geant4.ciemat-051122

54
7/27/2019 GEANT4.CIEMAT-051122 http://slidepdf.com/reader/full/geant4ciemat-051122 1/54 Pedro Arce Introducción a GEANT4 1 Introducción a GEANT4: componentes http://geant4.cern.ch Pedro Arce Dubois CIEMAT, Madrid - -

Upload: ivan-moises-toro-garcia

Post on 14-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 1/54

Pedro Arce Introducción a GEANT4 1

Introducción a GEANT4:

componentes

http://geant4.cern.ch

Pedro Arce Dubois

CIEMAT, Madrid

- -

Page 2: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 2/54

Pedro Arce Introducción a GEANT4 2

Outline

Geometry

Magnetic field

Particle generator

G4Run/G4Event/G4Track/G4Step /G4Trajectory

Sensitive detector

Electromagnetic physics: standard

Electromagnetic physics: low energy (J.M. Pérez)

Production cuts

User interface

Visualisation

Hadronic physics

Page 3: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 3/54

Pedro Arce Introducción a GEANT4 3

Geometry

Page 4: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 4/54

Pedro Arce Introducción a GEANT4 4

G4VSolid

= solid shape + dimensions

CSG (Constructed Solid Geometry): G4Box,

G4Cons, G4Trap, G4Sphere, G4Polycone, etc.

BREP (Boundary REPresented): 

G4BREPSolidPolycone, G4BSplineSurface, etc. (muchslower navigation)

BOOLEAN: a solid is made adding, substracting or

intersecting two 

STEP interface: to import BREPs from CAD

systems

Page 5: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 5/54

Pedro Arce Introducción a GEANT4 5

G4LogicalVolume

Contains all information of a detector element exceptposition

Minimum: solid + material

Sensitive detector

 Visualisation

 Magnetic field

 User limits

 Parameterisations of physics

 ...

Page 6: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 6/54

Pedro Arce Introducción a GEANT4 6

G4VPhysicalVolume

Information about placement of a volume

Several times of placement: G4PVPlacement 

• Is is a volume instance positioned once in a mother

G4PVParameterized 

• Parameterized by the copy number

• Shape, size, material, position and rotation can be parameterized

G4PVReplica 

• Slicing a volume into smaller pieces (if it has a symmetry)

G4PVDivision 

• Slicing a volume into smaller pieces (if it has a symmetry)

• Internally implemented as parameterization (no G4ReplicaNavigation)

• Allows offset

• Allows constructor with only number of divisions or size of division

Page 7: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 7/54Pedro Arce Introducción a GEANT4 7

Individual copies of a volume

How to identify a volume uniquely? 

Example:- one LV A placed in 5 positions (5 PV) inside World- one LV B  placed in 12 positions (12 PV) inside A

GEANT4 constructs 5+12 PV, not 5 PV of A and 5x12=60 PV of B

 And even a PV can represent multiple copies (Parameterisations orReplicas) 

- How can I have access to the 60 different copies of B (forexample, for finding where is a hit)?

ANSWER:

each of the 60 volumes B will be a distinct G4VTouchable

But, for efficiency reasons, G4VTouchable´s are only created attracking time, when a particle enters the corresponding volume 

Page 8: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 8/54Pedro Arce Introducción a GEANT4 8

How to use touchables: (from GEANT4 example novice/N02)

• G4TouchableHistory (:public G4VTouchable) has the information of thevolume hierarchy at each of the two points of the current step

Individual copies of a volume

Page 9: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 9/54Pedro Arce Introducción a GEANT4 9

Magnetic Field

Page 10: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 10/54Pedro Arce Introducción a GEANT4 10

Page 11: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 11/54Pedro Arce Introducción a GEANT4 11

Magnetic field: chords 

The path is calculated using the chosen integration method and then

it is broken into linear chord segments that closely approximate the

curved path

The chords are used to interrogate the Navigator, to see whether the

track has crossed a volume boundary

Page 12: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 12/54Pedro Arce Introducción a GEANT4 12

