general formalism of angular momentum - binghamton university

20
1 Angular momentum: general formalism Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date, October 13, 2014) Here we consider the general formalism of angular momentum. We will discuss the various properties of the angular momentum operator including the commutation relations. The eigenvalues and eigenkets of the angular momentum are determined. The matrix elements of the angular momentum operators are evaluated for angular momentum with integers as well as half-integers. _______________________________________________________________________ 1. Commutation relations The commutation relations for the orbital angular momentum z y x L i L L ˆ ] ˆ , ˆ [ , x z y L i L L ˆ ] ˆ , ˆ [ , y x z L i L L ˆ ] ˆ , ˆ [ Generalization: definition of an angular momentum. The origin of the above relations lies in the geometric properties of rotations in three-dimensional space. Now we define an angular momentum ˆ J i (i = x, y, z) as any set of three observables satisfying z y x J i J J ˆ ] ˆ , ˆ [ , x z y J i J J ˆ ] ˆ , ˆ [ , y x z J i J J ˆ ] ˆ , ˆ [ 2 2 2 2 ˆ ˆ ˆ ˆ z y x J J J J 0 ˆ ] ˆ , ˆ [ 2 x J J , 0 ˆ ] ˆ , ˆ [ 2 y J J , 0 ˆ ] ˆ , ˆ [ 2 z J J ((Proof)) 0 ˆ ) ˆ ˆ ˆ ˆ ( 2 ) ˆ ˆ ˆ ˆ ( 2 ] ˆ , ˆ [ ] ˆ , ˆ [ ] ˆ , ˆ [ ] ˆ , ˆ [ ] ˆ , ˆ [ ] ˆ , ˆ [ 2 2 2 2 2 2 y z z y y z z y x z x y x z x y x x x J J J J i J J J J i J J J J J J J J J J J J since

Upload: others

Post on 29-Oct-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: General formalism of angular momentum - Binghamton University

1

Angular momentum: general formalism Masatsugu Sei Suzuki

Department of Physics, SUNY at Binghamton (Date, October 13, 2014)

Here we consider the general formalism of angular momentum. We will discuss the

various properties of the angular momentum operator including the commutation relations. The eigenvalues and eigenkets of the angular momentum are determined. The matrix elements of the angular momentum operators are evaluated for angular momentum with integers as well as half-integers. _______________________________________________________________________ 1. Commutation relations

The commutation relations for the orbital angular momentum

zyx LiLL ˆ]ˆ,ˆ[ , xzy LiLL ˆ]ˆ,ˆ[ , yxz LiLL ˆ]ˆ,ˆ[

Generalization: definition of an angular momentum. The origin of the above relations lies in the geometric properties of rotations in three-dimensional space. Now we define an angular momentum ˆ J i (i = x, y, z) as any set of three observables satisfying

zyx JiJJ ˆ]ˆ,ˆ[ , xzy JiJJ ˆ]ˆ,ˆ[ , yxz JiJJ ˆ]ˆ,ˆ[

2222 ˆˆˆˆ

zyx JJJ J

0]ˆ,ˆ[ 2 xJJ , 0]ˆ,ˆ[ 2 yJJ , 0]ˆ,ˆ[ 2 zJJ

((Proof))

