gauss êß blow-up5gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãb!« ¡ á!©!ƒr2•k.´ç...

29
Gauss!«êß!blow-up5ü pÕ, ç!!ìµ oâãB!« ¡ á !©!ƒR 2 k.´ç˛"òX"Gauss"«êß-Δu k = V k e uk 3^ásup k (kV k k C 1 () + R B e uk ) < +1e"¬Òú"" |^Têß"-#K5å$ß XJu k "blow-up:8Sö òß KÈ?ø"⇢⇢ B \ Sß u k ~%òá~Í!3˛C 1 ¬Ò%GreenºÍGß ß˜v êß -ΔG = X p2S 8⇡δ p dûß "Çk lim k!+1 Z V k e uk = X \S 8T(Jkm""A¤ø¬" ŸGá©êß+çp"ò"~^E|$¥!nÿ© ˆ"%á8"" 'Öcµ Gauss"«êß, blow-up©¤, L p %O, -#K5 §1 Û -f ¥Riemann6/(,g)%R n "&/i\ß Pg f ¥f p!"›˛ß ø( g f = e 2u g (1-1) K"ÇkGauss!«êß!˛!«êß -Δ g u = K f e 2u - K g Δ g f = e 2u H f , (1-2) ƒÍ61 1

Upload: others

Post on 23-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Gauss!«êß!blow-up5ü

pÕ,⇤

ç!!ìµoâãB!«

¡ á

!©!ƒR2•k.´ç⌦˛"òX"Gauss"«êß��uk = Vkeuk3^ásupk(kVkkC1(⌦)+RB euk) < +1e"¬Òú""|^Têß"✏�#K5å$ßXJuk"blow-up:8Sö

òßKÈ?ø"⌦ ⇢⇢ B \Sßuk~%òá~Í!3⌦˛C1¬Ò%GreenºÍGßߘv

êß

��G =

X

p2S

8⇡�p

dûß"Çk

limk!+1

Z

⌦Vke

uk =

X

⌦\S

8⇡

T(Jkm""A¤ø¬"ŸG†á©êß+çp"ò"~^E|$¥!n‹ÿ©

‘ˆ"%á8""

'ÖcµGauss"«êß, blow-up©¤, Lp%O, ✏�#K5

§1 ⁄Û

-f¥Riemann6/(⌃, g)%Rn"&/i\ßPgf¥fp!"›˛ßø(

gf = e2ug (1-1)

K"ÇkGauss!«êß⁄!˛!«êß

��gu = Kfe2u �Kg

�gf = e2uHf ,(1-2)

⇤ƒÍ61

1

Page 2: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Ÿ•Kg⁄Kf©O¥›˛g⁄gfe"Gauss"«ßHg⁄Hf©O¥›˛g⁄gfe"#˛"

«"˛„êß"zòá)Úâ—Riemann6/˛"òá&/ãIXßÖ3dãIX

eGauss"«èKf"œL!$dêßß"Çå±|^Gauss"«K£±9#˛"«H§

Ôƒ&/i\f"5ü"'Xß"Ç'~Iá!ƒ&/i\S"fk"¬Ò߶'3˘

òX"êß•"Gauss"«⁄#˛"«¬Ò%˝kâ("Gauss"«⁄#˛"«"3

˘ê°ßBrezis[1]ßoÒÒ[2]ß)%+[3])ı%Í)[9Ÿ‹äˆQâ—LNı,è

"(J"

3!©•ß"Çê!ƒGauss"«Èu"Kè"3(1-2)•ßäCÜv = 2ußK¥Ñ

��gv = �2�gu = 2Kfe2u � 2Kg = 2Kfe

v � 2Kg

AO/ß,gèIOÓº›˛dx2 +dy2ûß�g = �ßKg = 0ßP2Kf = Vßu¥(1-2)z

è

��v = V ev

§±"ÇêIá!$˛„/™"êß"

!©!ƒR2•k.´ç⌦˛"êßS"

��uk = Vk(x)euk , x 2 ⌦ ⇢⇢ R2

(1-3)

"blow-up5ü""Ç"ÛäÚƒuXeb(µZ

⌦|Vk|euk < ⇤1 È?øk 2 N§·

||Vk � V0||C1(⌦) ! 0, k ! 1

0 < a < |V0| < b < 1, 8x 2 ⌦

(1-4)

øÖ"3¢Íq 2 (1, 2)¶'

rq�2Z

Br(p)|ruk|qdx < ⇤2, 8r 2 R, 8p 2 ⌦ (1-5)

^á(1-4)•1ò™¥⌦˛"'Gauss"«»©ß$1n™¥òá()5"b(ß8"

¥è*{ze°Úá?1"©¤" á(1-5)"òáwÕ`:¥ß"܇30†Cz

e'±ÿC߉N/`ßXJ-vk(x) = uk�x�

�ßKrvk(x) =

1�ruk

�x�

�ßœd"Çk

(�r)q�2Z

B�r(p)|rvk(x)|qdx = (�r)q�2 · 1

�q

Z

B�r(p)|ruk

⇣x�

⌘|qdx

= (�r)q�2 · �2

�q

Z

Br(p)|ruk(t)|qdt = rq�2

Z

Br(p)|ruk(t)|qdt

2

Page 3: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

,"Ç!ƒòÑ;&>Riemann6/˛"ÉAêßûß á(1-5)Úg,/*˜v"?

\eòŸ"©¤Écß"Ç"!ƒ6ûÑÿIá^á(1-5)"

c°Æ'J%ß"ÇF"!ƒòáS"ß,Gauss"«Vk1w/¬Ò%,áÆ$

"Gauss"«V0ßÖ"°"°»£$=Reu§k.ûßêß")S""¬Òú""3'+

òÑ"ú"eß)S"{uk}k2Nô7¬Òß ¥œè"ÇêUlêß•'%k�ukkL1k

.ß ÿv±'%uk"C0%O"/"Ç"êßkòáÈ–"5üµå±È%òáv

-,"#Í✏0ß,RB eu < ✏0ûßuk“kC0%O""ÇòÑr˘´5ü°è✏�#K5"

Èu˜v✏�#K5"êßS"ß"Ç å±Ô·ò@*ı"blow-up©¤nÿßö

~òflâ—uk"¬Òú""

òÑ/ßblow-up©¤ù.ná‹©"

1. Blow-up:8⁄blow-up:NC!bubble

blow-up:8“¥˜v

A(p) = limr!0

lim infk!+1

Z

Br(p)euk > 0

"§k:p§§É8‹"Blow-up:ªÄ*êß#K5ß3ßÇNCukÿ¨¬Ò"

/33blow-up:pNCß"Ç UÈ%ò"S"xk ! pßrk ! 0߶'uk(xk +

rkx)~%,á~Í"!kÈ–"¬Ò5üßßǧ¬Ò%"4ÅòÑ*°èbubble"