Particle Generator

Page 13: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 13/54Pedro Arce Introducción a GEANT4 13

Primary Generator

 G4Event has a list of G4PrimaryVertex’s

• G4double X0, Y0, Z0;• G4double T0;

• G4double Weight0; 

 G4PrimaryVertex has a list of G4PrimaryParticle’s • G4int PDGcode;• G4ParticleDefinition * G4code;

• G4double Px, Py, Pz;• G4int trackID;• G4double charge;• G4double polX, polY, polZ;• G4double Weight0;• G4double properTime;

 Geant4 provides some concrete implementations ofG4VPrimaryGenerator

 G4ParticleGun: one particle G4HEPEvtInterface: reading event particles from text files

 G4GeneralParticleSource: big flexibility

Page 14: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 14/54Pedro Arce Introducción a GEANT4 14

G4HEPEvtInterface

 A concrete implementation of G4VPrimaryGenerator

Suitable to /HEPEVT/ common block, which many of

(FORTRAN) HEP physics generators are compliant to.

 ASCII file input  A good example for experiment-specific primary

generator implementation

 Another interface to HepMC class, which a few new

(C++) HEP physics generators are compliant to, isplanned.

Page 15: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 15/54Pedro Arce Introducción a GEANT4 15

G4GeneralParticleSource

 A concrete implementation of G4VPrimaryGenerator

Generate radioactive decay fragmentsPrimary vertex is randomly chosen within a surface of a certainvolume.

spectrum  (defined in terms of energy or momentum)

angular distribution with respect to a user-defined axis or surface

normalspatial distribution of particles from 2D or 3D planar surfaces orbeam line in Gaussian profile or generated homogeneously within avolume.

It also provides the option of biasing the sampling distribution. This isadvantageous, for example, for sampling the area of a spacecraft

where greater sensitivity to radiation effects is expected (e.g. where

radiation detectors are located) or increasing the number of high-

energy particles simulated, since these may produce greater numbers

of secondaries.

Page 16: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 16/54Pedro Arce Introducción a GEANT4 16

G4GeneralParticleSource

2D Surfacesources

3D Surfacesources

Volume sources Angulardistribution

Energy spectrum

circle

ellipse

square

rectangle

Gaussian beam profile

sphere

ellipsoid

cylinder

 paralellapiped

(incl. cube &cuboid)

sphere

ellipsoid

cylinder

 paralellapiped

(incl. cube &cuboid)

isotropic

cosine-law

user-defined

(through

histograms)

mono-energetic

Gaussian

Linear

Exponential

 power-law  bremsstrahlung

 black-body

CR diffuse

user-defined

(through

histograms or point-wise data)

Page 17: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 17/54Pedro Arce Introducción a GEANT4 17

G4Run /G4Event / G4Track / G4Step

G4Trajectory

Page 18: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 18/54Pedro Arce Introducción a GEANT4 18

Page 19: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 19/54Pedro Arce Introducción a GEANT4 19

Page 20: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 20/54Pedro Arce Introducción a GEANT4 20

Page 21: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 21/54Pedro Arce Introducción a GEANT4 21

Page 22: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 22/54Pedro Arce Introducción a GEANT4 22

Step

• Step has two points and also ´delta´information of a particle (energy loss

on the step, time-of-flight spent in the step, etc.)

• Each point knows the volume. In case a step is limited by a volume

 boundary, the end point physically stands on the boundary, and it

logically belongs to the next volume

Current volume: G4Track::GetNextVolume(); =G4Step::GetPostStepPoint()->GetPhysicalVolume();

Previous volume: G4Track::GetVolume(); =G4Step::GetPreStepPoint()->GetPhysicalVolume();

What you see with „/tracking/verbose 1‟ is the current volume 

Page 23: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 23/54

Pedro Arce Introducción a GEANT4 23

Trajectory

• Trajectory is a record of a track history. It stores some information

of all steps done by the track as objects of G4VTrajectoryPoint class

• The user can create its own trajectory class deriving from

G4VTrajectory and G4VTrajectoryPoint base classes for storing any

aditional information

• While Tracks are killed when its tracking finishes, Trajectories are

kept for an event lifetime: 

• Think of your favorite application....

