gene discovery as an aid to the understanding of ... · pdf fileof agronomically important...

47
Gene discovery as an aid to the understanding of agronomically important metabolic processes of sugarcane Rosanne Casu

Upload: truongkien

Post on 28-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Gene discovery as an aid to the understanding of agronomically important metabolic processes

of sugarcane

Rosanne Casu

Background

Australian Sugar Industry

• 6,000 cane growers (4,500 cane farming business operations)

• 35 million tonnes sugarcane

• 4.75 million tonnes raw sugar

• 80% exportedMajor export customers include Japan, Korea,

Malaysia, Taiwan, Saudi Arabia, New Zealand, Canada and USA

• $1.75 billion to the Australian economy

(http://www.canegrowers.com.au)

Historical trends in conventional plant breeding have favoured yield increase rather than sucrose content

Results from trials in the Herbert region, North Queensland (Jackson, 2005)

80

85

90

95

100

105

110

115

120

Su

ga

r yie

ld (

as a

% o

f Q

12

4)

1955 1960 1965 1970 1975 1980 1985 1990 Year first grown as seedling

CASSIUS

Q179

Q96

Q115

Q117Q119

Q124

Q157Q158

MQ88-2047

MQ88-2462

Q162

Q164

80

85

90

95

100

105

110

115

120

CC

S (

as a

% o

f Q

12

4)

1955 1960 1965 1970 1975 1980 1985 1990 Year first grown as seedling

CASSIUS

Q179Q96

Q115Q117

Q119

Q124

Q157

Q158MQ88-2047MQ88-2462

Q162 Q164

[Sucrose] increases exponentially down a sugarcane stem during growth and development

Sucroseas % of dry matter

0

10

20

30

40

50

60

5 10 15 20 25

Internode number from top

Sucrose

(Chris Grof)

Historical perspective

Sugarcane and the “genomics” paradigm

• Functional Genomics

The expansion of biological investigation from studying single genes or proteins to studying all genes or proteins at once in a systematic fashion

• 30th June 1996

23 entries for Saccharum*[Organism] at GenBank (17 of these correspond to 28S rRNA sequence)

*

** *

Genomics and bioinformatics for productivity outcomes in sugarcane in Australia

• A sugarcane genomics project commenced in 1998 at CSIRO. It has received funding from

CSIRO CEO Special Project (Genomics and Gene Discovery for Australia: 1998 – 2000)

Sugar Research and Development Corporation (1998 – 2003)

Cooperative Research Centre for Sugar Industry Innovation through Biotechnology (CRCSIIB: 2003 - present)

• Traits targeted

Sucrose accumulation

(Wounding of sugarcane roots – minor trait)

Gene Discovery

Immature stem

Maturing stem

Roots(MJR)

1078

7234

829

Australian sugarcane gene discovery project strategy

Internode # from top of stem

0 5 10 15 20 25 30 35 40

ATP synthesis/electron transport

Carbohydrate metabolism

Cell division cycle

Cell wall structure or metabolism

Chromatin and DNA metabolism

Cytoskeleton

Defence/stress related proteins

Fibre biosynthesis and degradation

Gene expression and RNA metabolism

Membrane transport

Miscellaneous

No assigned function

Novel

Primary metabolism

Protein sorting and secretion

Protein synthesis and processing

Secondary and hormone metabolism

Signal transduction

CSIRO/SRDC sugarcane stem EST collection

• 8324 ESTs

Immature stem: 1082

Maturing stem: 7242

*

*

**

Carbohydrate metabolism-related ESTs

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

4-alpha glucanotransferase

6-phosphogluconate dehygrogenase

6-phosphogluconolactonase

beta-glucanase

beta-glucosidase

invertase

cellulose synthase

enolase

fructokinase/sugar kinase

fructose-1,6-bisphosphatase

fr6-p-2-kinase/fructose-2,6-bisphosphatase

fructose bisphosphate aldolase

glucose-6-phosphate dehydrogenase

glucose-6-phosphate isomerase

GAPDH

glycogenin

phosphoglucomutase

phosphoglycerate kinase

phosphoglycerate mutase

PFP

ribulose-phosphate 3-epimerase

starch synthase

sucrose phosphate synthase

sucrose synthase

transaldolase

transketolase

transporters

trehalose-6-phosphate synthase

triose phosphate isomerase

UDP-glucose dehydrogenase

UDP-glucose pyrophosphorylase

UDP-glucuronyltransferase

UDP-N-acetylglucosamine pyrophosphorylase

immature stem

maturing stem

*

Maturing stem transcript bioinformatics

• Sugar transporters are the most up-regulated carbohydrate metabolism genes

• Fibre biosynthesis, defence and oxidative stress transcripts are up-regulated

• Transcripts related to cell division, growth and development are down-regulated