‰N%"Ç"êßß"Çå±!ƒòá,´çB�(p)˛"êß(1-3)ߟ•B�(p)\S = ;"Gauss"«êß"✏�#K5Úâ"ÇJ¯B�(p)•"òá:"{xk}k2Nßv

uk(xk) = sup

B�(p)uk �! +1, k ! 1xk ! p, k ! 1

ƒkßä‚4åä)nße3,á,+çS/kV0 < 0ßKuk3d+çS"Åå

ä73>.˛+%ßl$3d+çS‹Úÿ¨kblow-up:"03blow-up:pò

(kV0(p) > 0"dûßXJ-

mk = uk(xk), rk = e�mk2

ø!ƒ

vk(x) = uk(xk + rkx)�mk

Ÿ•vk"(¬çè

⌦k = {x : |xk + rkx� p| < �}

KvkÚ˜vêß

��vk = Vk(xk + rkx)evk , x 2 ⌦k

3

Page 4: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

|^[1]"#K5(J±9[4]•"òá%á(Jßå$È?ø"R > 0,uk(xk +

rkx)�mk3BRrk(xk)˛1w¬Ò%òáºÍ

w = �2 log

✓1 +

V0(p)

8|x� p|2

ߘv Z

R2V0(p)e

wdx = 8⇡ (1-6)

2. f4Å

d^á(1-5)ßuk~%òá‹2"~Í"ck!Ú3W 1,q(⌦)•f¬Ò"?ò⁄ß

3B�(p)É,£çòÑ/ß3?ø"⌦0 ⇢⇢ ⌦ \ S˛§ßdGauss"«êß"✏�#K

5ßå±$0§·

uk ◆ 1, k ! 1

l$dPoincareÿ)™⁄^á(1-5)ßå±y""3™ïu1"~Í"{ck}k2N߶'uk � ck3⌦

0˛1w/¬Ò%òáGreenºÍ"

3. Œf

3blow-up©¤•ß çB� \ BRrk(p)*°èŒfßß ¥blowup©¤•Å

è(J"‹©"òÑ$Ûß"ÇÈJ·òŸŒf"[!"/Œf">.¥òŸ

"ߧ±"ÇIáÊ+ò"E|ßrÈŒf"?ÿ=zèÈŒf>."?ÿ""

Ǣp/œuòáPohozaev./)™ßå±Oé—A(p) = 8⇡ßøÖœLy"

lim�!0

limR!+1

limk!+1

Z

B�(xk)\BRrk(xk)

Vkeukdx = 0

Ú'%

limk!+1

Z

⌦0Vke

ukdx =

X

p2⌦0\S8⇡. (1-7)

˛„˘"(J—kö~Ü*"A¤)3"

1. duêß(1-3)"m‡¥/åu""L1ºÍß0"Çå±ÚŸn)è⌦˛"kÅ

#Borelˇ›ß$=,´U˛©Ÿ"o—/`ßblow-up:8“¥U˛‡8":ߟ

•"záblow-up:“ÈAu˘áˇ›")f"/áblow-up©¤"LߢS˛ç

—ßêk3“U˛‡8”":˛‚¨u)blow-upyñ"

4

Page 5: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

2. dGauss-Bonnet(nß3òá&ë•°S2˛AkZ

S2KdA = 2⇡�(S2

) = 4⇡

$3"Ç"ú"eßV = 2KßœdÉA"»©Aè8⇡"œdßÈuS•":pßA(p) =

8⇡Ø¢˛V´ß34Åú/eblow-up:˛“î¥Î2Xòá&ë•°ò*ß$

3blow-up:8É,"°¥#""%$Özáblow-up:7,=Î2Xòá&ë•

°ßÿ¨—yAá•°Î23”òáblow-up:˛"ú/"œd"ÇÚ˘á4Å

°è“bubble”ßß¥È˛„ú/"òá/ñ"èx"

3. (1-7)òÑ*°èU˛/)™ßß"A¤ø¬¥`3/á4ÅLß•U˛7/"ß

§kU˛Å™‡8%blow-up:8˛"

ñdß"Çå±Ú!©"Ãá(Jo(§±e(n"

#n1.1. 8k 2 Nß!uk¥êß

��uk = Vk(x)euk , x 2 ⌦ ⇢⇢ R2

(1-8)

!)",!! Z

⌦|Vk|euk < ⇤1, 8k 2 N

||Vk � V0||C1(⌦) ! 0, k ! 1

0 < a < V0 < b < 1, x 2 ⌦

(1-9)

øÖ!3¢Íq 2 (1, 2)¶"

rq�2Z

Br(p)|ruk|qdx < ⇤2, 8r 2 R, 8p 2 ⌦ (1-10)

KkÖ=k±en´ú/Éòu)µ

1. uk3⌦!?ø;f8˛k.#

2. uk3⌦!?ø;f8˛òó¬Ò#�1#

3. !3kÅ:8S = {a1, a2, · · · , am} ⇢ ⌦߶"

limr!+1

lim infk!+1

Z

Br(ai)Vke

ukdx = 8⇡

5

Page 6: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

dûßuk3?ø!⌦0 ⇢⇢ ⌦ \ S˛òó¬Ò#�1ß#Ö!3~Í"ck ! �1ß

¶"uk � ck3W 1,q(⌦)•f¬Ò!3?ø!⌦

0 ⇢⇢ ⌦ \ S˛òó¬Ò#Greenº

ÍGßG˜vêß

��G =

mX

i=1

8⇡�ai

ÖÈ?ø!⌦0 ⇢⇢ ⌦ß"Çk

limk!+1

Z

⌦0Vke

ukdx =

X

p2S\⌦0

8⇡

˘ò(n")©á!"L„/™Å@—y3[1]•"

§2 Gauss!«êß!✏�"K5

§2.1 êß��u = f 2 L1(⌦)!"K5

(⌦èRn˛"m8",êß

��u = f, x 2 ⌦

"m‡f 2 Lp(⌦), 1 < p < 1ûß|^Calderon-Zygmund©)⁄Marcinkiewicz*äß"

Çk';"Lp%O[5]

||u||W 2,p(⌦0) C(||u||Lp(⌦) + ||f ||Lp(⌦)), 8⌦0 ⇢⇢ ⌦

C = C(n, p,⌦,⌦0)

/,f 2 L1(⌦)ûßòÑ'ÿ%˛„%O"È˘´ú/ß[1]•â—*Xe(J

⁄n2.1. -f 2 L1(⌦)ßu 2 W 1,2

0 (⌦)¥êß

��u = f (2-11)

!f)ßKÈ?ø!✏ 2 (0, 4⇡)⁄q 2 (1, 2)ß"Çk

Z

⌦e(4⇡�✏) |u|

kfkL1(⌦) < C(⌦, ✏)

krukLq(⌦) < C(⌦, ✏)kfkL1

(2-12)

Proof. "ÇA^Struwe[6]"ç{"-

ut = max{0,min{u, t}}

6

Page 7: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Kk Z

⌦rutrudx =

Z

⌦fut

§± Z

0ut|ru|2 tkfkL1(⌦)

-u⇤t¥ut"%¸"(|BR| = |⌦|ß|B⇢| = |{u � t}|ßK

u⇤t |B⇢ = t, u⇤t |@BR = 0

du1 p < 1ûß

u 2 W 1,p0 (BR) , u 2 W 1,pÖ3@BR˛Tu = 0£Tè,éf§

0k

inf

u2W 1,20 (BR),u|B⇢=t

Z

BR\B⇢

|ru|2dx = infv2W 1,2(BR),v|@BR

=0,v|@B⇢=t

Z

BR\B⇢

|rv|2dx

/è<§Ÿ$"Ø¢¥ßœLÈZ

BR\B⇢

|rv|2dx

âC©ßå$˘á4,ä7,34v = 0û+%"|^´çBR \B⇢˛˜vA(>ä^

á"N⁄ºÍ"çò5ßå(4,ä3

w = A log r +B

?+%ߟ•A,B"äå^>ä^áçò(("Ü2Oéå$

A =t

log ⇢� logR

B = � t logR

log ⇢� logR

dûk

w =t log r

log ⇢� logR� t logR

log ⇢� logR

rw =t

log ⇢� logR· 1

r2(x1, x2)

