gasification technologies for fuel production

29
1 Gasification Technologies for Fuel Production Tim Eggeman, Ph.D., P.E. June 29, 2009 Third Meeting of the International Sugarcane Biomass Utilization Consortium Shandrani Resort & Spa, Mauritius

Upload: ira-stuart

Post on 04-Jan-2016

41 views

Category:

Documents


2 download

DESCRIPTION

Gasification Technologies for Fuel Production. Tim Eggeman, Ph.D., P.E. June 29, 2009 Third Meeting of the International Sugarcane Biomass Utilization Consortium Shandrani Resort & Spa, Mauritius. “Complex”. SASOL. Gasification Can Be:. “Simple”. WWII Automobile. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Gasification Technologies for Fuel Production

1

Gasification Technologies for Fuel Production

Tim Eggeman, Ph.D., P.E.

June 29, 2009

Third Meeting of the International Sugarcane Biomass Utilization ConsortiumShandrani Resort & Spa, Mauritius

Page 2: Gasification Technologies for Fuel Production

2

Gasification Can Be:

“Simple”

WWII Automobile

“Complex”

SASOL

Page 3: Gasification Technologies for Fuel Production

3

Fuel Gas Applications Are Simplest

Central Minnesota Ethanol Cooperative15 Million gal/yr Corn Dry Mill

$15 Million Gasifier Retrofit

Page 4: Gasification Technologies for Fuel Production

4

Another Fuel Gas Application

Retrofit a Pulverized Coal Boiler to Allow Co-firing BiomassLahti, Finland

50 MWth

Page 5: Gasification Technologies for Fuel Production

5

Why are Fuel Gas Applications “Simple”?

• Atmospheric Pressure Operation

• Air Blown:– Low Calorific Gas w/ N2 is OK

• Low Temperature– High Make of Methane and Tars is OK– Dry Ash…generally OK

• Moving Bed is Common

Page 6: Gasification Technologies for Fuel Production

6

Gasifier Flow Patterns

c) Entrained Flow

a) Moving Bed b) Fluidized Beds

Page 7: Gasification Technologies for Fuel Production

7

Fuel Capacity

Entrained Flow

Page 8: Gasification Technologies for Fuel Production

8

BIGCC Are More Complex

Värnamo, Sweden18 MWth Input as Wood

Gasifier: Circulating Fluid Bed,Air Blown,

18 bar, 950-1000 °C

Page 9: Gasification Technologies for Fuel Production

9

Repotec Gasifier

CONFIDENTIAL

Page 10: Gasification Technologies for Fuel Production

10

Repotec – Güssing 8 MWth

Year 2002 2003 2004 2005 2006

Gasifier 3182 4695 6137 7078 7191

Gas Engine 1251 4152 5463 6487 6826

Operating Hours Per Year

CONFIDENTIAL

Page 11: Gasification Technologies for Fuel Production

11

Not All Projects are Successful

• Many Fail to Get Funding– SIGAME (Eucalyptus BIGCC in Brazil)

• Technical and Management Problems

Paia, Hawai’iBagasse BIGCC

Had Problems withBagasse Supply/Feed

Page 12: Gasification Technologies for Fuel Production

12

Feedstock PropertiesHerbaceous

BiomassWoody

BiomassIllinois No. 6

Coal

UltimateAnalysis

C: 45%O: 40%

C: 50%O: 40%

C: 80%C: 10%

Proximate Analysis

Moisture: 15%

Volatile C: 80%Fixed C: 15%

Moisture: 50%

Volatile C: 80%Fixed C: 15%

Moisture: 11%

Volatile C: 45%Fixed C: 45%

Heating Value,MJ/Kg (dry)

18 20 29

Ash Minerals Si, K Si, K, Ca, Mg Si, Al, Fe, Ca

Ash PropertiesTInitial Deformation, °C

TFluid, °C

700-8501500

800-900 1000-11001200-1300

Page 13: Gasification Technologies for Fuel Production

13

Ash Properties

TInitial

Deformation

TFluid

StickyAsh

Regime

Forbidden Temperature

Range

Dry AshGasifiers

AgglomeratingGasifiers

SlaggingGasifiers

Raw Gas Quenching

Instantaneous Feed HeatingSlagging

Operations

T250

Page 14: Gasification Technologies for Fuel Production

14

Ash Properties

a) Coal AshFrom: www.ultrasys.com.au/bits.html#

b) Biomass AshFrom: Miles et. al. (1996)

Page 15: Gasification Technologies for Fuel Production

15

ThermodynamicsEffect of Pressure at T = 1000 °C Effect of Temperature at P = 30 Bar

Page 16: Gasification Technologies for Fuel Production

16

Fuel Footprint

a) Iso-lines of Cold Gas Efficiency b) Iso-lines of Syngas (H2 +CO) Yield

Page 17: Gasification Technologies for Fuel Production

17

Chemicals

Tail Gas(Heat, Steam/Power)

