gear

27
CLO 2 : DESIGN THE SIMPLE ENGINEERING COMPONENT USING MATHEMATICAL ANALYSIS METHOD ACCORDING TO SAFE LOAD LIMITATION. CLO3 : RELATE THE BASIC CONCEPT AND PRINCIPLE TO SOLVE THE PROBLEMS IN OF ENGINEERING DESIGN. PLO4 : CRITICAL THINKING AND PROBLEM SOLVING SKILLS

Upload: latiff-fadzillah

Post on 21-Jul-2016

25 views

Category:

Documents


2 download

DESCRIPTION

Engineering Design

TRANSCRIPT

Page 1: Gear

CLO 2 : DESIGN THE SIMPLE ENGINEERING COMPONENT USING

MATHEMATICAL ANALYSIS METHOD ACCORDING TO SAFE LOAD LIMITATION.

CLO3 : RELATE THE BASIC CONCEPT AND PRINCIPLE TO SOLVE

THE PROBLEMS IN OF ENGINEERING DESIGN.

PLO4 : CRITICAL THINKING AND PROBLEM SOLVING SKILLS

Page 2: Gear
Page 3: Gear

Spur gears are by far the most common type of gear and with the exceptions of the "cog" the

type of gear that has been around the longest. Spur gears have teeth that run perpendicular to the face of the gear.

Spur gear setakat ini jenis yang paling biasa digunakan dan jenis gear yang telah wujud yang paling lama. Spur gear mempunyai gigi yang berjalan berserenjang dengan muka gear.

Page 4: Gear

Helical gears are very similar to spur gears except the teeth are not perpendicular to the face. The teeth are at an angle to the face

giving helical gears more tooth contact in the same area. Gear heliks adalah serupa dengan spur gear kecuali gigi tidak berserenjang dengan muka. Gigi pada

sudut muka memberi gear heliks gigi hubungan yang lebih di kawasan yang sama.

Helical gears can also be used on non-parallel shafts to transmit

motion. Gear heliks juga boleh digunakan pada aci tidak selari untuk menghantar gerakan

Helical gears tend to run quieter and smoother than spur gears due to the increased number of teeth in constant contact at any one period

of time. Gear heliks cenderung untuk berjalan lebih senyap dan lancar daripada gear taji disebabkan oleh

peningkatan bilangan gigi dalam hubungan yang berterusan di mana-mana satu tempoh masa

Page 5: Gear

Herringbone gears resemble two helical gears that have been placed side by side. They are

often referred to as "double helicals". Gear tulang hering menyerupai dua gear heliks yang telah diletakkan sebelah menyebelah. Mereka sering

dirujuk sebagai "helicals double“

One benefit of herringbone gears is that it helps to avoid issues related to side thrust

created with the use of helical gears. Salah satu manfaat gear tulang hering adalah bahawa ia membantu untuk mengelak isu-isu yang

berkaitan dengan tujahan sisi yang dicipta dalam penggunaan gear heliks.

Page 6: Gear

Bevel gears are used mostly in situations that require power to be transmitted at right

angles (or applications that are not parallel). Bevel gears can have different angles of

application but tend to be 90°. Gear serong kebanyakannya digunakan dalam situasi yang memerlukan kuasa yang akan dihantar pada

sudut tepat (atau aplikasi yang tidak selari). Gear serong boleh mempunyai sudut yang berbeza permohonan tetapi cenderung untuk menjadi 90 °.

Page 7: Gear

Worm gears are used to transmit power at 90° and where high reductions are required. The

worm resembles a thread that rides in concaved or helical teeth.

Gear cacing digunakan untuk menghantar kuasa pada 90 ° dan di mana pengurangan tinggi diperlukan. Cacing mirip benang yang baris dalam gigi concaved atau heliks.

Page 8: Gear

Internal gears typically resemble inverted spur gears but are occasionally cut as helical

gears. Gear Dalaman biasanya menyerupai gear taji terbalik tetapi kadang-kadang dipotong sebagai gear heliks.

Page 9: Gear

A rack is basically a straight gear used to transmit power and motion in a linear

movement. Rak adalah asasnya gear lurus yang digunakan untuk menghantar kuasa dan gerakan dalam gerakan

linear.

Page 10: Gear

Face gears transmit power at (usually) right angles in a circular motion. Face gears are not very common in industrial application.

