gene theraphy

28
Gene Therapy PRESENTED BY:SURAYYA MUHD LAMIDO STUDENT NO: 20122555 ENVS 525 1 st APRIL,2013

Upload: abubakar-musa

Post on 07-May-2015

609 views

Category:

Education


1 download

TRANSCRIPT

Page 1: GENE THERAPHY

Gene Therapy

PRESENTED BY:SURAYYA MUHD LAMIDO

STUDENT NO: 20122555

ENVS 525

1st APRIL,2013

Page 2: GENE THERAPHY

DEFINATIONS OF TERMS

GENETICS: is the science of genes, heredity, and variation in living organisms.

GENES: The basic biological unit of heredity. Gene is a unit of heredity that is transferred from a parent to offspring.

CHROMOSOME: A microscopic thread-like structure found within each cell of the body, consisting of a complex of proteins and DNA. Humans have 46 chromosomes arranged into 23 pairs.

THERAPHY: is a treatment intended to relieve or heal a disorder.

.

Page 3: GENE THERAPHY

Deoxyribonucleic acid (DNA) : The genetic material in cells that holds the inherited instructions for growth, development, and cellular functioning

RIBONUCLEIC ACID (RNA): is a nucleic acid very similar to DNA. Its structure is the same, although it is usually found single-stranded instead of double stranded like DNA.

Page 4: GENE THERAPHY

Picture of a Chromosome

http://www.accessexcellence.org/RC/VL/GG/genes.html

Page 5: GENE THERAPHY

What is Gene Therapy

Definition: an experimental technique for correcting defective genes that are responsible for disease development

The most common form of gene therapy involves inserting a normal gene to replace an abnormal gene

Other approaches used: Replacing a mutated gene that causes disease with a

healthy copy of the gene. Inactivating, or “knocking out,” a mutated gene that is

functioning improperly. Introducing a new gene into the body to help fight a

disease.

Page 6: GENE THERAPHY

•Researchers are studying gene therapy for a number of diseases, such as

Severe combined immune-deficiencies (SCID)

Haemophilia

Parkinson's disease

Cancer

HIV

Page 7: GENE THERAPHY

The Beginning…

In the 1980s, Scientists began to look into gene therapy. They would insert human genes into a

bacteria cell. Then the bacteria cell would transcribe and

translate the information into a protein Then they would introduce the protein into

human cells

Page 8: GENE THERAPHY
Page 9: GENE THERAPHY

GERM LINE GENE THERAPY

Result in permanent changes. Potential for offering a permanent therapeutic

effect for all who inherit the target gene. Possibility of eliminating some diseases from a

particular family. Also raises controversy: Some people view this type of therapy as

unnatural, and liken it to "playing God”. Others have concerns about the technical

aspects.

Page 10: GENE THERAPHY

How It Works

Page 11: GENE THERAPHY

SOMATIC GENE THERAPY

Affects only the targeted cells in the patient, and is not passed to future generations.

Short-lived because the cells of most tissues ultimately die and are replaced by new cells.

Transporting the gene to the target cells or tissue is also problematic.

Appropriate and acceptable for many disorders, including cystic fibrosis, muscular dystrophy, cancer, and certain infectious diseases.

Page 12: GENE THERAPHY

Types of somatic gene therapy

Page 13: GENE THERAPHY
Page 14: GENE THERAPHY
Page 15: GENE THERAPHY

How It Works

Page 16: GENE THERAPHY

Vectors in Gene Therapy

The two major classes of methods : recombinant viruses – VIRAL VECTOR naked DNA or DNA complexes – NONVIRAL

VECTOR VIRAL VECTOR- Viruses have evolved a way

of encapsulating and delivering their genes to human cells in a pathogenic manner. Scientists have tried to harness this ability by manipulating the viral genome to remove disease-causing genes and insert therapeutic ones

Page 17: GENE THERAPHY

VIRUS

Many GT clinical trials rely on retroviruses or adenoviruses to deliver the desired gene.

Other viruses used as vectors include adeno-associated viruses, lentiviruses, pox viruses, alphaviruses, and herpes viruses.

Differ in how well they transfer genes to the cells they recognize and are able to infect, and whether they alter the cell’s DNA permanently or temporarily

Page 18: GENE THERAPHY

Non-viral Options

The several methods for non-viral gene therapy are: Injection of naked DNA. Electroporation Gene gum Sonoporation Magnetofection Oligonucleotides Lipoplexes Dendrimers Inorganic nanoparticle.