• The major processes in maturing stem relate to sugar accumulation and fibre biosynthesis

Identification of an N-terminal vacuolar signaling peptide

M I4 I8 I11 M I4 I8 I11 M I4 I8 I11

Q117 74C42 Q124

MCSA178G05

(dirigent)

MCSA222H07

(Unknown)

MCSA201C03

(endopeptidase)

MCSA031F03

(O-methyltransferase)

MCSA070G08

(Na+/H+ antiporter)

MCSA066F08

(unknown)

MCSA201D01

(senescence associated protein)

MCSA144H02

(unknown)

MCSA034B10

(phenylalanine ammonia-lyase)

18S rRNA

M I4 I8 I11M I4 I8 I11 M I4 I8 I11M I4 I8 I11 M I4 I8 I11M I4 I8 I11

Q117 74C42 Q124

MCSA178G05

(dirigent)

MCSA222H07

(Unknown)

MCSA201C03

(endopeptidase)

MCSA031F03

(O-methyltransferase)

MCSA070G08

(Na+/H+ antiporter)

MCSA066F08

(unknown)

MCSA201D01

(senescence associated protein)

MCSA144H02

(unknown)

MCSA034B10

(phenylalanine ammonia-lyase)

18S rRNA

(Casu et al. 2004)

Endopeptidase MCSA201C03 is up-regulated in the maturing stem of sugarcane varieties

Sugarcane legumain homologue

• Cysteine protease (family C13)

• Vacuolar Processing Enzymes (VPEs)

• Most reside in vacuole

Also present in 4

other sugarcane

vacuolar proteins

Sugarcane MVTARLRLALLLLSVFLC-----SAWARPRLEPTIRLPSERAAAAAGDETDDAVZea mays MVADRLRLALLLS-ACLC-----SAWARPRLEPTIRLPSE--RAAADETDDDAVN.tabacum MIVRYVVSAILII--GLS-----VVAAVDGR-DVLKLPSEASTFFSGNYDDDSIA.thaliana TRVSVGVVLFVLLVS--LVA-----VSAARSGPDDVIKLPSQASRFFRPAENDDDSA.thaliana MTTVVSFLALFLFLV-------------AAVSG--DVIKLPSLASKFFRPTENDDDS

A.thaliana KSCYFRPALLLLLVLLVHAE--------SRGRFEPKILMPTEE---ANPADQDEDGR.communis METHKSLLFFTNYVLFLVFTLSFLPIPGLLASRLNPFEPGILMPTEE---AEPVQVDDDD

A.thaliana MSSPLGHFQILVFLHALLIFS--------AESR---KTQLLND-----NDVESSDKS

Vegetative

tissue

Cell wall

Storage

tissue

Targeting proteins to the vacuole

Signal

peptide

N-terminal

propeptide Mature protein

C-terminal

propeptide

•15-20 hydrophobic amino acids

•Controls transit to E.R.

•Vacuole targeting signals

•Cleaved in vacuole

•NTPP for lytic vacuole

•CTPP for protein storage vacuole

Analysis of GFP fusions

Cytosolic GFP Secreted GFP

promoter GFP Ter

Vacuole localised GFP5 amino acid motif -IRLPS-

diverts GFP from the default secretion

pathway to the lytic vacuole

ER Retained GFP

See poster MON-079 by Jackson et al.

Signal peptide+ + KDEL

Vacuole

targeting motif

+

Confirming vacuolar localisation

Vacuole

Targeted GFP

DAPI

Nuclear Stain

Fluorescent

protease substrateVacuole

Targeted GFP

Localisation in parenchyma cells

Vacuole Targeted GFP appears

around nuclear envelope and

can label the ER.