0à%"4,äAèZ

BR\B⇢

|rw|2dx =t2

(logR� log ⇢)2

Z ⇡

0

Z R

1

r2· rdrd✓

= 2⇡(logR� log ⇢)t2

(logR� log ⇢)2= 2⇡

t2

logR� log ⇢

7

Page 8: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

§±

2⇡t2

logR� log ⇢= inf

v2W 1,2(BR),v|@BR=0,v|@B⇢=t

Z

BR\B⇢

|rv|2dx

Z

BR\B⇢

|ru⇤|2 Z

0ut|ru|2 tkfkL1(⌦)

$˘)du ����R

���� � e2⇡t

kfkL1(⌦)

0k

|{u � t}| = ⇡|⇢|2 |⌦|e4⇡ �t

kfkL1(⌦)

dd"Ç'%Xe%O

Z

⌦e(4⇡�✏) u+

kfkL1(⌦) dx =

1X

k=0

Z

kuk+1e(4⇡�✏) u+

kfkL1(⌦) dx

1X

k=0

Z

kue(4⇡�✏) k+1

kfkL1(⌦) dx

1X

k=0

|{u � k}|e(4⇡�✏) k+1

kfkL1(⌦)

|⌦|1X

k=0

e4⇡ �k

kfkL1(⌦) · e

(4⇡�✏) k+1kfk

L1(⌦)

= |⌦|e4⇡

kfkL1(⌦)

1X

k=0

e�✏(k+1)kfk

L1(⌦) < C(⌦, ✏)

(2-13)

aq/ßÈêß

��(�u) = �f

%E˛°"⁄3ßå'%O

Z

⌦e(4⇡�✏) u�

kfkL1(⌦) dx < C(⌦, ✏) (2-14)

œLȺÍex"?Í–m™•àë¶^n4ÿ)™ßå±$0

e(4⇡�✏) u+

kfkL1(⌦) + e

(4⇡�✏) u�kfk

L1(⌦) � e(4⇡�✏) |u|

kfkL1(⌦)

œd(2-13)⁄(2-14)â—

Z

⌦e(4⇡�✏) |u|

kfkL1(⌦) dx

Z

⌦e(4⇡�✏) u+

kfkL1(⌦) dx+

Z

⌦e(4⇡�✏) u�

kfkL1(⌦) dx < C(⌦, ✏) (2-15)

8

Page 9: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

˘“y"*(2-12)"1ò™"

è*%O||ru||Lq(⌦)ß"Ç©O%O||ru+||Lq(⌦)⁄||ru�||Lq(⌦)"dYoungÿ)™

��ru+��q = |ru+|q

[(1 + u+)(1 + 2u+)]q2

·⇥(1 + u+)(1 + 2u+)

⇤ q2

1

2/q

|ru+|q

[(1 + u+)(1 + 2u+)]2q

! q2

+

✓1� 1

2/q

◆⇣⇥(1 + u+)(1 + 2u+)

⇤ q2

⌘ 22�q

C

"|ru+|2

(1 + u+)(1 + 2u+)+�(1 + u+)(1 + 2u+)

� 22�q ·

q2

#

= C

"|ru+|2

(1 + u+)(1 + 2u+)+�(1 + u+)(1 + 2u+)

� q2�q

#

(2-16)

"ÇIá©O%O˛™m‡"¸ë3⌦˛"»©"1&ë"»©¥N¥õõ"ß

œè"ÇÆ'y"*È?ø"✏ > 0k

Z

⌦e(4⇡�✏) u+

kfkL1(⌦) dx < C(⌦, ✏)

du✏ > 0ßq 2 (0, 1)ß0µ =(4⇡�✏)(2�q)qkfkL1(⌦)

� 0ßœd

eµu+ � 1 + µu+ +

µ2

2(u+)2

?$å±'%%OZ

�(1 + u+)(1 + 2u+)

� q2�q dx =

Z

⇣1 + 3u+ + 2

�u+�2⌘ q

2�qdx

Z

✓eµu

++

3

µeµu

++

4

µ2eµu

+

◆ q2�q

dx

=

✓1 +

3

µ+

1

µ2

◆ qq�2Z

⇣eµu

+⌘ q

2�qdx

= C(✏)

Z

⌦e

(4⇡�✏)(2�q)qkfk

L1(⌦)· q2�qu

+

dx

= C(✏)

Z

⌦e(4⇡�✏) u+

kfkL1(⌦) dx

< C(⌦, ✏)

(2-17)

9

Page 10: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

èõõ1òëßêá3(2-11)¸>”¶˛log1+2u+

1+u+ ßø5ø%

Z

|ru+|2

(1 + u+)(1 + 2u+)dx =

Z

(2 + 2u+ � 1� 2u+)|ru+|2

(1 + u+)(1 + 2u+)dx =

Z

2|ru+|2

1 + 2u+dx�

Z

|ru+|2

1 + u+dx

= �Z

@⌦ru+ · log(1 + 2u+) +

Z

⌦ru+ ·r log(1 + 2u+)

+

Z

@⌦ru+ · log(1 + u+)�

Z

⌦ru+ ·r log(1 + u+)

=

Z

⌦(�4u) · log(1 + 2u+)�

Z

⌦(�4u) · log(1 + u+)

=

Z

⌦(�4u) · log 1 + 2u+

1 + u+

=

Z

⌦f · log 1 + 2u+

1 + u+

=

Z

⌦f ·✓log 2� 1

1 + u+

log 2 ·Z

⌦f

log 2 · ||f ||L1(⌦)

(2-18)

È(2-16)™¸‡3⌦˛»©ßø|^(2-18)⁄(2-17)ß“'%

Z

��ru+��q dx C

Z

"|ru+|2

(1 + u+)(1 + 2u+)+�(1 + u+)(1 + 2u+)

� q2�q

#dx

< C log 2 · ||f ||L1(⌦) + C · C(⌦, ✏) < C(⌦, ✏)

”nß"Çk Z

⌦|ru�|qdx < C(⌦, ✏) (2-19)

0dn4ÿ)™·$Z

⌦|ru|qdx

Z

⌦|ru+|qdx+

Z

⌦|ru�|qdx < C(⌦, ✏)

˘“y"*(2-12)"1&™"

5P2.1. Ø¢˛˛„!(ÿÈfêß

�(aijui)j = f

觷ߟ•

�|⇠|2 aij⇠i⇠j ⇤|⇠|2

10

Page 11: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

⁄n2.1"%Oëâ"Ǹ^Ìÿ"

Ìÿ2.1. -f 2 L1(⌦)ßKÈ?ø!q 2 (1, 2)ßêß(2-11)3W 1,q

0 (⌦)•!)!3Öç

ò"

Proof. çò5d´ç˛N⁄ºÍ"çò5·'ß0êIy""35"+ò"fk 2D(⌦)™ïfµ

kfk � fkL1(⌦) ! 0, k ! 1

-uk˜vêß

��uk = fk, uk|@⌦ = 0

KÈ?ø"✏ 2 (0, 4⇡)ßPoincareÿ)™⁄⁄n2.1â—

kuk � umkW 1,q0 (⌦) C(⌦, ✏)kfk � fmkL1(⌦) ! 0, k ! 1

§±{uk}¥W 1,q0 (⌦)•Cauchy"ß߬Ò%êß(2-11)")u 2 W 1,q

0 (⌦)"