SynthesisGas

TarReforming

SyngasProcess

Gasification for Chemicals is Most Complex

Biomass

Producer Gas(Heat, Steam/Power)

Low Temperature Gasification

~800°C

High Temperature Gasification

~1300°C

Feed Conditioning

PyrolysisTorrefaction

Grinding

Page 18: Gasification Technologies for Fuel Production

18

Biomass to Liquids (BTL)

Gasification:

Fischer-Tropsch:

22 xHCOOBiomass

OHCHnHnCO n 222 )(2

Distribution of Products MeansAdditional Hydrotreating Is Needed

Page 19: Gasification Technologies for Fuel Production

19

Choren

Freiberg SiteBlue Stripe Building (Back) – Alpha PlantRed Stripe Building (Center) – Beta Plant

Open Space (Center Left) – Future Shell FT Plant

Installation of Entrained Flow Gasifier,Beta Plant

Page 20: Gasification Technologies for Fuel Production

20

Choren

Page 21: Gasification Technologies for Fuel Production

21

Mixed Alcohol Synthesis

OHnOHHCnHnCO Nn 2122 )1(2

222 HCOOHCO

Chemistry:

Shift Lowers H2:CO ~ 1Products Follow Flory DistributionRequires High Pressures

Page 22: Gasification Technologies for Fuel Production

22

Range Fuels

Demonstration Plant in Soperton, GA in Planning

Page 23: Gasification Technologies for Fuel Production

23

Syngas Fermentation

Same Chemistry asMixed Alcohol Synthesis!

Page 24: Gasification Technologies for Fuel Production

24

Coskata

Working WithAlterNRG for

Plasma Gasification

Page 25: Gasification Technologies for Fuel Production

25

ZeaChem Technology

25

HydrogenResidue to Gasifier

Sales

Biomass:• Hardwood• Softwood• Switch Grass• Corn Stover

EthanolSales

Ethyl Acetate

Sugar Solution

Acetic Acid

ZeaChem’s Core Technology

Page 26: Gasification Technologies for Fuel Production

26

Theoretical Yields

Cellulose, 40

HemicelluloseSugars, 18

HemicelluloseAcetate, 2

Lignin, 30

Other, 10

Biochemical OnlyYield: 78-112 gal(neat)/BDT

39-56

Biochemical Processing

100

Balance61-44

Thermochemical OnlyYield: 112 gal(neat)/BDT

56

100

Balance30

Mixed Alcohol Synthesis

Thermochemical Processing

Balance14

Syngas

70

Values in Italics Indicate Chemical Energy Flow Normalized to Biomass = 100

Yield assumes 200 gal(neat)/BDT for 100% Chemical Efficiency

Syngas FermentationYield: 112 gal(neat)/BDT

56

100

Thermochemical Processing

BiochemicalProcessing

Balance30

Balance14

Syngas

70

ZeaChem HybridYield: 156 gal(neat)/BDT

78

100

60 40

Thermochemical Processing

Biochemical Processing

Hydrogenolysis

Balance4

Residue8

Balance18

Ester

52

H2

30

Page 27: Gasification Technologies for Fuel Production

27

Recommendations for ISBUC• Have Well-Defined Scope

– Start Simple then Build Complexity– Need a Strong Operating Partner with

• Form a High-Level Business Case Early– Incremental Economics for Addition of a BIGCC to a

“Typical” Mill– Refine as Progress is Made

• Project Plan– Sources of Funds– Location– Schedule

Page 28: Gasification Technologies for Fuel Production

28

Potassium ContentPotassium Content of Biomass

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Mixed waste paperFir mill waste

RFD - TacomaRed oak sawdust

Sugar Cane BagasseUrban wood waste

Willow - SV1-3 yrFurniture waste

Willow - SV1-1 yrAlder/fir sawdustSwitchgrass, MN

Hybrid poplarSwitchgrass, D Leaf, MN

Demolition woodForest residualsPoplar - coarse

Miscanthus, SilberfederWood - land clearing

Almond woodWood - yard waste

Danish wheat strawRice husks

Switchgrass, OHOregon wheat straw

Alfalfa stemsCalifornia wheat straw

Imperial wheat strawRice straw

Potassium Content (lb/MMBtu)

Page 29: Gasification Technologies for Fuel Production

29

Table 2.1 - Typical Feedstock AnalysesComplied from Phyllis (2006), US DOE Biomass Database (2006),

Neto (2005), Meyers (1981) and othersHerbaceous Biomass Woody Biomass Fossil

Corn Corn Hardwood CoalStover Stover Cane Cane Trash Cane Trash Cane Trash Hybrid Hardwood Hardwood Softwood Coal Illinois No. 6