Page 24: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 24/54

Pedro Arce Introducción a GEANT4 24

Attaching user information

 Abstract classes

User can use his/her own class derived from the provided base class

G4Run, G4VHit, G4VDigit, G4VTrajectory, G4VTrajectoryPoint

Concrete classes

User can attach a user information class objectG4Event - G4VUserEventInformation

G4Track - G4VUserTrackInformation

G4PrimaryVertex - G4VUserPrimaryVertexInformation

G4PrimaryParticle - G4VUserPrimaryParticleInformation

G4Region - G4VUserRegionInformation

• User information class object is deleted when associated Geant4

class object is deleted

Page 25: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 25/54

Pedro Arce Introducción a GEANT4 25

Sensitive Detector

Page 26: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 26/54

Pedro Arce Introducción a GEANT4 26

Detector sensitivity

 A logical volume becomes sensitive if it has a pointerto a concrete class derived from G4VSensitiveDetector.

 A sensitive detector either

constructs one or more hit objects or

accumulates values to existing hitsusing information given in a G4Step object.

NOTE: you must get the volume information from the

“PreStepPoint”.

Page 27: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 27/54

Pedro Arce Introducción a GEANT4 27

Sensitive detector and Hit

Each“

Logical Volume”

 can have a pointer to a sensitivedetector

Hit is a snapshot of the physical interaction of a track or

an accumulation of interactions of tracks in the sensitive

region of your detector

 A sensitive detector creates hit(s) using the information

given in G4Step object. The user has to provide his/her

own implementation of the detector responseHit objects, which still are the user’s class objects, are

collected in a G4Event object at the end of an event

Page 28: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 28/54

Pedro Arce Introducción a GEANT4 28

Hit class

Hit is a user-defined class derived from G4VHit.  You can store various types information by implementing

your own concrete Hit class.

For example:

Position and time of the step

Momentum and energy of the track

Energy deposition of the step

Geometrical information

or any combination of above

Page 29: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 29/54

Pedro Arce Introducción a GEANT4 29

G4HCofThisEvent

 A G4Event object has a G4HCofThisEvent object at the endof (successful) event processing. G4HCofThisEvent object

stores all hits collections made within the event.

o Pointer(s) may be NULL if collection(s) are not created in the

particular event.o Hits collections are stored by pointers of G4VHitsCollection base

class. Thus, you have to cast them to types of individual concrete

classes.

Page 30: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 30/54

Pedro Arce Introducción a GEANT4 30

Electromagnetic Physics:Standard

Page 31: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 31/54

Pedro Arce Introducción a GEANT4 32

Physics Process

 OOD allow to implement or modify any physics processwithout affecting other parts of the software

 Tracking is independent from physics processes(Transportation is also a process)

 The generation of the final state is independent from theaccess and use of cross sections

 Transparent access via virtual functions to•

 cross sections (formulas, data sets, etc.)• models underlying physics processes

G4VProcess: base class for all processes

Page 32: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 32/54

Pedro Arce Introducción a GEANT4 33

Standard e.m. Physics Processes

Cover physics from 10 keVup to PeV

Page 33: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 33/54

Pedro Arce Introducción a GEANT4 34

Features of Standard e.m. processes

Multiple scattering

new model computes mean free path

length and lateral displacement

Ionisation features 

optimise the generation ofd-rays near boundaries

 Variety of models for ionisationand energy loss

including the PhotoAbsorption

Interaction model Differential and Integral approach 

for ionisation, Bremsstrahlung,positron annihilation, energyloss and multiple scattering