Ìÿ2.2. -f 2 L1(⌦)ßf � 0ßq 2 (1, 2)"!u 2 W 1,q

0 (⌦)˜vêß(2-11)ßKu � 0ßa.e.

x 2 ⌦"

Proof. -fA= min{f,A}ßK0 fA AßfA 2 L1

(⌦) ⇢ L3(⌦)"|^Lp%O(p =

3)9Sobolevi\W 2,3(⌦) ,! C1

(⌦)ßå'uA 2 C1(⌦)˜vêß

��uA = fA

-A ! +1ßfA5:¸N¬Ò%fßu¥¸N¬Ò(n⁄⁄n2.1¶'

||uA � u||W 1,q0 (⌦) ! 0, A ! 1

/d4åä)n$uA � 0ß8x 2 ⌦ß8A � 0"0u � 0ßa.e. x 2 ⌦"

§2.2 Gauss!«êß!✏�"K5

ÈGauss"«êß��u = V eu$^⁄n2.1ß"Çå±'%Xeö~%á"✏�#K5"

#n2.1. PBèR2•!¸†#""eu˜vêß

��u = V eu, x 2 B (2-20)

Ÿ•

|V | < b < 1, x 2 B (2-21)

11

Page 12: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

KÈ?ø!q 2 (1, 2)ß!3✏0 > 0ß&Z

Beudx < ✏0 (2-22)

ûß"Çk

krukW

1, 2q2�q

✓B 1

2

◆ C (✏0, b)�1 + krukLq(B)

�(2-23)

Proof. -v˜vêß

��v = V eu

v|@B = 0

Kd(n^á±9⁄n2.1å$ßÈ?ø0 < ✏1 < 4⇡ß"Çk

Z

Be

4⇡�✏1||V eu||

L1(B)|v|dx < C(✏1)

2(˘á✏1ß+✏0 =4⇡�✏1

b · 2�q2q ßK,

Z

Beudx < ✏0 (2-24)

ûßdHolderÿ)™'

Z

Be

2q2�q |v|dx =

Z

Be

4⇡�✏1b✏0

|v|dx

Z

Be

4⇡�✏1||V eu||

L1(B)|v|dx < C (2-25)

dÿ)™

e|v| � 1 + |v|

±9q 2 (1, 2)û2q

q � 1> q > 1

å'òX"%OZ

B|v|dx < C(✏0, b),

Z

B|v|qdx < C(✏0, b),

Z

B|v|

2q2�q dx < C(✏0, b)

du"Çkêß

��(u� v) = 0

0dN⁄ºÍ"#˛ä5üßÈ?ø"x 2 B 34

u(x)� v(x) =1

|B 14|

Z

B 14(x)

(u� v)dx

12

Page 13: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

/dJensenÿ)™ Z

B 14(x)

udx log

Z

B 14(x)

eudx < log ✏0

œd Z

B 14(x)

(u� v)dx Z

B 14(x)

|u� v|dx

Z

B 14(x)

|u|dx+

Z

B 14(x)

|v|dx < C(✏0, b)

u¥c°"#˛ä5üâ—

8x 2 B 34

u(x)� v(x) < C(✏0, b)

§±"Çk Z

B 34

e2q2�qudx =

Z

B 34

e2q2�q ve

2q2�q (u�v)

dx < C(✏0, b)

3B 34˛A^Lp%O

⇣p =

2q2�q

⌘±9Gagliardo-Nirenberg-Sobolevÿ)™ß·'

kr(u� u)kW

1, 2q2�q

✓B 1

2

◆ C

0

B@

0

@Z

B 34

e2q2�qudx

1

A

2�q2q

+

0

@Z

B 34

|u� u|2q2�q dx

1

A

2�q2q

1

CA

C(✏0, b)

1 + ku� uk

W 1,q

✓B 3

4

!

C(✏0, b)

1 + kruk

Lq

✓B 3

4

!

dMorreyÿ)™ß „(nk±eÜ2"Ìÿµ

Ìÿ2.3. 3Ü'n2.1É”!^áeß"Çk

krukC0,↵

✓B 1

2

◆ C(✏0, b)(1 + krukLq(B)) (2-26)

È,¢Í0 < ↵ < 1§·"

5P2.2. 5ø#3'n2.1!y"•"Ç#E5/â—&✏0!/™"Ø¢˛ßè¶'

Ö!(2-25)§·ßdHolderÿ)™å&êá 2q2�q 4⇡�✏1

b✏0§·=å"du✏1 2 (0, 4⇡)ßq 2

(1, 2)ß"Çg,/È✏0!'äkòá%O

0 < ✏0 <2⇡

b

13

Page 14: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

§3 êß��uk = Vkeuk!blow-up©¤

!Ÿ"Ç3b((3-28)⁄(3-29)e!ƒêß(1-3)")"blow-up5ü"

§3.1 Blow-up:89Ÿƒ"5ü

§3.1.1 Blow-up:8

e°"Ç!ƒ(1-3)"È?øB•":pß(¬

A(p) = limr!0

lim infk!+1

Z

Br(p)Vke

ukdx

ò"êß��uk = Vkeuk (k 2 N)"blow-up:8S(¬è

S = {p 2 B : A(p) > 0}

Ø¢˛ßA(p)å±*n)è,´“ü˛”"5(/`ßdu{Vkeuk}3L1(⌦)•k.ß0

ß3f⇤ˇ¿e"3òáf"¬Ò%,ákÅ댓ˇ›µ"3blow-up:8•"?ø

:p˛ßkµ({p}) � A(p) > 0ß$=p¥µ")f"

§3.1.2 òáe.#OµÅ{¸!blow-up©¤

ƒkb(Vk3C1(⌦)•"4ÅV0‰k#"e."3˘´ú/ߧ2.2•"✏�#K5

·=â—A(p)"òá#"e.µ

#n3.1. 8k 2 Nß!uk¥êß

��uk = Vk(x)euk , x 2 ⌦ ⇢⇢ R2

(3-27)

!)",!! Z

⌦|Vk|euk < ⇤1, 8k 2 N

||Vk � V0||C1(⌦) ! 0, k ! 1

0 < a < V0 < b < 1, x 2 ⌦

(3-28)

øÖ!3¢Íq 2 (1, 2)¶"

rq�2Z

Br(p)|ruk|qdx < ⇤2, 8r 2 R, 8p 2 ⌦ (3-29)

ep 2 SßKA(p) � a✏0ߟ•✏0X'n2.1§„"

14

Page 15: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Proof. eÿ,ß(A(p) < a✏0ßK"3� > 0߶'Èv-å"k/k

a

Z

B�(p)euk <

Z

B�(p)Vke

uk < a✏0

œd Z

B�(p)euk < ✏0

dûdÌÿ2.3⁄^á3-29å$

krukkC0,↵

✓B �

2(p)

◆ < C(✏0, b)(1+krukLq(B�(p))) < C(✏0, b)(1+C||Vkeuk ||L1(B�(p))) < C(✏0, b)

§±dNewton-Leibniz˙™å$

oscB �

2(p)

uk < C(✏0, b) (3-30)

"ljÛßdûÈv-å"k7k

sup

B �2(p)

uk < C < 1 (3-31)