0

)ˆˆˆˆ(2)ˆˆˆˆ(2

]ˆ,ˆ[]ˆ,ˆ[

]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[22

2222

yzzyyzzy

xzxy

xzxyxxx

JJJJiJJJJi

JJJJ

JJJJJJJ

J

since

Page 2: General formalism of angular momentum - Binghamton University

2

)ˆˆˆˆ(2

ˆ]ˆ,ˆ[]ˆ,ˆ[ˆ

ˆ)ˆˆˆˆ()ˆˆˆˆ(ˆ

ˆˆˆˆˆˆ]ˆ,ˆ[ 2

yzzy

yyxyxy

yyxxyyxxyy

yyxxyyxy

JJJJi

JJJJJJ

JJJJJJJJJJ

JJJJJJJJ

)ˆˆˆˆ(2

ˆ]ˆ,ˆ[]ˆ,ˆ[ˆ

ˆ)ˆˆˆˆ()ˆˆˆˆ(ˆ

ˆˆˆˆˆˆ]ˆ,ˆ[ 2

yzzy

zxzxzz

zzxxzzxxzz

zzxxzzxz

JJJJi

JJJJJJ

JJJJJJJJJJ

JJJJJJJJ

2. General theory of angular momentum (a) ˆ J and ˆ J

ˆ J ˆ J x i ˆ J y

where

ˆ J ˆ J , ˆ J

ˆ J

JJJ zˆ]ˆ,ˆ[ , JJJz

ˆ]ˆ,ˆ[ , zJJJ ˆ2]ˆ,ˆ[

0]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[ 222 zJJJ JJJ

zz JJJJ ˆˆˆˆˆ 22 J

zz JJJJ ˆˆˆˆˆ 22 J Thus we have

22 ˆ)ˆˆˆˆ(2

1ˆzJJJJJ J

Formula:

JbaJbJa ˆ)(]ˆ,ˆ[ i ((Proof))

Page 3: General formalism of angular momentum - Binghamton University

3

ji

jiji JJbaI,

]ˆ,ˆ[]ˆ,ˆ[ JbJa

Since

[ˆ J i ,

ˆ J j ] i ijkˆ J k

then

Jba ˆ)(ˆ,

iJibaIji

kijkji

(b) Notation for the eigenvalues of 2J and ˆ J z For any ket

0ˆˆˆˆˆˆ

ˆˆˆˆ 2222

zzyyxx

zyx

JJJJJJ

JJJJ

For an eigenket

2J

0ˆ 2 J

We shall write

222 )1(ˆ jjJ

where

j( j 1) 0 ((Note)) Levi-Civita symbol

In three dimensions, the Levi-Civita symbol ijk is defined as follows:

ijk is 1 if (i, j, k) is an even permutation of (1,2,3).

ijk is -1 if it is an odd permutation,

ijk is 0 if any index is repeated.

1123 , 1132 , 1213 ,

Page 4: General formalism of angular momentum - Binghamton University

4

1231 , 1312 , 1321 .

3. Eigenvalue equations for ˆ J 2 and ˆ J z

mj,

mj. is the simultaneous eigenket of 2J and ˆ J z , since 0]ˆ,ˆ[ 2 zJJ

mjjjmj ,)1(,ˆ 22 J

mjmmjJ z ,,ˆ

We discuss the eigenvalues of 2J and ˆ J z

Lemma 1 (Properties of eigenvalues of 2J and ˆ J z )

j and m satisfy the inequality

-j≤m≤j ((Proof))

0,ˆˆ, mjJJmj ,

Page 5: General formalism of angular momentum - Binghamton University

5

0,ˆˆ, mjJJmj .

We find

0)]1()1([,ˆˆˆ,,ˆˆ, 222 mmjjmjJJmjmjJJmj zz J ,

and

0)]1()1([,ˆˆˆ,,ˆˆ, 222 mmjjmjJJmjmjJJmj zz J .

Then we have

[ j( j 1) m(m 1)] ( j m)( j m 1) 0 ,

[ j( j 1) m(m 1)] ( j m 1)( j m) 0 . Then

( j 1) m j , and

j m j 1. If j m j , these two conditions are satisfied simultaneously. Lemma II (Properties of the ket vector of mjJ ,ˆ

)

(i) If m = -j, 0,ˆ mjJ

(ii) If m>-j, mjJ ,ˆ is a non-null eigenket of 2J and ˆ J z with the eigenvalues j(j+1)2

and (m -1). [Proof of (i))] Since

0)]1)([(,ˆˆ, 2 mjmjmjJJmj

for m = -j, we get

0,ˆ mjJ

Page 6: General formalism of angular momentum - Binghamton University

6

for m=-j. Conversely, if

0,ˆ mjJ

then we have

0)]1)([(,ˆˆ, 2 mjmjmjJJmj

Then we have j = -m. [Proof of (ii)] Since

0]ˆ,ˆ[ 2 JJ

0,]ˆ,ˆ[ 2 mjJJ

or

mjJjjmjJmjJ ,ˆ)1(,ˆˆ,ˆˆ 222 JJ

So mjJ ,ˆ is an eigenket of 2J with the eigenvalue

2 j( j 1).

Moreover,

mjJmjJJ z ,ˆ,]ˆ,ˆ[

or

mjJmmjJmjJJmjJJ zz ,ˆ)1(,ˆ,ˆˆ,ˆˆ

So ˆ J j , m is an eigenket of ˆ J z with the eigenvalue (m 1) . Lemma III (Properties of the ket vector of mjJ ,ˆ

)

(i) If m = j,

0,ˆ mjJ .