Does the acidity

quench GFP

fluorescence?

Inhibition of

H+ATPase by

ConcanamycinA

?

The sugarcane transcriptome

Custom microarray expression profiling

• EST clustering and data-miningDatabase development for efficient data-mining9,149 ESTs derived from three tissues (7,242 from maturing stem) clusteredIdentification of the most 5’ EST i.e. longest EST in each cluster to form the

“non-redundant EST set”

• Microarray design & preparation: CaneArray 1 (> 5,500 features derived from NR EST set)Bioinformatics and microarray analysis of transcripts in maturing stem

involved inCarbohydrate metabolism (Casu et al., 2003, PMB, 52, 371-386)General metabolism associated with sucrose accumulation (Casu et al., 2004, PMB,

54, 503-517)

Transcript analysis of maturing stem from high and low CCS individuals from a segregating population (Casu et al., 2005, Field Crops Res., 92, 137-147)

Analysis of gene expression as a strategy for sucrose accumulation gene discovery

Function Role Utility

Develop sequence and

clone bank

Integrate with world collection

BioinformaticsGene expression

analysis

Transgenic testsDNA markersCell localisation

studies

The sugarcane “transcriptome” @ GenBank

• SASRI (SASEX) ESTs 495 3/9/1996, 26/3/1997 & 23/10/1998Leaf roll and maturing stem

• “Rossi” RGA ESTs: 54 25/4/2003

• Australian stem EST collection (1998–2000) 9,149 6/6/2003, 24/9/2003 & 29/6/2004Young cane stem (YCS): 1,078Maturing cane stem (MCS): 7,242Methyl jasmonate-treated roots 829

• “Nogueira” cold response ESTs: 1,219 16/7/2003

• USA sugarcane ESTs: 8,125 6/8/2003Apex: 3,329Stem: 2,268Leaves: 2,396Misc: 132

• SUCEST (40 cDNA libraries) 236,916 24/9/2003

8,320 ESTs (CSIRO) 255,135 ESTs (World)

Sugarcane Gene Index @ DFCI (ex TIGR)

Expression profiling – the advent of the commercial array

Large-scale expression profiling

• Access to the world collection of sugarcane ESTs fostered the development of the first commercial expression profiling tool for sugarcane

• Association with Affymetrix to develop the GeneChip® Sugarcane Genome Array

Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane (Casu et al., 2007, Funct. Integr. Genomics, 7, 153-167)

Further identification of targets for tissue-enriched expression and manipulation of sucrose accumulation

Expression differences between closely-related transcripts can be distinguished

Immature stem

(meristem, I1-3)

Low sucrose

Maturing stem (I8)

Accumulating sucrose

Mature stem (I20)

Accumulated sucrose

Y-axis: Stem Profile (No rep 4, CHP files) Experiment, Default Interpretation

Colored by: Venn Diagram

Gene List: Sucrose synthase (5)

M,I1-3 1 M,I1-3 2 M,I1-3 3 M,I1-3 5 I8 1 I8 2 I8 3 I8 5 I20 1 I20 2 I20 3 I20 50.01

0.1

1

10

100

M,I1-3 1 M,I1-3 2 M,I1-3 3 M,I1-3 5 I8 1 I8 2 I8 3 I8 5 I20 1 I20 2 I20 3 I20 50.01

0.1

1

10

100

Sucrose synthase

Leaf susy2 Root susy3 YCS susy2/1

204 data points (612 RT-qPCR reactions) = 3 tissues x 4 biological replicates x 17 transcripts

GeneChip-derived expression data correlates consistently with that achieved using RT-qPCR

y = 1.6902x0.8989

R2 = 0.9248

0.01

0.10

1.00

10.00

100.00

0.01 0.10 1.00 10.00 100.00

RFC (Affymetrix Chip)

RF

C (

RT

-qP

CR

)