Ÿ•Cè,#~Í"l$

A(p) = limr!0

lim infk!+1

Z

Br(p)Vke

ukdx lim�!0

lim infk!+1

Z

B �2(p)

VkeCdx beC lim

�!0

⇡�2

4= 0

ÜA(p) > 0gÒ"

èy"‰Û(3-31)߃k5ø%Jensenÿ)™â—Z

B �2(p)

ukdx log

Z

B �2(p)

eukdx < C(✏0) (3-32)

e

sup

B �2(p)

uk ! +1, k ! 1 (3-33)

Kd(3-30)ß"Ç$k

infB �

2(p)

uk ! +1, k ! 1 (3-34)

l$ Z

B �2(p)

ukdx � ⇡�2

4· infB �

2(p)

uk ! +1, k ! 1 (3-35)

Ü(3-32)gÒ" “*§*y""

15

Page 16: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

5P3.1. 3˛„y"•ß¢S˛"Çç—&XeØ¢µep 2 SßKÈv&#!�ß7

k

sup

B �2(p)

uk ! 1, k ! 1

#ÿÿV0¥ƒk*!e." “¥“blow-up”i°˛!øg"

5P3.2. *X⁄Û§`ßeV0 6= 0Öp 2 S 6= ;ßK7kV0(p) > 0"Ø¢˛ßeV0(p) < 0ß

duVk1w¬Ò#V0ß7!3p!#'ç⌦1߶"3⌦1˛ÈòÉv&å!k˛kVk <

0"('˘á⌦1ßÚ§k!êß(3-27)Åõ#⌦1˛\±"ƒ"duVk 2 C1(⌦1)ßä‚

IO!˝#êß!*K5%Oß"Çå±"#uk 2 C1(⌦)ß#ÖÈ?ø!kߧ·k

sup

⌦1

uk = sup

@⌦1

uk

*"Ç&+ºÍ"{vk}k2N!4åä:"{xk}k2N3k ! 1û™ïupßœdÈø©

å!kßuk!ÅåäÚ3⌦1!S‹à#"œddr4åä&nßå±"&Èv&å

!k 2 Nß3⌦1˛)kuk = const"*y3"Çb!XV0(p) < 0ß3⌦1˛ÈòÉv&å

!k˛kVk < 0ßœdêß(3-27)3⌦1˛Ú&{&˜v"

5P3.3. 3V0(p) = 0!ú/ß"Çvk1'Ÿ•Ô·!✏�*K5ß"ƒuk!¬Òú#

Úë#çå!(J"œd'Ÿ•!å‹©E|—Ô·3V0(0) > 0!b!e"ÈV0(p) =

0!ú/ß8cÉ'!Ûäèö~,ß'©ÿÉ?ÿ"

Ìÿ3.1. 3'n3.1!^áeßS¥*·:8"

Proof. ˘d(n3.1⁄R⌦ |Vk|euk < ⇤1·=å'"

Ìÿ3.2. 3'n3.1!^áeßS¥kÅ:8"

Proof. ˘¥œè⌦ ⇢⇢ R2"

§3.2 Blow-up:NC!bubble⁄e.!U?

3˛ò!•"ÇÔ·*A(p)"òáe.%OA(p) � a✏0"ä‚1òŸÅ!"5

Pß"ÇåVå±w%˘áe.kıåµ

0 < a✏0 <a

b2⇡ < 2⇡

e°"ÇœL©¤blow-up:NC"bubble5Ú˘áe.J,ñ8⇡"

#n3.2. 3Ü'n3.1É”!^áeß"Çk

A(p) � 8⇡

16

Page 17: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

"ÇÚ˘á(n"y"©èo⁄"

⁄n3.1. 3Ü'n3.1É”!^áeßÈS•!?ø:pß!3ò":xk ! p, k ! 1¶"uk(xk) ! 1, k ! 1"

Proof. (p 2 SßdS•:"4·5ßå+� > 0߶'B�(p) \ S = {p}"d5P3.2ß7

ksupB �2(p) uk ! +1"-

uk(xk) = sup

B �2(p)

uk

ø(x0 2 B �2(p)¶'xk ! x0, k ! 1""ljÛ7kx0 = p"eÿ,ßK"3�1 > 0¶

'B�1(x0)\ S = ;"duA(x0) = 0ßå±È%�2 > 0ß v�2 < �1ßÖaqu"Ç3(

n3.1•"‰Û(3-31)ßÈv-å"kk

sup

B �12(x0)

uk < C < 1

AO/ßuk(xk) < CÈv-å"k§·ßÜuk(xk) ! 1, k ! 1gÒ"

e°"Ç-

mk = uk(xk), rk = e�mk2

¥Ñmk ! +1, k ! 1

rk ! 0, k ! 1

2-

vk(x) = uk(xk + rkx)�mk

Ÿ•vk"(¬çè

⌦k = {x : |xk + rkx� p| < �}

durk ! 0, k ! 1ß0⌦k¸N˛,/™uR2"¥$3⌦k˛k

vk 0, 8x 2 ⌦k

vk(0) = sup

⌦k

vk = 0

vk˜vêß

��vk(x) = r2k · (��uk (xk + rkx))

= Vk(xk + rkx)euk(xk+rkx) · e�mk = Vk(xk + rkx)e

vk(x)

17

Page 18: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

$=

��vk = Vk(xk + rkx)evk , x 2 ⌦k (3-36)

È?ø2("R > 0ßdu⌦k % R2ß0ÈòÉv-å"kß"Çå±Úêß(3-36)'

‹Åõ%BR˛\±!ƒ"

⁄n3.2.

kvkkL1(BR) C(R) (3-37)

Ÿ•C(R)¥,=ù6uR!*~Í"

Proof. -v0k˜v

��v0k = Vk(xk + rkx)evk , x 2 B2R

v0k��@B2R

= 0

v0k""35dÌÿ2.1'y"3Ü(n3.1É”"^áeßVkevk 2 L1(B2R)ßVkevk � 0ß

0dÌÿ2.2ßv0k � 0ßa.e. x 2 B2R"œdd(2-12)"1ò™å$7k

kv0kkL1(B2R) C(R) (3-38)

5ø%

�(�vk + v0k) = 0, x 2 B2R

œdß%E(n2.1"y""cå‹©ßå$

���vk + v0k�� < C < 1, x 2 BR

ddå$ß(3-38)%.X(3-37)"

l˛°)E"L1k.S"•ƒ+òá1w¬Òf""E‚¥~^"""ÇÚ

Ÿ/\e°"⁄n"

⁄n3.3. !3{vk}!òáf"1w¬Ò#,ºÍw"w˜vêß

��w = V0(p)ew

(3-39)

Ö

w(0) = sup

BR

w = 0 (3-40)

18

Page 19: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Proof. È?ø"¢Í1 < p < 1ß⁄n3.2ç—Vkevk 2 Lp(BR)"dLp%Oßå$S

"{vk}3W 2,p(BR)•k."dup > 1ûW 2,p

(BR)¥gá"ß0"3{vk}"òáf"£ÿîEPè{vk}§3W 2,p

(BR)•f¬Òu,ºÍw"

5ø%êß(3-36)m‡.kvkß0"Çå±È(3-36)¸‡¶à´&62¬!Íß

,!2g¶^Lp%OßÌ${vk}3W 4,p(BR)•k."%E˘òLßß"Ç$0Ø¢

˛È?ø"/Ím > 0ß{vk}3Wm,p(BR)•k."d';"Sobolevi\(n£~

X[7]§5.6.3ßTheorem 6§ß{vk}3C1(BR)•k."AO/ß{vk}3BR˛¥òók.