Gear Wajah menghantar kuasa pada (biasanya) sudut kanan dalam gerakan membulat. Gear Wajah tidak begitu biasa dalam aplikasi perindustrian.

Page 11: Gear

Differential Gears

Page 14: Gear

The gear ratio of a gear train is the ratio of the angular velocity of the input gear to the angular velocity of the output gear, also known as

the speed ratio of the gear train.The gear ratio can be calculated directly from the number of teeth of the various gears that engage

to form the gear train. The torque ratio of the gear train. Nisbah gear pada gear train adalah nisbah halaju sudut gear input ke halaju sudut gear output, juga

dikenali sebagai nisbah kelajuan gear train tersebut. Nisbah gear boleh dikira secara langsung dari bilangan gigi gear pelbagai yang terlibat untuk membentuk gear train.

The input or drive gear in a gear train is generally connected to a power source, such as a motor or engine. The drive gear engages the remaining gears in the gear train, and transmits power to the

output or driven gear. Input atau gear pemacu di gear train secara amnya disambungkan ke sumber kuasa, seperti motor atau

enjin. Gear pemacu melibatkan lebihan gear dalam gear train, dan menghantar kuasa ke keluaran atau gear yang dipacu.

Page 15: Gear

Simple gear train with two gears

The simplest gear train is a pair of meshing gears in which the input gear drives the output

gear. Gear teeth are designed so the pitch circles of the two gears roll on each other without slipping. The velocities v of the points of contact of the two pitch circles are the

same, therefore

where input gear GA has radius rA and angular velocity , and meshes with output

gear GB of radius rB and angular velocity .

Page 16: Gear

The number of teeth on a gear is proportional to the radius of its pitch circle, this means that the ratio of the radii equals the ratio of the

number of teeth, that is

where NA is the number of teeth on the input gear and NB is the number of teeth on the output gear.

This shows that a simple gear train with two gears has the gear ratio R given by

This equation shows that if the number of teeth on the output gear GB is larger than the number of teeth

on the input gear GA, then the input gear GA must rotate faster than the output gear GB.

Page 17: Gear

Simple gear train with an idler

If a simple gear train has three gears, so that the input gear GA meshes with an intermediate gear GI which in turn meshes with the output gear GB, then the pitch circle of the intermediate gear rolls without

slipping on both the pitch circles of the input and output gears. This yields the two relations

The speed ratio of this gear train is obtained by multiplying these two equations to obtain

Page 18: Gear

The teeth of a gear are distributed on the circumference of the pitch circle so that the thickness of each tooth t and the space between

two teeth are the same. The pitch p of a gear, which is the distance between the equivalent points on two teeth, is equal to twice the

thickness of a tooth,

The pitch of a gear GA can be computed from the number of teeth NA and the radius rA of its pitch circle

In order to mesh smoothly two gears GA and GB must have the same sized teeth and therefore they must have the same pitch p, which

means

Page 19: Gear

This equation shows that the ratio of the circumference, the diameters and the radii of two meshing gears is equal to the ratio of their

number of teeth,

The speed ratio of two gears rolling without slipping on their pitch circles is given by,

Therefore,

In other words, the gear ratio, or speed ratio, is inversely proportional to ratio of the radii of the pitch circles and the number of teeth of

the two gears.

Page 20: Gear

Consider a pinion 2 driving a gear 3. The speed of the driven gear is

n3 = ( N2 / N3 ) n2 = ( d2 / d3 ) n2

Where,

n – revolution or rev/min

N – number of teeth

d – pitch diameter.

Example :

n6 = - (N2/N3)(N3/N4)(N5/N6) n2

e = product of driving tooth numbers/product of driven tooth numbers

Page 21: Gear

A gear train can be analyzed using the principle of virtual work to show that its torque ratio, which is the ratio of its output torque to

its input torque, is equal to the gear ratio, or speed ratio, of the gear train.This means that the input torque TA applied to the input gear GA and the output torque TB" on the output gear GB are related by

the ratio

where R is the gear ratio of the gear train.

The torque ratio of a gear train is also known as its mechanical advantage, thus

Page 22: Gear

Two involute gears, the left driving the right: Blue arrows show the contact forces between them. The force line (or Line of

Action) runs along a tangent common to both base circles. (In this situation, there is no force, and no contact needed, along the opposite common tangent not shown.) The involutes here are traced out in converse fashion: points (of contact) move along the stationary force-vector "string" as if it was being unwound from the left rotating base circle, and wound onto

the right rotating base circle.