Multiple scattering 6.56 MeV proton , 92.6 mm Si 

J.Vincour and P.Bem Nucl.Instr.Meth. 148. (1978)

399

Page 34: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 34/54

Pedro Arce Introducción a GEANT4 35

Page 35: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 35/54

Pedro Arce Introducción a GEANT4 36

Ionisation energy loss distribution produced by pions, PAI model 

3 GeV/c p in 1.5 cm Ar+CH4  5 GeV/c p in 20.5 mm Si

 Ionisation energy loss produced by charged particles in thin layers of

absorbers

Photo Absorption Ionisation Model

 Gallery of electromagnetic physics documentation and results

http://wwwinfo.cern.ch/asd/geant4/reports/gallery/

Page 36: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 36/54

Pedro Arce Introducción a GEANT4 37

Electromagnetic physics:

Low energy

El t F t

Page 37: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 37/54

Pedro Arce Introducción a GEANT4 38

Electrones y Fotones

Rango de validez: 250 eV  –  100 GeV250 eV es un límite “sugerido”

Librerias de datos hasta 10 eV1 < Z < 100

Explota librerías de datos evaluadas (de LLNL):

EADL (Evaluated Atomic Data Library)

EEDL (Evaluated Electron Data Library)

EPDL97 (Evaluated Photon Data Library)

Para el cálculo de las secciones eficaces totales y la generacióndel estado final

Photon transmission, 1mm Pb

shell effects

GaAs linesFe lines

fluorescence Scattering Compton

Scattering RayleighEfecto fotoeléctrico

Producción de pares

Bremsstrahlung

Ionización

+ relajación atómica

Page 38: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 38/54

Pedro Arce Introducción a GEANT4 39

Atenuación de fotones: comparación con datos

de NIST

Courtesy of S. Agostinelli, R. Corvo, F. Foppiano, S. Garelli, G. Sanguineti, M. Tropeano

Test y validación por IST - Natl. Inst. for Cancer Research, Genova

Polarización 2 hhh1d

Page 39: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 39/54

Pedro Arce Introducción a GEANT4 40

Polarización

250 eV -100 GeV

y

O z

x

x

qa

f hnhn0

  A

C

q Ángulo Polar

f Ángulo Azimuthal

 Vector depolarización

fq-

nn

nn

nn

  22

0

0

2

0

22

0   cossin2h

h

h

h

h

hr 

2

1

d

d

•Integrar sobre f 

• Muestrear q 

• Relación q - Energía  Energía• Muestreo de f de P(f) = a (b –  c cos2 f)

 More details: talk on Geant4 Low Energy

 Electromagnetic Physics

Otros procesos polarizados a baja energía están bajo

desarrollo

 Ncossin1sincossincos 22 fq-xfqx

 

  

  fqq-ffq-   cosk ˆcoscossin N

1 jˆcossinsin

 N

1iˆ N   2'

||

  fq-q   sink ˆsinsin jˆcos N

1'

Métodos de

muestreo

Sección eficaz:

Scattered Photon Polarization

10 MeV

small  

large  

100 keV

small  

large  

1 MeV

small  

large  

Low Energy

Polarised Compton

P d h d i

Page 40: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 40/54

Pedro Arce Introducción a GEANT4 41

Procesos de hadrones e iones

Variedad de modelos, dependiendo del rango de energía, el tipo de partícula y la carga

Modelo Bethe-Bloch de perdida de energía, E > 2MeV

5 modelos parametrizados, E < 2 MeV

- basados en las revisiones de Ziegler e ICRU

3 modelos de fluctuaciones de pérdida de energía

- Correciones de densida a alta energía

- Término de correccion de capa para

energía intermedia

- Término dependiente del espín

- Términos de Barkas y Block

- Efecto químico para materiales

compuestos

- Poder de frenado nuclear

- Modelo de carga efectiva

Hadrones cargados positivos

Iones cargados positivos

Hadrones cargados negativos

Escala:

Parametrizaciones 0.01 < < 0.05, pico de

Bragg

-basados en las revisiones de Ziegler e ICRU  

< 0.01: Modelo de gas de electrón libre

Parametrización de los datos experimentales

disponibles

Modelo de Oscilador Armónico Cuántico

- Modelo original de Geant4

Page 41: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 41/54

Pedro Arce Introducción a GEANT4 42

Algunos resultados: protones

Straggling

Pode de frenadoDependencia en Z a varias energías

Modelos Ziegler e ICRUZiegler e ICRU, Fe Ziegler e ICRU, Si

Poder de frenado nuclear

Pico de Bragg (con interaccioneshadrónicas)

Algunos resultados: iones y

Page 42: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 42/54

Pedro Arce Introducción a GEANT4 43

Algunos resultados: iones y

antiprotones

antiprotones

protones

Perdida de energía en Silicio

Iones Ar y C

Deuterone

s

Page 43: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 43/54

Pedro Arce Introducción a GEANT4 44

Ejemplos de aplicaciones

Tres ejemplos avanzados desarrollados

por el grupo de “Low energy” de GEANT4desde Diciembre de 2000 

 telescopio rayos g

  braquiterapia

 telescopio rayos X

 Física subsuelo y radiación de

fondo

 Fluorescencia rayos X y PIXE 

Aplicaciones completas que muestra la física yfacilidades interactivas avanzadas in “set-ups” realistas 

Aplicaciones de

Solar system explorations

Page 44: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 44/54

Pedro Arce Introducción a GEANT4 45

Aplicaciones de

usuarios

Courtesy of S. Magni, BorexinoCourtesy of A. Howard, UKDM  

ZEPLIN IIIDark Matter, Boulby mine

 No hay tiempo de mencionarlas todas!

Courtesy SOHO EIT

Cosmic rays,

 jovian electrons 

Solar X-rays, e, p 

Courtesy

 P.Truscott, DERA

Courtesy of R. Nartallo, ESA

XMM X-ray telescope

-4

-2

0

2

4

- 9 0 - 8 0 - 7 0 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0

Z (cm)

    Y

    (   c   m    )

RGS  EPIC 

Brachythera

Bepi Colombo

Page 45: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 45/54

Pedro Arce Introducción a GEANT4 46

M. C. Lopes1, L. Peralta2, P. Rodrigues2, A. Trindade2 1 IPOFG-CROC Coimbra Oncological Regional Center - 2 LIP - Lisbon

Cabeza y cuella con dos haces opuestos

de tamaño de campo 5x5 y 10x10

GEANT frente a

planificadores comerciales

Una dosis de profundidad “off -

axis” tomada en una de las rodajas

cerca del isocentro

PLATO falla en las cavidades deaire y estructuras óseas y no puede

 predecir con exactitud la dosis en

tejido que esta rodeado de aire

Las desviaciones son de hasta 25-

30%

Plano del hazHueso craneal

Tumor

Page 46: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 46/54

Pedro Arce Introducción a GEANT4 47

Production cuts

( ) ?

Page 47: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 47/54

Pedro Arce Introducción a GEANT4 48

What are the (production) cuts?

- Some electromagnetic processes have diverging cross sections

at low energy  Ionisation: producing delta rays

Bremsstrahlung: producing gammas

… 

 Need to put a cut: produce only secondaries from some

energy up 

- GEANT3: cuts per energy

- GEANT4: cuts per range more uniform treatment in different materials 

- But cuts are converted to energy in each material and always used in

energy

Page 48: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 48/54

Pedro Arce Introducción a GEANT4 49

cut, step length and number of 2ary particles

Secondary particles are only produced above the energy cut   Primary gives

the step in which it would loose enough energy to produce a secondary

GEANT4: secondaries that would live for a length above range cut 

Example: Tracking of a muon with a cut of 1 mm in iron.

