • The Van Deemter Curve

  • Resolution

    Solute moving through a column spreads into a Gaussian shape with standard deviation σ. Common Measures of breadth are: 1) The width w½ measured at half-height 2) The width w at the baseline between tangents drawn to the steepest parts of the peak (inflection points).

  • Derive Van Deemter for Resolution HETP = L/N N = L/N substitute H = σ2/L N = L2/σ2 convert length to time (utility) N = (tr)2/(σ)2 relate σ to w1/2 (2.35σ) and w (4σ) N = 16tr2/w2 N = 5.55tr2/w1/22

  • MS Analyzer: -Quadrupole -Ion trap -Time of flight (TOF) -Orbitrap

    GC oven -GC Column

    GC controller

    Autosampler

    GC coupled to Mass Spectrometry (MS)

  • GC Columns

    • Two Common Formats • Packed columns (most common with bonded liquid coating) • Open tubular (typically long columns with small diameters)

    Packed Columns Open Tubular (end on, cross section view)

    Column Wall (fused silica)

    Mobile phase

    Stationary phase (wall coating)

    Polyimide Coating

  • • Advantages of Open Tubular Columns • Best resolution (negligible A term, small C term in Van Deemter Equation) • More robust • Better sensitivity with many detectors (due to less band broadening vs. lower

    mass through column)

    • Column Selection • High resolution (thin film, 0.25 mm diameter, 60 m) vs. higher capacity (thick

    film, 0.53 mm diameter) • Stationary phase based on polarity

    GC Columns

  • GC Stationary Phase

    Selectivity factor (α) describes the separation of 2 species, A and B, on the column

    Retention factor (k’) describes the migration of the analyte on the column

    k’= (tR – tM)/tM

    α = k’B/k’A

    Resolution (R) = ¼ √N (α-1/α) (k’/k’+1) efficiency selectivity retention

  • GC Adjustments • k is adjusted by changing temperature (higher T means smaller k) • Selection of stationary phase affects k and α values

    • The α values are adjusted by changing column (will work if there is a difference in solute polarity) • example: separation of saturated and unsaturated fatty acid methyl esters (FAMEs).

    • Retention of C18:0 and C18:1 FAMEs on RTX-5MS columns is very similar (due to similar boiling points) • Retention on more polar columns (RTX-50MS) is greater for the more polar unsaturated FAMEs

    • Main concerns of stationary phase are: polarity, functional groups, maximum operating temperature, and column bleed (loss of stationary phase)

    • More polar columns suffer from lower maximum temperatures and greater column bleed-derivatize? • Changing carrier gas has no effect on retention

    O

    CH3

    O CH3

    O

    CH3

    O CH3

    C18:0 FAME

    C18:1 FAME

    bp = 369°C

    bp = 352°C

  • Type Functional Groups Polarity

    RTX-1MS 100% dimethyl Non-polar

    RTX-5MS 5% diphenyl/95% dimethyl Low polarity

    RTX-50MS Phenyl methyl More polar

    Stabliwax-MS PEG High polarity

    GC Column Options

    Chirality Columns

    β-cyclodextrin

  • RTX-5MS = Low Polarity RTX-1MS = NonPolar

    GC Column Options

    Saturated Hydrocarbons Olefinic Hydrocarbons Aromatic Hydrocarbons Halocarbons Mercaptans Sulfides CS2

    Long lifetime and very low bleed at high operating temperatures. Temperature range: -60 °C to 350 °C

    Ethers Ketones Aldehydes Esters Tertiary amines Nitro compounds without α-H atoms Nitrile compounds without α-H atoms

    Column specifically tested for low-bleed performance. Temperature range: -60 °C to 350 °C.

  • RTX-50MS = Medium Polarity stabliwax-5MS = High Polarity

    GC Column Options

    Alcohols Carboxylic acids Phenols Primary and secondary amines Oximes Nitro compounds without α-H atoms Nitrile compounds without α-H atoms

    Polyhydroxyalcohols Amino alcohols Hydroxy acids Polyprotic acids Polyphenols

    Low bleed but rugged enough to with stand repeated cycles without retention time shifting. Sensitive to water and oxidation. Temperature range: 40 °C to 250/260 °C.