Dua gear, kiri memandu anak panah kanan: Garisan Biru menunjukkan daya sentuhan antara mereka. Barisan daya (atau Garis Tindakan) beroperasi di sepanjang tangen biasa untuk kedua-dua bulatan

asas. (Dalam keadaan ini, tiada daya dan sentuhan tidak diperlukan, bersama-sama tangen sepunya bertentangan tidak ditunjukkan.) The involutes di sini dikesan dalam keadaan sebaliknya: titik

(daripada sentuhan) bergerak di sepanjang daya vektor pegun "rentetan" sebagai jika ia tidak berlilit dari kiri bulatan asas berputar, dan digulung ke kanan bulatan asas berputar.

Page 23: Gear

A 17-tooth spur pinion has a diametral pitch of 8 teeth/in, runs at 1120 rev/min, and drives a gear at a speed of 544 rev/min. Find the number of teeth on the gear and the theoretical center-to-center Distance. Satu pinan taji 17 gigi mempunyai pitch diameter 8 gigi / in, bergerak pada 1120 put / min, dan memacu gear pada kelajuan 544 put / min. Cari bilangan gigi pada gear dan jarak teoritikal pusat-ke-pusat.

dp = 17/8 = 2.125 in

dG = (ω2 / ω3 ) dp = (1120 / 544) (2.125) = 4.375 in

NG = P dG = 8(4.375) = 35 teeth

C = (2.125 + 4.375)/2 = 3.25 in

Page 24: Gear

A 15-tooth spur pinion has a module of 3 mm and runs at a speed of 1600 rev/min. The driven gear has 60 teeth. Find the speed of the driven gear, the circular pitch, and the theoretical center-to-center distance. Satu gear taji pinan 15 gigi mempunyai modul 3 mm dan bergerak pada kelajuan 1600 put / min. Gear dipacu mempunyai 60 gigi. Cari kelajuan gear dipacu, bulatan pitch, dan jarak teoritikal pusat-ke-

pusat.

nG = 1600(15/60) = 400 rev/min

p = πm = 3π mm

C = [3(15 + 60)]/2 = 112.5 mm

Page 25: Gear

A spur gearset has a module of 4 mm and a velocity ratio of 2.80. The pinion has 20 teeth. Find the number of teeth on the driven gear, the pitch diameters, and the theoretical center-to-center distance. Satu gearset taji mempunyai modul 4 mm dan nisbah halaju 2.80. Pinan mempunyai 20 gigi. Cari

bilangan gigi pada gear yang dipacu, diameter pitch dan jarakteoretikal pusat ke pusat.

NG = 20(2.80) = 56 teeth

dG = NG m = 56(4) = 224 mm

dp = Np m = 20(4) = 80 mm

C = (224 + 80)/2 = 152 mm

Page 26: Gear

Shaft a in the figure rotates at 600 rev/min in the direction shown. Find the speed and direction of rotation of shaft d. Aci dalam rajah berputar pada 600 put / min ke arah yang ditunjukkan. Cari kelajuan dan arah putaran aci d.

e = 20/40(8/17)(20/60) = 4/51

nd = 4/51(600) = 47.06 rev/min (cw )

Page 27: Gear

Figure 1 below shows a gear train consisting of a pair of miter gears (same-size

bevel gears) having 16 teeth each, a 4-tooth right-hand worm, and a 40-tooth

worm gear. The speed of gear 2 is given as n2 = +200 rev/min, which corresponds

to counterclockwise about the y axis. What is the speed and direction of rotation

of the worm gear?

Rajah 1 di bawah menunjukkan sebuah gabungan gear terdiri daripada sepasang gear serong(gear serong sama saiz)

mempunyai 16 gigi setiap, 4 gigi kanan gear cacing, dan gear 40 gigi gear cacing. Kelajuan gear 2 diberikan sebagai n2 =

200 put / min, yang sepadan dengan lawan terhadap paksi y. Apakah kelajuan dan arah putaran gear cacing?

n5 = - (N2 / N3)(N4 / N5) n2

n5 = - (16/16)(4/40) (200)

N5 = - 20 rev/min

Gear 5 rotates clockwise (negative) 20 rev/min about the z axis in a

right-handed coordinate system