Page 19: GENE THERAPHY
Page 20: GENE THERAPHY

TYPES OF VIRUS

Many GT clinical trials rely on retroviruses or adenoviruses to deliver the desired gene.

Other viruses used as vectors include adeno-associated viruses, lentiviruses, pox viruses, alphaviruses, and herpes viruses.

Differ in how well they transfer genes to the cells they recognize and are able to infect, and whether they alter the cell’s DNA permanently or temporarily

Page 21: GENE THERAPHY
Page 22: GENE THERAPHY

Problems with Gene Therapy Short Lived

Hard to rapidly integrate therapeutic DNA into genome and rapidly dividing nature of cells prevent gene therapy from long time

Would have to have multiple rounds of therapy Immune Response

new things introduced leads to immune response increased response when a repeat offender enters

Viral Vectors patient could have toxic, immune, inflammatory response also may cause disease once inside

Multigene Disorders Heart disease, high blood pressure, Alzheimer’s, arthritis and

diabetes are hard to treat because you need to introduce more than one gene

May induce a tumor if integrated in a tumor suppressor gene because insertional mutagenesis

Page 23: GENE THERAPHY

Current Status

FDA hasn’t approved any human gene therapy product for sale

Reasons: In 1999, 18-year-old Jesse Gelsinger died from

multiple organ failure 4 days after treatment for Ornithine transcarbamylase (OTC) Death was triggered by severe immune response to

adenovirus carrier January 2003, halt to using retrovirus vectors in blood

stem cells because children developed leukemia-like condition after successful treatment for X-linked severe combined immunodeficiency disease

Page 24: GENE THERAPHY

Unsuccessful Gene therapies Jesse Gelsinger, a gene therapy patient who lacked

ornithine transcarbamylase activity, died in 1999.

Within hours after doctors shot the normal OTC gene attached to a therapeutic virus into his liver, Jesse developed a high fever. His immune system began raging out of control, his blood began clotting, ammonia levels climbed, his liver hemorrhaged and a flood of white blood cells shut down his lungs.

One problem with gene therapy is that one does not have control over where the gene will be inserted into the genome. The location of a gene in the genome is of importance for the degree of expression of the gene and for the regulation of the gene (the so-called "position effect"), and thus the gene regulatory aspects are always uncertain after gene therapy

Page 25: GENE THERAPHY

Successful One Year Gene Therapy Trial For Parkinson's Disease

Neurologix a biotech company announced that they have successfully completed its landmark Phase I trial of gene therapy for Parkinson's Disease.

This was a 12 patient study with four patients in each of three dose escalating cohorts. All procedures were performed under local anesthesia and all 12 patients were discharged from the hospital within 48 hours of the procedure, and followed for 12 months. Primary outcomes of the study design, safety and tolerability, were successfully met. There were no adverse events reported relating to the treatment.

Page 26: GENE THERAPHY

Recent Developments

Genes get into brain using liposomes coated in polymer call polyethylene glycol potential for treating Parkinson’s disease

RNA interference or gene silencing to treat Huntington’s siRNAs used to degrade RNA of particular sequence abnormal protein wont be produced

Create tiny liposomes that can carry therapeutic DNA through pores of nuclear membrane

Sickle cell successfully treated in mice

Page 27: GENE THERAPHY

REFERENCES Burdette, Walter J. The Basis for Gene Therapy. Springfield: Charles

C Thomas, 2001. Crayton, Stephanie. “First Clinical Trial Of Gene Therapy For Muscular

Dystrophy Now Under Way.” Medical News Today. 1 April 2006. University of North Carolina at Chapel Hill. 11 November 2006 <www.medicalnewstoday.com>.

Gene Therapy. Human Genome Project Information. 18 November 2005. U.S. Department of Energy Office of Science, Office

of Biological and Environmental Research, Human Genome Program. 12 September 2006 <http://www.ornl.gov/hgmis>.

McCormack, Matthew P. “Activation of the T-Cell Oncogene LMO2 after Gene Therapy for X-Linked Severe Combined

Immunodeficiency.” The New England Journal of Medicine. http://content.nejm.org. 346: 1185-1193, Apr 18, 2002.

Peel, David. “Virus Vectors & Gene Therapy: Problems, Promises & Prospects.” Virus Vectors & Gene Therapy. 1998. Department of Microbiology & Immunology, University of Leicester. 11 November 2006 <http://www.tulane.edu/~dmsander/WWW/335/peel/peel2.html>.

Page 28: GENE THERAPHY