    Low bleed Temperature range: 40 °C to 320 °C.

  • http://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdf

    - Environmental monitoring - Food, beverage, flavor, and fragrance analysis - Forensic and criminal cases - Biological and pesticides detection - Fermentation control - Security and chemical warfare agent detection - Astro chemistry and Geo chemical research - Medicine and Pharmaceutical Applications - Petrochemical and hydrocarbon analysis - Clinical toxicology - Energy and fuel applications - Industrial use - Academics

    GC-MS Applications

    confirmation test

    http://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdfhttp://www.omicsonline.org/open-access/gc-ms-technique-and-its-analytical-applications-in-science-and-technology-2155-9872.1000222.pdf

  • GC-MS Projects in the MS&P

    https://www.youtube.com/watch?v=7yxWBOPNkJ8

  • GC-Chromatogram

  • EI Spectrum

  • The Nitrogen Rule

    • Compounds* that contain even number of N atoms have even number of nominal molecular weight

    • Compounds* that contain odd number of N atoms have odd number of nominal molecular weight

    But what about singly protonated molecules and accurate molecular weights??

    * Common organic compounds

  • Ion Stabilities

    • Even electron ions are more stable than odd electron (radical) ions

    How about protonated molecules: even electron or not? And how about ions formed by electron impact (EI) ionization?

  • Accurate elemental masses: C: 12.000000 H: 1.007825 O: 15.9949 N: 14.003 Cl: 34.9688 Br: 78.9183 S: 31.9720

    Selected Isotope Ratios and 13C Contributions

  • Use of Isotope Ratios to Distinguish Structures

  • Increasing 13C contribution in polyalanines

  • 3 5 7 4 3 5 7 6 3 5 7 8 3 5 8 0 3 5 8 20

    2 0

    4 0

    6 0

    8 0

    1 0 0

    Rel

    ativ

    e In

    tens

    ity

    m / z

    3 7 4 3 7 6 3 7 8 3 8 0 3 8 20

    2 0

    4 0

    6 0

    8 0

    1 0 0

    Rel

    ativ

    e In

    tens

    ity

    m / z

    (Ala)5 C15H29O6N5

    375.2118 (exact mass)

    375.4263 (average mass)

    3 5 7 4 3 5 7 6 3 5 7 8 3 5 8 0 3 5 8 20

    2 0

    4 0

    6 0

    8 0

    1 0 0

    Rel

    ativ

    e In

    tens

    ity

    m / z

    3 7 4 3 7 6 3 7 8 3 8 0 3 8 20

    2 0

    4 0

    6 0

    8 0

    1 0 0

    Rel

    ativ

    e In

    tens

    ity

    m / z

    1 9 7 6 1 9 7 8 1 9 8 0 1 9 8 2 1 9 8 40

    2 0

    4 0

    6 0

    8 0

    1 0 0

    Rel

    ativ

    e In

    tens

    ity

    m / z

    1975.9541 (exact mass)

    1977.1722 (average mass)

    3569.8663 (exact mass)

    3572.0062 (average mass)

    (Ala)50 C150H252O51N50 3568 (nominal mass)

    (Ala)25 C90H129O26N25 3568 (nominal mass)

    Increasing 13C contribution in polyalanines

  • 3 7 4 3 7 6 3 7 8 3 8 0 3 8 20

    2 0

    4 0

    6 0

    8 0

    1 0 0

    Re

    lati

    ve

    In

    ten

    sit

    y

    m / z

    3 5 7 0 3 5 7 2 3 5 7 4 3 5 7 6 3 5 7 80

    2 0

    4 0

    6 0

    8 0

    1 0 0

    Re

    lati

    ve

    In

    ten

    sit

    y

    m / z

    a

    b

    374.4183 (average mass)

    374.2040 (exact mass)

    3570.8741 (exact mass)

    3572.9742 (average mass)

    0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 00

    1

    2

    3

    4

    5

    6

    7

    8

    De

    via

    nc

    efr

    om

    no

    min

    al

    ma

    ss

    (da

    lto

    n)

    m / z

    c

    [Ala5+H]+

    [Ala50+H]+

    exact mass

    average mass

    [Ala120+H]

    Increasing 13C contribution in polyalanines

  • GC Chromatogram- an example for you

  • EI Spectrum- give the top and bottom a try

  • Characteristic Isotope Distribution of Selected Transition Metal Elements

  • 255

    190 Origin of m/z 190?

  • Metal element?

