gdt-true position

32
Application Seminar 2006 Geometric Dimensioning & Tolerancing True Position

Upload: hamartinez

Post on 15-Dec-2015

108 views

Category:

Documents


10 download

DESCRIPTION

GDT True Position

TRANSCRIPT

Application Seminar 2006

Geometric Dimensioning & Tolerancing

True Position

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 2

GD&T

• Rules

• Use and effect of Material Condition Modifiers

• Datum Reference Frame mobility sources

• Comparison between the traditional and new methods

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 3

GD&TEarlier generation software

“…. in early generation software packages, the result with MMC is identical to the result without MMC - the actual tolerance will be bigger than the original given tolerance, which means it is easier to be qualified for the evaluated object. So ….users will be happy with the result within the tolerance ….”

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 4

GD&TUse and effect of MCMs

Material Condition Modifier (MCM) MMC/LMC/RFS are used to define the treatment of size deviations

MCM expand the tolerance zone depending on the considered feature and they mobilize the tolerance zone depending on the datum features

MCM for the considered featureM: expands the tolerance zoneS: size does not influence the tolerance zoneL: expands the tolerance zone

MCM for datum featuresM: gives mobility to the tolerance zoneS: means static tolerance zoneL: gives mobility to the tolerance zone

Mobility of the tolerance zone reduces the actual deviation

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 5

GD&TUse and effect of MCMs

Material Condition Modifier (MCM) MMC/LMC/RFS are used to define the treatment of size deviations

MCM expand the tolerance zone depending on the considered feature and they mobilize the tolerance zone depending on the datum features

MCM for the considered featureM: expands the tolerance zoneS: size does not influence the tolerance zoneL: expands the tolerance zone

MCM for datum featuresM: gives mobility to the tolerance zoneS: means static tolerance zoneL: gives mobility to the tolerance zone

Mobility of the tolerance zone reduces the actual deviation

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 6

GD&TUse and effect of MCMs

Material Condition Modifier (MCM) MMC/LMC/RFS are used to define the treatment of size deviations

MCM expand the tolerance zone depending on the considered feature and they mobilize the tolerance zone depending on the datum features

MCM for the considered featureM: expands the tolerance zoneS: size does not influence the tolerance zoneL: expands the tolerance zone

MCM for datum featuresM: gives mobility to the tolerance zoneS: means static tolerance zoneL: gives mobility to the tolerance zone

Mobility of the tolerance zone reduces the actual deviation

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 7

GD&TUse and effect of MCMs

Material Condition Modifier (MCM) MMC/LMC/RFS are used to define the treatment of size deviations

MCM expand the tolerance zone depending on the considered feature and they mobilize the tolerance zone depending on the datum features

MCM for the considered featureM: expands the tolerance zoneS: size does not influence the tolerance zoneL: expands the tolerance zone

MCM for datum featuresM: gives mobility to the tolerance zoneS: means static tolerance zoneL: gives mobility to the tolerance zone

Mobility of the tolerance zone reduces the actual deviation

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 8

GD&TUse and effect of MCMs

Material Condition Modifier (MCM) MMC/LMC/RFS are used to define the treatment of size deviations

MCM expand the tolerance zone depending on the considered feature and they mobilize the tolerance zone depending on the datum features

MCM for the considered featureM: expands the tolerance zoneS: size does not influence the tolerance zoneL: expands the tolerance zone

MCM for datum featuresM: gives mobility to the tolerance zoneS: means static tolerance zoneL: gives mobility to the tolerance zone

Mobility of the tolerance zone reduces the actual deviation

“Mobility” of the tolerance zone is

the freedom to perform a best fit to

attempt to accept the work piece.

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 9

GD&TGeneral rules for the handling of DRFs

Längenmessabweichung E

GD&T takes fit and function of the imperfect objects into consideration

Datum reference frames (DRFs) are simulated by perfect inverse datum features with nominal orientation

DRFs eliminate up to three degrees of rotational- and three degrees of translational degrees of freedom

The order of the datum features in the feature control frame specifies the order of adaption to the work piece

If a datum feature can and may eliminate a degree of freedom, it must

Datum features with size shall be fixed at virtual material condition or if specified regardless of features size consume all the space available in- or outside

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 10

GD&TGeneral rules for the handling of DRFs

Längenmessabweichung E

GD&T takes fit and function of the imperfect objects into consideration

Datum reference frames (DRFs) are simulated by perfect inverse datum features with nominal orientation