0

5

10

15

20

25

30

35

40

45

50

M,I1-3 I8 I20

RF

C

StemV.04 Chip 1

StemV.04 Chip 2

StemV.04 Chip 3

StemV.04 Chip 5

StemV.04 RT-qPCR 1

StemV.04 RT-qPCR 2

StemV.04 RT-qPCR 3

StemV.04 RT-qPCR 5

0

0.2

0.4

0.6

0.8

1

1.2

M,I1-3 I8 I20

RF

C

StemV.06 Chip 1

StemV.06 Chip 2

StemV.06 Chip 3

StemV.06 Chip 5

StemV.06 RT-qPCR 1

StemV.06 RT-qPCR 2

StemV.06 RT-qPCR 3

StemV.06 RT-qPCR 5

CesA and Csl transcripts are differentially expressed in stem tissue

0

2

4

6

8

10

12

CslA9 CslC9 CslF6 CesA12 CesA2 CesA7 CesA9#1 CesA9#2 CesA6 CesA3 CesA5

Re

lati

ve

Fo

ld C

ha

ng

e in

Ex

pre

ss

ion

M,I1-3

I8

I20

Expression profiling to aid promoter identification

Parenchyma, Vascular bundles and Rind (PVR) expression profiling

Field-grown Q117

plants (11 months old,

3 biological replicates)Tissue dissected

from internode 8

PV

R

(Anne Rae)

PAR001

0

0.2

0.4

0.6

0.8

1

1.2

P V R

RF

C

PAR004

0

0.2

0.4

0.6

0.8

1

1.2

P V R

RF

C

PAR005

0

0.2

0.4

0.6

0.8

1

1.2

P V RR

FC

Native sugarcane promoters can stably drive GFP transcript expression in maturing sugarcane stem internodes

0

0.05

0.1

0.15

0.2

0.25

1-1

A-0

1

1-1

A-0

2

1-1

A-0

3

1-1

A-0

4

1-1

C-0

1

1-1

C-0

2

1-1

C-0

3

4-1

2B

-01

4-1

2B

-02

4-1

2B

-03

4-1

2B

-04

4-2

4A

-01

4-2

4A

-02

4-2

4A

-03

4-2

4A

-04

5-1

3B

-01

5-1

3B

-02

5-1

3B

-03

5-1

3B

-04

5-2

2B

-01

5-2

2B

-02

TC

-01C

-01

TC

-01C

-02

TC

-01C

-03

TC

-01C

-04

TC

-03C

-01

TC

-03C

-02

TC

-03C

-03

TC

-03C

-04

U-0

2A

-01

U-0

2A

-02

U-0

2A

-03

U-0

2A

-04

U-0

5B

-01

U-0

5B

-02

U-0

5B

-03

U-0

5B

-04

Transgenic testing of candidate genes

Can the relevance of our candidate genes to the process of sucrose accumulation in maturing stem

be tested using RNAi-mediated gene silencing?

RNAi-mediated gene silencing of genes involved in core metabolism in sugarcane

• In an effort to understand which genes are important for sucrose accumulation in sugarcane, we are interested in interfering with the expression of several key genes

• Desired outcomesProduction of viable transgenic sugarcane carrying a variety

of RNAi constructs relating to a core metabolic function i.e. sucrose accumulation

Perturbation of transcript levels for each targetCorrelation with sucrose, glucose or fructose levels (if