(Whole) (Cob) Switchgrass Bagasse Dry Leaves Green Leaves Tops Poplar Eucalyptus Oak Pine Lignite Bituminous Pet Coke

Ultimate Analysis, wt% dry

C 46.80 46.60 47.39 44.60 46.20 45.70 43.90 50.20 49.50 49.90 51.30 65.70 70.00 88.24H 5.74 5.87 5.67 5.80 6.20 6.20 6.10 6.06 5.75 5.94 4.69 4.50 4.90 3.68N 0.66 0.47 0.55 0.60 0.50 1.00 0.80 0.60 0.14 0.38 0.51 1.20 1.40 2.18S 0.11 0.01 0.06 0.10 0.10 0.10 0.10 0.02 0.03 0.50 0.15 1.00 3.80 5.69O 41.40 45.50 39.13 44.50 43.00 42.80 44.00 40.40 44.00 41.30 40.30 18.40 10.70 0.51Cl 0.27 0.21 0.09 0.02 0.10 0.40 0.70 0.01 0.06 0.01 0.02 - - -Ash 5.10 1.40 6.54 2.20 3.90 3.70 4.30 2.70 0.50 2.40 3.00 9.20 9.20 0.30

Proximate Analysis, wt% dry

Moisture 6.1 8.0 13.9 50.2 13.5 67.7 82.3 50.0 50.0 50.0 50.0 35.5 11.2 7.0

Volatile Carbon 80.9 80.1 77.0 79.9 84.5 80.6 79.3 84.8 86.6 84.2 75.6 48.7 46.3 13.4Fixed Carbon 14.0 18.5 15.9 18.0 11.6 15.7 16.4 12.5 12.9 13.4 21.4 42.1 45.6 86.3Ash 5.1 1.4 6.5 2.2 3.9 3.7 4.3 2.7 0.5 2.4 3.0 9.2 8.1 0.3

Biochemical Analysis, wt% dry

Cellulose 37.3 40.2 36.9 39.1 43.2 48.5 38.6 44.2Galactan 0.9 1.7 1.4 0.4 0.8 0.9 2.1 2.0Mannan 0.5 0.0 0.3 0.3 2.5 1.0 0.0 12.3Xylan 16.4 23.6 23.0 20.2 16.4 11.6 17.7 5.2Arabinan 3.1 3.2 2.4 1.6 0.7 0.4 0.6 0.7Lignin 14.6 12.3 9.6 24.3 24.2 27.7 27.4 27.9Balance 27.2 19.0 26.4 14.0 12.3 9.9 13.6 7.7

Total Sugars 58.2 68.7 64.0 61.7 63.5 62.4 59.0 64.4

Heating Value

HHV, MJ/kg (dry) 18.10 18.77 18.90 18.10 17.40 17.40 16.40 19.02 19.22 20.45 20.59 25.52 29.20 35.64

Ash Composition, as Oxides wt% of Ash

Al2O3 2 6.98 2.3 3.5 1.4 0.5 0.8 7.9 0.9 10.9 13.6 17.9CaO 8.7 1.3 7.14 0.7 4.7 3.9 2.6 49.9 26.5 65 29 17.6 5.8CuO 0.00006 0.00006 0.00006Fe2O3 4.1 3.56 2.3 0.9 0.5 0.2 1.4 0.5 4.5 6.6 20.1K2O 20.7 2 7 1.7 2.7 13.3 29.5 9.6 7.2 9.9 13.1 0.1 1.8MgO 6.1 2.5 3.17 0.5 2.1 2.2 2.5 18.4 7.3 8.3 4.7 2.5 1MnO2 0.062 0.169 0.12 0.155

Na2O 0.2 1.2 1.03 0.045 0.123 0.128 0.119 0.1 5 0.8 0.6 0.6 0.4P2O5 8.7 6.9 2.8 0.5 0.5 2 2.5 1.3 29.1 7.5 5.3 0.1 0.1SiO2 54 40.3 65.42 5.9 17.8 2.3 46.1 41.8 47.5SO3 8.7 2 2 2.2 14.6 4.6

TiO2 0.34 0.3 0.1 0.2 1.5 0.8ZnO 0.009 0.015 0.035Balance -0.4 33 0.56 91.893 85.29894 76.43694 61.89094 10.3 -0.8 2.5 -14.4 1 0

Alkali, kg/GJ Feed (dry) 0.59 0.02 0.28 0.02 0.06 0.29 0.78 0.14 0.03 0.13 0.20 0.03 0.06

Ash Fusion Temperatures, C

Reducing ConditionsInitial Deformation 1129 1079 1093Spherical 1234 1166 1182Hemispherical 1414 1177 1193Fluid 1518 1227 1271

Oxidizing ConditionsInitial Deformation 1160 1132 1260Spherical 1266 1199 1332Hemispherical 1377 1210 1343Fluid 1500 1254 1432