⁄)›ÎY"ßœddArzela-Ascoli(nå$"3{vk}"òáf"£ÿîEPè{vk}§3BR˛òó¬Ò"dr¬Ò⁄f¬Ò”û§·û4Å"çò5ߢáòó¬Ò"

4Å7èw"aq/ßÈ{vk}"à6!Í©O¶^Arzela-Ascoli(nßå$vk¢S˛

¥1w/¬Ò%w""dd"Çå±3êß(3-36)¸‡+4Åß?$'%(3-39)⁄(3-

40)"

Å!"Ç5*§(n3.2"y""

'n3.2!y". d˛„7⁄nß"ÇkZ

BR

V0(p)ewdx = lim

k!+1

Z

BR

Vk(xk + rkx)evkdx = lim

k!+1

Z

BRrk(xk)

e�mkVk(x)eukdx < C

(3-41)

Ÿ•^%mk ! +1±9R⌦k

|Vk|euk < ⇤1"ddåÑß~ÍCÜR&'"3(3-41)¸‡

”û-R ! 1ø|^V0(p) > a > 0ß"Ç'%Z

R2ewdx C < +1 (3-42)

[4]|^+ƒ#°{y"*3^á(3-42)eêß(3-39)kçò)

w = �2 log

✓1 +

V0(p)

8|x� p|2

Öߘv Z

R2ewdx =

8⇡

V0(p)(3-43)

5ø%ßÈ?ø2("r > 0ßdu

rk ! 0, xk ! p, k ! 1

19

Page 20: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

0ÈòÉv-å"koUkBRrk(xk) ⇢ Br(p)"œd

A(p) = limR!1

A(p) = limR!1

limr!0

lim infk!1

Z

Br(p)Vke

ukdx

� limR!1

limr!0

lim infk!1

Z

BRrk(xk)

Vkeukdx

� limR!1

limr!0

limk!1

Z

BRrk(xk)

Vkeuk�mkdx

= limR!1

limk!1

Z

BRrk(xk)

Vkevkdx

=

Z

R2V0(p)e

wdx = 8⇡

Ÿ•^%e�mk ! 0, k ! 1±9(3-43)"ñd"Çy"*A(p) � 8⇡"

5P3.4. 3(3-41)•ßœLòá4ÅLßßÈv&å!k"Çå±Ú?¤BRÿ†#⌦k•"

˘pR!?ø5¶""Çå±ÈR'4Åß?#"#(3-42)"

§3.3 uk3⌦\S˛!¬Ò

'L˛ò!Èblow-up:8"?ÿß"Çå±*//èxuk3⌦˛"¬Òú""

,p /2 SûßÈ?ø"✏ > 0ß"Çå±È%� > 0߶',kv-åûßokZ

B�(p)Vke

ukdx < ✏0 (3-44)

”(n3.1•"(3-30)⁄(3-31)ß"Çk

oscB �

2(p)

uk < C < 1, sup

B �2(p)

uk < C

§±ßÈ?ø"⌦0 ⇢⇢ ⌦ \ SßA^;CXå'

osc⌦0

uk < C(⌦,⌦0), sup

⌦0uk < C(⌦,⌦0

)

±e"Ç?ÿ¸´åU5ßøç—uk3⌦ \ S˛"¬Òÿ¨kŸ¶"ú""

§3.3.1 ú/òµ#3x0 2 ⌦ \ S߶$uk(x0) ! �1

dûßd

osc⌦0

uk < C(⌦,⌦0)

å$ß3?ø"⌦0 ⇢⇢ ⌦˛

uk ◆ �1, k ! 1

20

Page 21: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

+� > 0߶'B�(x0) \ S = ;"-uk =1

|B�(x0)|RB�(x0)

ukdx""Çk

|uk(x0)� uk| =

�����1

|B�(x0)|

Z

B�(x0)(uk(x0)� uk) dx

�����

1

|B�(x0)|

Z

B�(x0)|uk(x0)� uk| dx

oscB�(x0)

uk < C(⌦,⌦0) < 1

dPoincareÿ)™±9%O(3-29)ß"Çk

kuk � uk(x0)kW 1,q(⌦) C + kuk � ukkW 1,q(⌦) C 0(1 + krukkLq(⌦)) < C 00

œd"Çå±(

uk � uk(x0) + G, k ! 1 in W 1,q(⌦)

È?ø"' 2 D(⌦)ß òá“approximation identity”™";„ß"Çk

limk!+1

Z

⌦rukr'dx = lim

k!+1

Z

⌦Vke

uk'dx =

X

p2SA(p)'(p)

Ÿ•"Ç^%Éc"(ÿµ3?ø⌦0 ⇢⇢ ⌦\S˛ßuk ◆ �1, k ! 1ßœd3SÉ,

˛„»©¬Ò%0"œdß"ÇÈ%"GaquGreenºÍß3©Ÿø¬e˜ve°"

êß

��G =

X

p2SA(p)�p

È?ø2("⌦0 ⇢⇢ ⌦\Sßduosc

⌦0uk < C(⌦,⌦0

)ß0kkuk�uk(x0)kL1(⌦0) < C(⌦,⌦0)ß

œ$euk = euk�uk(x0)+uk(x0)3?ø"Lp•k."aqu⁄n3.3";„ßå±$0ºÍ

"{uk � uk(x0)}k2N¢S˛3?ø⌦0 ⇢⇢ ⌦•1w/¬Ò%G"

§3.3.2 ú/#µ#3:x0 2 ⌦ \ S߶$uk(x0) > �M

3˘´ú/eßÈ?ø"⌦0 ⇢⇢ ⌦ßaquú/ò"?ÿß"Ç$0µ

1. kukkL1(⌦0) < C%

2. uk3W 1,q(⌦)•f¬Ò%òáºÍu0˜vêß

��u0 = V0eu0 +

X

p2SA(p)�p

Öuk3⌦0˛1w¬Ò%u0.

21

Page 22: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

e°"Çy"ßdû7kS = ;ßl$uk3⌦˛S41w¬Ò%u0"

eÿ,ß+p 2 SßdS•:"4·5ßå+� > 0 ¶'B�(p) \ S = {p}"-v˜v

êß��v = V0e

u0

v|@B�(p) = 0

dÌÿ2.2ßv � 0"3B�(p)˛"Çk

��(u0 � v) = A(p)�p

œd

��

✓u0 � v +

A(p)

2⇡log |x� p|

◆= 0, x 2 B�(p) (3-45)

"Ç$0ß,p < 2ûßlog |x� p| 2 W 2,p(B�(p))"y3q 2 (1, 2)ßœdÈêß(3-

45)^Lq%O=$

u0 � v +A(p)

2⇡log |x� p| 2 W 2,q

(B�(p))

$d^á(3-29)⁄%O(2-12)"1&™ß"Çk

kr(u0 � v)kLq(B�(p)) kru0kLq(B�(p))

+ krvkLq(B�(p))< +1

0����r✓u0 � v +

A(p)

2⇡log |x� p|

◆����Lq(B�(p))

kr (u0 � v)kLq(B�(p))+

����A(p)

2⇡

���� kr (log |x� p|)kLq(B�(p))< 1

œdß"Çå±Èêß(3-45)¸‡”û¶ò62¬!Í!2âògLq%Oßl$'%

r✓u0 � v +

A(p)