Energy of secondary electron/positron to live 1mm in iron: 1 GeV

Energy of secondary gamma to live 1mm in iron: 10 MeV  Calculate in which step length the sum of the energies of all delta rays

 produced by the muon (ionisation is in reality a „continuous‟ process =

ocurring at atomic lengths) is enough to produce an electron of 1 GeV

Same for gammas from bremmstrahlung adding up to 10 MeV

Same for e+e- from pair production adding up to 1 GeV

Choose between the three the smallest step length: make a step of this

length

Bigger cut  bigger step ( logarithmically) 

Oth C t i GEANT4

Page 49: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 49/54

Pedro Arce Introducción a GEANT4 50

Other Cuts in GEANT4

 All cuts are always set by particle type

 Tracking cuts: •  Not needed as in GEANT3, cross sections are calculated down to zero

energy

 UserLimits / G4UserSpecialCuts ‘process’: 

• Define the step length

• Kill particle if: track length too big, time of flight too big, energy too

small, range too small

• User can define other conditions

 An extra process that is attached to a G4LogicalVolume 

• BUT: just proposes an step, that competes with other processes 

 For example: if in a volume there is an small electron cut (= produce delta rays every

small step) and in the same volume a UserLimits selects a bigger step, this UserLimit

have no effect, because ionisation proposes smaller steps than UserLimits process (and

always the smallest step is chosen)

Page 50: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 50/54

Pedro Arce Introducción a GEANT4 51

User Interface

GEANT4 User Interface

Page 51: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 51/54

Pedro Arce Introducción a GEANT4 52

GEANT4 User Interface

Several Graphical User Interfaces (GAG, MOMO, XVT)

 G4UIterminal: C-shell like character terminal

 G4Utcsh:  G4UItcsh: tcsh-like character terminal with

command completion, history, etc

 G4UIGAG:  Java based GUI

 G4UIOPACS: OPACS-based GUI, command completion, etc

 G4UIXm:  Motif-based GUI, command completion, etc

 G4UIBatch: Batch job with macro file • Reading a file with a list of commands

• Write filename as executable argument

E i t l V i bl

Page 52: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 52/54

Pedro Arce Introducción a GEANT4 53

Environmental Variables

Users can select and plug in (G)UI by setting

environmental variables before compilation setenv G4UI_USE_GUINAME

Example (“G4UIterminal”, “GAG”, and Motif)

setenv G4UI_USE_TERMINAL 1

setenv G4UI_USE_GAG 1

setenv G4UI_USE_XM 1

Note that Geant4 library should be installed

with setting the corresponding environmental variable

G4VIS_BUILD_GUINAME_SESSION

to “1” beforehand

Page 53: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 53/54

Pedro Arce Introducción a GEANT4 54

Useful GUI Tools Released by Geant4 Developers

GGE: Geometry editor based on Java GUI

http://erpc1.naruto-u.ac.jp/~geant4 

GPE: Physics editor based on Java GUI

http://erpc1.naruto-u.ac.jp/~geant4

OpenScientist, OPACS:

Flexible analysis environments

http://www.lal.in2p3.fr/OpenScientist 

http://www.lal.in2p3.fr/OPACS 

GEANT4 commands

Page 54: GEANT4.CIEMAT-051122

7/27/2019 GEANT4.CIEMAT-051122

http://slidepdf.com/reader/full/geant4ciemat-051122 54/54

GEANT4 commands

 Commands control what your job will doo /run/initialize

o /run/beamOn

o /tracking/verbose

o /run/particle/dumpCutValues

o ...

o /control/manual prints all available commands

 Usually they are put in a file and given as name to the executable: myg4prog mycommands.lis 

• All commands are processed through the singleton class G4UImanager  

 You can apply any command at any point in your code 

G4UImanager* UI = G4UImanager::GetUIpointer();UI->ApplyCommand(“run/beamOn”); 

• New commands are easily created, creating a messenger and an

action (see the many examples in OSCAR)