possible) or other phenotype

0

0.1

0.2

0.3

0.4

0.5

0.6

gene 2

.01

gene 2

.02

gene 2

.03

gene 2

.04

gene 2

.05

gene 2

.06

gene 3

.01

gene 3

.02

gene 3

.03

gene 3

.04

gene 3

.05

gene 3

.06

gene 2

+3.0

1

gene 2

+3.0

2

gene 2

+3.0

3

gene 2

+3.0

4

gene 2

+3.0

5

gene 2

+3.0

6

gene 2

+3.0

7

gene 2

+3.0

8

em

pty

vecto

r 01

em

pty

vecto

r 02

em

pty

vecto

r 03

em

pty

vecto

r 04

em

pty

vecto

r 05

em

pty

vecto

r 06

em

pty

vecto

r 07

em

pty

vecto

r 08

em

pty

vecto

r 09

TC

contr

ol 01

TC

contr

ol 02

TC

contr

ol 03

TC

contr

ol 04

TC

contr

ol 05

TC

contr

ol 06

RF

C in

ex

pre

ss

ion

Candidate genes in core metabolism have been down-regulated in gene X-RNAi lines

Gene 4

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800g

en

e 4

lg

00

1

ge

ne

4 lg

00

6

ge

ne

4 lg

00

9

ge

ne

4 lg

01

7

ge

ne

4 lg

03

0

ge

ne

4 lg

03

2

ge

ne

4 lg

04

1

ge

ne

4 lg

04

8

ge

ne

4 lg

04

9

ge

ne

4 lg

06

9

ge

ne

4 lg

07

6

ge

ne

4 lg

07

9

ge

ne

4 lg

08

3

ge

ne

4 lg

08

4

ge

ne

4 lg

09

6

ge

ne

4 lg

09

7

ge

ne

4 lg

09

9

ge

ne

4 lg

10

5

ge

ne

4 lg

10

6

ge

ne

4 lg

10

9

ge

ne

4 s

m 0

06

ge

ne

4 s

m 0

10

ge

ne

4 s

m 0

15

ge

ne

4 s

m 0

17

ge

ne

4 s

m 0

33

ge

ne

4 s

m 0

38

ge

ne

4 s

m 0

39

ge

ne

4 s

m 0

40

ge

ne

4 s

m 0

46

ge

ne

4 s

m 0

49

ge

ne

4 s

m 0

51

ge

ne

4 s

m 0

53

ge

ne

4 s

m 0

54

ge

ne

4 s

m 0

58

ge

ne

4 s

m 0

60

ge

ne

4 s

m 0

71

ge

ne

4 s

m 0

93

ge

ne

4 s

m 1

00

ge

ne

4 s

m 1

05

ge

ne

4 s

m 1

12

TC

co

ntr

ol 0

1

TC

co

ntr

ol 0

2

TC

co

ntr

ol 0

3

TC

co

ntr

ol 0

4

TC

co

ntr

ol 0

5

TC

co

ntr

ol 0

6

TC

co

ntr

ol 0

7

TC

co

ntr

ol 0

8

TC

co

ntr

ol 0

9

TC

co

ntr

ol 1

0

TC

co

ntr

ol 1

1

TC

co

ntr

ol 1

2

RF

C in e

xp

ressio

n

Gene discovery to aid sugarcane genetics and genome sequencing

Gene discovery and sugarcane genetics

• Assessment of ESTs as a source of microsatellite markersMicrosatellite markers derived from ESTs have lower polymorphism within

sugarcane varieties but are cross transferable to Erianthus and Sorghum(Cordeiro et al., 2001, Plant Sci, 160, 1115-1123)

• RFLP mappingEST-derived RGAs and other RGAs – association with resistance to brown

rust (McIntyre, C.L. et al., 2005, Genome 48: 391 – 400).Candidate genes with relevance to sucrose accumulation

• Allele diversity in sucrose phosphate synthase (SPS) gene family IIISPS gene families initially identified through data-mining

• SNP marker development from candidate genes derived from large-scale expression profiling studiesSNP marker assays have been developed and are being mapped

Similarity of grass ESTs to sorghum

EST % Identity to Sorghum

55 60 65 70 75 80 85 90 95 100

ES

T p

roport

ion Sugarcane

Maize

Rice

AH Paterson et al. Nature 457, 551-556 (2009)

Summary

• Gene discovery was a necessary first step for commencing genomics research in sugarcane

• Greatest value from the various sugarcane EST programs was achieved when all of the data became available for analysis

• Commercial arrays for large-scale expression profiling hold promise for the development of a databank of expression profiling for further data-mining

• Candidate genes from large-scale expression profiling as well as other studies have been a source forTargeting peptide discoveryPromoter discoveryTransgenic testing for trait modification, including use of RNAiDNA marker development

• The world sugarcane EST collection is a valuable resource to assist in the production of the sugarcane genome

Acknowledgements

• CSIROKaren Aitken Graham Bonnett Neil BowerChristine Dimmock Donna Glassop Chris GrofHayati Iskandar Mark Jackson Deon KnightJanine Nielsen John Manners Lynne McIntyreJai Perroux Karl Pioch Anne RaeMerle Thomas Ben Trevaskis

• BSESPriya Joyce Li Wang

• Southern Cross UniversityPeter Bundock Giovanni CordeiroFrances Eliott Robert Henry

• FundingCSIRO CEO Special Project SDRC CRCSIIB