2⇡log |x� p|

◆2 W 2,q

(B�(p))

0

u0 � v +A(p)

2⇡log |x� p| 2 W 3,q

(B�(p))

ä‚q 2 (1, 2)ß"ÇkSobolevi\W 3,q(B�(p)) ,! C1

(B�(p))ßœd

u0 � v +A(p)

2⇡log |x� p| = O(1), B�(p) 3 x ! p (3-46)

22

Page 23: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

˘*"Ç“k Z

B�(p)eu0dx =

Z

B�(p)eu0�vevdx �

Z

B�(p)eu0�v

dx

� C

Z

B�(p)exp

⇣log |x� p|�

A(p)2⇡

⌘dx

= C

Z

B�(p)

1

|x� p|A(p)2⇡

dx

� C

Z

B�(p)

1

|x� p|8⇡2⇡

dx

= C

Z

B�(p)

1

|x� p|4dx = +1

(3-47)

Ÿ•^%(n3.2"(ÿA(p) � 8⇡ß±9ev � 1£œèv � 0§",$ß,òê°ß

dFatou⁄n¥$ Z

B�(p)V0e

u0dx < ⇤1

˘Ü(3-47)gÒ" *ß"Ç“`"*3ú/&e7kS = ;"dûuk3⌦˛S41w

¬Ò%u0"

§4 Blow-up:8!?ò⁄èx

§4.1 òáPohozaev.$%™

Pohozaev./)™¥˝0êß•~^"Û‰"!Ÿ"ÇÚÃá¶^Xe"Pohozaev.

/)™"

⁄n4.1. PBèR2•!¸†#""eu 2 C2(B)¥êß

��u = V eu, x 2 B (4-48)

!)ßKÈ?ø!¢Í⇢ 2 (0, 1)ß3B•§·))™

Z 2⇡

0

✓@u

@r

◆2�����r=⇢

⇢2d✓+4

Z 2⇡

0

@u

@r

�����r=⇢

⇢d✓ =

Z 2⇡

0

✓@u

@✓

◆2�����r=⇢

d✓�2

Z 2⇡

0V eu

�����r=⇢

⇢2d✓+

Z

B⇢

2@V

@rreudx

(4-49)

Proof. dêß(4-48)"ÇkZ

B⇢

�r@u

@r�udx =

Z

B⇢

V eu@u

@rrdx (4-50)

23

Page 24: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

òê°ßdGreen˙™å$Z

B⇢

�r@u

@r�udx =

Z

B⇢

r✓r@u

@r

◆·rudx�

Z

@B⇢

r@u

@r(ru · �) dS

=

Z

B⇢

@u

@rrr ·rudx+

Z

B⇢

r@ru

@r·rudx�

Z

@B⇢

r@u

@r(ru · �) dS

=

Z

B⇢

|ru|2 dx+

Z

B⇢

r@ru

@r·rudx�

Z

@B⇢

r@u

@r(ru · �) dS

Ÿ•ß•°"¸†,{ï�å/è

� =

✓x1

r,x2

r

◆= rr

34ãICÜeß/k

r@u

@r=

X @u

@xi· r@x

i

@r=

X @u

@xixi

$œL©‹»©å$

Z

B⇢

r@ru

@r·rudx =

Z 2⇡

0

Z ⇢

0

1

2r2

@|ru|2

@rdrd✓

=

Z 2⇡

0

1

2|ru|2

�����r=⇢

⇢2d✓ �Z 2⇡

0

Z ⇢

0r |ru|2 drd✓

=

Z 2⇡

0

1

2|ru|2

�����r=⇢

⇢2d✓ �Z

B⇢

|ru|2 dx

0k

Z

B⇢

�r@u

@r�udx =

Z

B⇢

|ru|2 dx+

Z 2⇡

0

1

2|ru|2

�����r=⇢

⇢2d✓ �Z

B⇢

|ru|2 dx�Z

@B⇢

r@u

@r

✓X @u

@xixi

r

◆dS

=

Z 2⇡

0

1

2|ru|2

�����r=⇢

⇢2d✓ �Z

@B⇢

r@u

@r· 1r

✓r@u

@r

◆dS

=

Z 2⇡

0

1

2|ru|2

�����r=⇢

⇢2d✓ �Z

@B⇢

r

✓@u

@r

◆2

dS

=

Z 2⇡

0

1

2|ru|2

�����r=⇢

⇢2d✓ �Z 2⇡

0

✓@u

@r

◆2�����r=⇢

⇢2d✓

(4-51)

24

Page 25: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

,òê°ß”*/œu©‹»©ß5ø%Z

B⇢

V eu@u

@rrdx =

Z 2⇡

0

Z ⇢

0V@eu

@rr2drd✓

=

Z 2⇡

0V eu

�����r=⇢

⇢2d✓ �Z

B⇢

2V eudx�Z

B⇢

@V

@rreudx

=

Z 2⇡

0V eu

�����r=⇢

⇢2d✓ +

Z

B⇢

2�udx�Z

B⇢

@V

@rreudx

Ÿ•ßd—›(nå±é'Z

B⇢

�udx =

Z

B⇢

r · (ru) dx =

Z

@B⇢

ru · �dS

=

Z

@B⇢

1

r

✓r@u

@r

◆dS =

Z 2⇡

0

@u

@r

�����r=⇢

⇢d✓

ì\cò™=å'%

Z

B⇢

V eu@u

@rrdx =

Z 2⇡

0V eu

�����r=⇢

⇢2d✓ +

Z 2⇡

02@u

@r

�����r=⇢

⇢d✓ �Z

B⇢

@V

@rreudx (4-52)

Å!5ø%

|ru|2�����r=⇢

=

✓@u

@r

◆2�����r=⇢

+1

⇢2

✓@u

@✓

◆2�����r=⇢

(4-53)

Ú(4-51)⁄(4-52)ì\(4-50)ßø|^(4-53)ß"Ç“*§*y""

§4.2 A(p) = 8⇡

#n4.1. 3b!(1-4)⁄(1-5)eßeV0(p) > a > 0ßK"Çk

A(p) = 8⇡

Proof. ÿîòÑ5ßb(S=.ò:p"({xk}k2RX⁄n3.1§„"

È2("� > 0ß3B�(xk)˛A^Pohozaev./)™(4-49)ß"Ç'%

0

@Z 2⇡

0

0

@⇢@uk@r

�����r=⇢

1

A2

d✓ + 4

Z 2⇡

0⇢@uk@r

�����r=⇢

d✓

1

A

⇢=�

=

Z 2⇡

0

✓@uk@✓

◆2�����r=⇢=�

d✓ � 2

Z 2⇡

0⇢2eukVk

�����r=⇢=�

d✓

+O

2�

����@Vk

@r

����L1(B�(xk))

!Z

B�

eukdx

(4-54)

25

Page 26: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Ÿ•ä‚"Ç"b(ßVk3B�(xk)˛1w¬Ò%V0ß0����@Vk

@r

����L1(B�(xk))

< 1

œd

O

2�

����@Vk

@r

����L1(B�(xk))