  • Transition Metal?

  • Isotope Ratios to Identify Chemical Compositions…No Accurate Mass!

  • Isotope Ratios to Identify Chemical Compositions…No Accurate Mass!

  • What Happened?

    10B: 25% 11B: 100%

    Isotope Ratios to Identify Chemical Compositions…No Accurate Mass!

  • Renormalized Isotope Distribution in the M+. Region

  • 86

    43

    15

    182

    105

    77

    Try these!!

  • 129 102

    117

    Halogen?

    …and these!!

  • …and this!! Use Isotope Distribution in the M+. Region

  • …and these!!

  • GC-MS Projects in the MS&P

    https://www.youtube.com/watch?v=7yxWBOPNkJ8

  • Untargeted GC-MS Analysis of Spider Silk Droppings -the hunt for hormones

  • Untargeted GC-MS Analysis of Plants Exposed to Crude Oil

  • Targeted GC-MS Analysis of Caffeine in Urine-Full Scan

  • Targeted GC-MS Analysis of Caffeine in Urine-SIM

  • Targeted GC-MS Analysis of SCFAs (Short Chain Fatty Acids) in Mouse Feces

    acetic acid propanoic acid butyric acid 4-methyl valeric acid

  • Quantitative GC-MS Analysis with Xcalibur

  • Xcalibur Method Setup-DSQ II

  • Xcalibur Method Setup-Trace GC Ultra

  • Xcalibur Method Setup-Autosampler

  • Xcalibur Processing Method Setup

  • Xcalibur Processing Method Setup-Identification

  • Xcalibur Processing Method Setup-Detection

  • Xcalibur Processing Data

  • Xcalibur Processing Data

  • Xcalibur Exported Results

  • Make Discoveries

    0

    100

    200

    300

    400

    500

    600

    700

    y = 118779x - 3E+06 R² = 0.9991

    0

    20000000

    40000000

    60000000

    80000000

    100000000

    120000000

    140000000

    0 200 400 600 800 1000 1200

    Gas-chromatography/mass spectrometry (GC-MS)�Interpretation of EI spectraGas ChromatographySlide Number 3The Van Deemter EquationThe Van Deemter CurveResolutionDerive Van Deemter for ResolutionGC coupled to Mass Spectrometry (MS)�GC ColumnsSlide Number 10GC Stationary PhaseGC AdjustmentsGC Column OptionsGC Column OptionsGC Column OptionsGC-MS ApplicationsGC-MS Projects in the MS&PGC-ChromatogramEI SpectrumThe Nitrogen RuleIon StabilitiesSelected Isotope Ratios and 13C ContributionsUse of Isotope Ratios to Distinguish StructuresIncreasing 13C contribution in polyalaninesSlide Number 25Slide Number 26GC Chromatogram- an example for youEI Spectrum- give the top and bottom a tryCharacteristic Isotope Distribution of Selected Transition Metal Elements�Slide Number 30Slide Number 31Slide Number 32Isotope Ratios to Identify Chemical Compositions…No Accurate Mass!�Slide Number 34Slide Number 35Renormalized Isotope Distribution in the M+. RegionSlide Number 37Slide Number 38Slide Number 39Slide Number 40GC-MS Projects in the MS&PUntargeted GC-MS Analysis of Spider Silk Droppings�-the hunt for hormonesUntargeted GC-MS Analysis of Plants Exposed to Crude OilTargeted GC-MS Analysis of Caffeine in Urine-Full ScanTargeted GC-MS Analysis of Caffeine in Urine-SIMTargeted GC-MS Analysis of SCFAs (Short Chain Fatty Acids) in Mouse FecesQuantitative GC-MS Analysis with XcaliburXcalibur Method Setup-DSQ IIXcalibur Method Setup-Trace GC UltraXcalibur Method Setup-AutosamplerXcalibur Processing Method SetupXcalibur Processing Method Setup-IdentificationXcalibur Processing Method Setup-DetectionXcalibur Processing DataXcalibur Processing DataXcalibur Exported ResultsMake Discoveries