DRFs eliminate up to three degrees of rotational- and three degrees of translational degrees of freedom

The order of the datum features in the feature control frame specifies the order of adaption to the work piece

If a datum feature can and may eliminate a degree of freedom, it must

Datum features with size shall be fixed at virtual material condition or if specified regardless of features size consume all the space available in- or outside

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 11

GD&TGeneral rules for the handling of DRFs

Längenmessabweichung E

GD&T takes fit and function of the imperfect objects into consideration

Datum reference frames (DRFs) are simulated by perfect inverse datum features with nominal orientation

DRFs eliminate up to three degrees of rotational- and three degrees of translational degrees of freedom

The order of the datum features in the feature control frame specifies the order of adaption to the work piece

If a datum feature can and may eliminate a degree of freedom, it must

Datum features with size shall be fixed at virtual material condition or if specified regardless of features size consume all the space available in- or outside

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 12

GD&TGeneral rules for the handling of DRFs

Längenmessabweichung E

GD&T takes fit and function of the imperfect objects into consideration

Datum reference frames (DRFs) are simulated by perfect inverse datum features with nominal orientation

DRFs eliminate up to three degrees of rotational- and three degrees of translational degrees of freedom

The order of the datum features in the feature control frame specifies the order of adaption to the work piece

If a datum feature can and may eliminate a degree of freedom, it must

Datum features with size shall be fixed at virtual material condition or if specified regardless of features size consume all the space available in- or outside

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 13

GD&TGeneral rules for the handling of DRFs

Längenmessabweichung E

GD&T takes fit and function of the imperfect objects into consideration

Datum reference frames (DRFs) are simulated by perfect inverse datum features with nominal orientation

DRFs eliminate up to three degrees of rotational- and three degrees of translational degrees of freedom

The order of the datum features in the feature control frame specifies the order of adaption to the work piece

If a datum feature can and may eliminate a degree of freedom, it must

Datum features with size shall be fixed at virtual material condition or if specified regardless of features size consume all the space available in- or outside

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 14

GD&TGeneral rules for the handling of DRFs

Längenmessabweichung E

GD&T takes fit and function of the imperfect objects into consideration

Datum reference frames (DRFs) are simulated by perfect inverse datum features with nominal orientation

DRFs eliminate up to three degrees of rotational- and three degrees of translational degrees of freedom

The order of the datum features in the feature control frame specifies the order of adaption to the work piece

If a datum feature can and may eliminate a degree of freedom, it must

Datum features with size shall be fixed at virtual material condition or if specified regardless of features size consume all the space available inside or outside

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 15

GD&TExamples w/o MMC

Längenmessabweichung EA

BC

0,02 M A B M C M

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 16

GD&TExamples w/o MMC

Längenmessabweichung EA

BC

0,02 M A B M C M

0,02 M A B M C M

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 17

GD&TExamples w/o MMC

Längenmessabweichung EA

BC

0,02 M A B M C M

0,02 M A B M C M

0,02 M A B M C M

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 18

GD&TExamples w/o MMC

Längenmessabweichung EA

BC

0,02 M A B M C M

0,02 M A B M C M

Incr

ea

sed

M

ob

ility

0,02 M A B M C M

Without best fit the distance

between datum features is

not taken into account!

This is the reason, why the

result with MMC sometimes

is larger than without (GO /

NO GO like a hard gage).

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 19

GD&TDRF mobility sources

Datum features referenced with MMC or LMC

An inadequate number of datum features to eliminate all degrees of freedom

The second and all lower tiers of a composite feature control frame

Unstable datum features (e.g. convex reference plane)

0,1 A B C M

Static DRF

Highly mobile DRFSlightly mobile DRF

0,4 A B C 0,2 A B 0,1 A

C

B

A

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 20

GD&TComparison between the methods

Early generation s/w method:

Alignment based on the datum features

MCM for the considered feature expands the tolerance zone

MCM for datum features expands the tolerance zone

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 21

GD&TComparison between the methods

Correct Method (Calypso):

Best fit based on the previously described rules with a virtual gauge

MCM for the considered feature expands the tolerance zone

MCM for datum features gives mobility and does not expand the tolerance zone

Bestfit reduces the deviation of the actuals

Bestfit is limited by the MCM bonus

Traditional method:

Alignment based on the datum features

MCM for the considered feature expands the tolerance zone

MCM for datum features expands the tolerance zone

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 22

Result with Calypso: Out of Tolerance

Actual = 0,72 mm Exp. Tol.= 0,7 mm

x xx

GD&TComparison example 1

Nominals: Actuals:X1 = -39,64Y1 = 0D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +39,64Y3 = 0D3 = 20,20

B

40 40

30 ±0,1 CA 0,3 M A B M C

2x 20 ±0,2

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 23

Result with Calypso: Out of Tolerance

Actual = 0,72 mm Exp. Tol.= 0,7 mm

x xx

GD&TComparison example 1

Nominals: Actuals:X1 = -39,64Y1 = 0D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +39,64Y3 = 0D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

0,3 M A B M C 2x 20 ±0,2

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 24

0,3 M A B M C

GD&TComparison example 1

Tolerance Zone / MMC with Calypso: Result:Out of Tolerance

Actual = 0,72 mm Exp. Tol.= 0,7 mm

Nominals: Actuals:X1 = -39,64Y1 = 0D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +39,64Y3 = 0D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

2x 20 ±0,2

x xx

X

Y

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 25

0,3 M A B M C

GD&TComparison example 1

Nominals: Actuals:X1 = -39,64Y1 = 0D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +39,64Y3 = 0D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

2x 20 ±0,2

x xx

X

Y

Tolerance Zone / MMC with Calypso: Result:Out of Tolerance

Actual = 0,72 mm Exp. Tol.= 0,70 mm

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 26

GD&TComparison example 1

Result with Traditional: In Tolerance

Actual = 0,72 mm Exp. Tol.= 0,9 mm

Nominals: Actuals:X1 = -39,64Y1 = 0D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +39,64Y3 = 0D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

x xx

0,3 M A B M C 2x 20 ±0,2

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 27

GD&TComparison example 1

Nominals: Actuals:X1 = -39,64Y1 = 0D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +39,64Y3 = 0D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

0,3 M A B M C 2x 20 ±0,2

x xx

X

Y

Tolerance Zone / MMC with Traditional S/W: Result:In Tolerance

Actual = 0,72 mm Exp. Tol.= 0,90 mm

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 28

GD&TComparison example 1

Nominals: Actuals:X1 = -39,64Y1 = 0D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +39,64Y3 = 0D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

0,3 M A B M C 2x 20 ±0,2

Tolerance Zone / MMC with Traditional S/W: Result:In Tolerance

Actual = 0,72 mm Exp. Tol.= 0,90 mmx xx

X

Y

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 29

0,3 M A B M C

GD&TComparison example 2

Nominals: Actuals:X1 = -40,00Y1 = 0,45D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +40,00Y3 = 0,45D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

2x 20 ±0,2

x x

x X

Y

Tolerance Zone / MMC with Calypso: Result:In Tolerance

Actual = 0,70 mm Exp. Tol.= 0,70 mm

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 30

0,3 M A B M C

GD&TComparison example 2

Nominals: Actuals:X1 = -40,00Y1 = 0,45D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +40,00Y3 = 0,45D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

2x 20 ±0,2

x x

x X

Y

Tolerance Zone / MMC with Calypso: Result:In Tolerance

Actual = 0,70 mm Exp. Tol.= 0,70 mm

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 31

GD&TComparison example 2

Nominals: Actuals:X1 = -40,00Y1 = 0,45D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +40,00Y3 = 0,45D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

0,3 M A B M C 2x 20 ±0,2

x

x

X

Y x

Carl Zeiss IMT GD&TApplication Seminar 2006

Page 32

GD&TComparison example 2

Nominals: Actuals:X1 = -40,00Y1 = 0,45D1 = 20,20X2 = 0Y2 = 0D2 = 30,10X3 = +40,00Y3 = 0,45D3 = 20,20

B

40 40

30 ±0,1 CA

1 2 3

0,3 M A B M C 2x 20 ±0,2

Tolerance Zone / MMC with Traditional: Result:In Tolerance

Actual = 0,90 mm Exp. Tol.= 0,90 mm

x

x

X

Y x

Sometimes the conclusion from

either method is identical

....despite different

actuals and different

expanded tolerances!

Sometimes the conclusion from

either method is identical

....despite different

actuals and different

expanded tolerances!