!= O (�)

dÉc§§3.3.1⁄§§3.3.2"?ÿß"Ç$0eS 6= ;ßK7"3x0 2 ⌦ \S߶'uk(x0) !�1ßk ! 1"dû3?ø"⌦

0 ⇢⇢ ⌦˛§·k

uk ◆ �1, k ! 1

œdß%E§§3.3.1•"y"ß"Ç$0"3ò"¢Í{ck}k2Nß v

ck ! �1, k ! 1

¶'uk � ck1w/¬Ò%,áGreenºÍG˜v

��G = A(p)�p

œd"Çk

��

✓uk � ck +

A(p)

2⇡log |x� p|

◆! 0, k ! 1 (4-55)

duck¥~Íßœd"Çå±|^^á(3-29)⁄

,p < 2û log |x� p| 2 W 2,p(B�(p))

˘òØ¢Èêß

��

✓G+

A(p)

2⇡log |x� p|

◆= 0, x 2 B�(p)

±9ÈŸ¸‡”û¶ò62¬!Í!'%"êßâLq%O"aqu§§3.3.2•¶^Sobolevi

\(n";„£Ø¢˛˘ái\3§§3.3.1"ú/e$U§·§ß"Ç'%

G+A(p)

2⇡log |x� p| 2 W 3,q

(B�(p)) ,! C1(B�(p))

œdß"Çå±'%'(3-46)ç‰N"–m™

uk � ck ! G = �A(p)

2⇡log |x� p|+⇥(p) +

X

i=1,2

ai�xi � pi

�+O(|x� p|2), k ! 1, x ! p

26

Page 27: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Ÿ•ck ! �1ß⇥(p), ai(i = 1, 2)˛è~Í"ñdßòê°"Çk

0

@Z 2⇡

0

0

@⇢@uk@r

�����r=⇢

1

A2

d✓ + 4

Z 2⇡

0⇢@uk@r

�����r=⇢

d✓

1

A

⇢=�

=

✓�A(p)

2⇡

◆2

�4·A(p)

2⇡+O(�), � ! 0

,òê°ßƒk/œu4ãICÜ"Là™ß"Çk

Z 2⇡

0

����@uk@✓

����2�����r=⇢=�

d✓ =

Z 2⇡

0(�a1� sin ✓ + a2� cos ✓)

2d✓ +O(�)

= O(�), � ! 0

Ÿgd^áR⌦ |Vk|euk < ⇤1ß"Ç$0

Z 2⇡

0⇢2eukVk

�����r=⇢=�

d✓ = �2Z 2⇡

0eukVk

�����r=⇢=�

d✓ = O(�), � ! 0

d,duV0 > a > 0ß0^áR⌦ |Vk|euk < ⇤1%.XÈv-å"kk

Z

⌦euk < C < 1

l$

O

2�

����@Vk

@r

����L1(B�(xk))

!Z

B�

eukdx = O (�)

Z

B�

eukdx = O (�) , � ! 0

œdßÚ˛°©¤"àëì\(4-54)ß"Ç'%

✓�A(p)

2⇡

◆2

� 4 · A(p)

2⇡= O (�) , � ! 0

-� ! 0ß"Ç“'%A(p) = 8⇡"

k*˘á(nß"Ç“å±ÈS 6= ;ú/eºÍ"{uk}"¬Òkçç¶"èx"

Ìÿ4.1. 3'n4.1!b!eßÈ?ø!⌦0 ⇢⇢ ⌦ß"Çk

limk!+1

Z

⌦0Vke

ukdx =

X

p2⌦0\S8⇡.

Proof. "Ç$0ßœèS 6= ;ßdûêUu)§§3.3.1•"ú/"(p 2 Sß+�0v-,

¶'B�0(p) \ S = {p}"d§§3.3.1•"?ÿß"Çå±+xk ! pßrk ! 0߶'

uk(xk + rkx)� uk(xk) ! w = �2 log

✓1 +

V0(p)

8|x� p|2

◆, k ! 1

27

Page 28: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Ÿ•ºÍuk(xk + rkx)"(¬ç⌦k¸N˛,/™uR2"”ûß"ÇÑ$0"3ck !�1߶'È?ø"� < �0ß{uk � ck}k2N3B�0(p)\B�(p)˛1w¬Ò%GreenºÍGßG3

©Ÿø¬e˜vêß

��G = 8⇡�p, x 2 B�0(p)

3(n4.1"y"•ß"ÇÆ'w%ßå±(

G = �4 log |x� p|+⇥(p) + ai�xi � pi

�+O(|x� p|2)

Ϗk

limR!+1

limk!+1

Z

BRrk(xk)

Vkeukdx = lim

R!+1

Z

BR

V0(p)ewdx = 8⇡

lim�!0

limk!+1

Z

B�0(xk)\B�(xk)

Vkeukdx = lim

�!0lim

k!+1eckZ

B�0(xk)\B�(xk)

Vkeuk�ckdx = 0

øÖ,k ! 1ûkB�0(xk) ! B�0(p)ß"ÇêIáy"

lim�!0

limR!+1

limk!+1

Z

B�(xk)\BRrk(xk)

Vkeukdx = 0 (4-56)

Ø¢˛ßduZ

B�(x0)\BRrk(xk)

Vkeukdx = �

Z

B�(xk)\BRrk(xk)

�ukdx = �Z

@B�(xk)

@uk@r

dS+

Z

@BRrk(xk)

@uk@r

dS

œ$,k ! +1ûß"Çk

�Z

@B�(xk)

@uk@r

dS �! �Z

@B�(p)

@G

@rdS =

Z 2⇡

0

Z

r=�

4

r· rdrd✓ = 8⇡ +O(�), � ! 0

”û

Z

@BRrk(xk)

@uk@r

dS �!Z

@BR

@w

@rdS =

Z 2⇡

0

�4V0(p)8 R2

1 +V0(p)8 R2

d✓ = �8⇡V0(p)8 R2

1 +V0(p)8 R2

0

lim�!0

limR!+1

limk!+1

Z

B�(xk)\BRrk(xk)

Vkeukdx = 8⇡ � 8⇡ = 0

˘“*§*y""

28

Page 29: Gauss êß blow-up5Gauss!«êß!blow-up5ü pÕ, ç!!ìµoâãB!« ¡ á!©!ƒR2•k.´ç ˛"òX"Gauss"«êß u k = V k eu k3^ásup (kV k k R C1( ) B eu k) < +1e "¬Òú |^Têß #K5å$ßXJu

Î"©z

[1] H. Brezis and F. Merle. Uniform estimates and blow-up behavior for solutions of ��u = v(x)eu

in two dimensions. Comm. Partial Di↵erential Equations, 16(8):1223–1253.

[2] Y. Li and I. Shafrir. Blow-up analysis for solutions of ��u = veu in dimension two. Indiana

Univ. Math. J., 43(4):1255–1270, 1994.

[3] C.C. Chen and C.S. Lin. Topological degree for a mean field equation on riemann surfaces.

(English summary) Comm. Pure Appl. Math, 56(12):1667–1727, 2003.

[4] W. Chen and C. Li. Classification of solutions of some nonlinear elliptic equations. Duke Math.

J., 63(3):615–622, 1991.

[5] David Gilbarg and Neil S. Trudinger. Elliptic Partial Di↵erential Equations of Second Order.

Springer-Verlag, Berlin Heidelberg, 2001.

[6] M. Struwe. Positive solutions of critical semilinear elliptic equations on non-contractible planar

domains. J. Eur. Math. Soc., 2(4):329–388, 2000.

[7] Lawrence C. Evans. Partial Di↵erential Equations. American Mathematical Society, Provi-

dence, Rhode Island, 1998.

29