Page 7: General formalism of angular momentum - Binghamton University

7

(ii) If m<j, mjJ ,ˆ is a non-null eigenket of 2J and ˆ J z with the eigenvalues j(j+1)2

and (m+1). [Proof of (i)]

0)]1)([(,ˆˆ, 2 mjmjmjJJmj

If m =j, then

0,ˆ mjJ .

[Proof of (ii)]

0]ˆ,ˆ[ 2 JJ , or

0,]ˆ,ˆ[ 2 mjJJ ,

or

mjJjjmjJmj ,ˆ)1(,ˆˆ, 22 J .

ˆ J j , m is an eigenket of ˆ J 2 with an eigenvalues 2j(j+1).

mjJmjJJ z ,ˆ,]ˆ,ˆ[

or

mjmmjJmjJJmjJJ zz ,)1(,ˆ,ˆˆ,ˆˆ

mjJ ,ˆ

is an eigenket of ˆ J z with an eigenvalues (m+1).

4. Determination of the spectrum of ˆ J 2 and ˆ J z .

There exists a positive or zero integer p such that

m - p = -j (1)

mj, : [eigenvalues m, 2j(j+1)]

Page 8: General formalism of angular momentum - Binghamton University

8

mjJ ,ˆ : [(m-1), 2j(j+1)]

mjJ ,)ˆ( 2 : [(m-2), 2j(j+1)]

..........................................................

mjJ p ,)ˆ( : [(m-p), 2j(j+1)]

0,)ˆ( 1 mjJ p

There exists a positive or zero integer such that

m + q = j, (2)

mj, : [eigenvalues m, 2j(j+1)]

mjJ ,ˆ : [(m+1), 2j(j+1)]

mjJ ,)ˆ( 2 : [(m+2), 2j(j+1)]

..........................................................

mjJ q ,)ˆ( : [(m+q), 2j(j+1)]

0,)ˆ( 1 mjJ q

Combining Eqs.(1) and (2),

p + q = 2j Since p and q are integers, j is therefore an integer or a half-integer.

j = 0, 1/2, 1, 3/2, 2, .......

m = -j, -j+1,.........., j-1, j. (i) If j is an integer, then m is an integer. (ii) If j is a half-integer, then m is a half-integer. 5. mj, representation

Page 9: General formalism of angular momentum - Binghamton University

9

)]1)([(,ˆˆˆ,,ˆˆ, 222 mjmjmjJJmjmjJJmj zz J

Since

1,,ˆ mjmjJ

we have

)]1)([(,ˆˆ, 22 mjmjmjJJmj .

Thus

1,)1)((,ˆ mjmjmjmjJ .

Similarly

)]1)([(,ˆˆˆ,,ˆˆ, 222 mjmjmjJJmjmjJJmj zz J .

Since

1,,ˆ mjmjJ ,

we have

)]1)([(,ˆˆ, 22 mjmjmjJJmj ,

or

1,)1)((,ˆ mjmjmjmjJ .

In summary:

mjjjmj ,)1(,ˆ 22 J

mjmmjJ z ,,ˆ

1,)1)((,ˆ mjmjmjmjJ

1,)1)((,ˆ mjmjmjmjJ

Page 10: General formalism of angular momentum - Binghamton University

10

_____________________________________________________________________ 6. Matrix element of the angular momentum

Using Mathematica, you determine the matrix elements of ˆ J x , ˆ J y , and ˆ J z

mjjjmj .)1(.ˆ 22 J

mjmmjJ z ,,ˆ

1,)1)((,ˆ mjmjmjmjJ

1,)1)((,ˆ mjmjmjmjJ

Since

yx JiJJ ˆˆˆ

yx JiJJ ˆˆˆ

we get

)ˆˆ(2

1ˆ JJJ x

)ˆˆ(2

)ˆˆ(2

1ˆ JJ

iJJ

iJ y

)1,)1)((1,)1)(((2

,)ˆˆ(2

1,ˆ

mjmjmjmjmjmj

mjJJmjJ x

)1,)1)((1,)1)(((2

,)ˆˆ(2

mjmjmjmjmjmji

mjJJi

mjJ y

mjmmjJ z ,,ˆ

Thus the matrix elements are expressed by

Page 11: General formalism of angular momentum - Binghamton University

11

))1)(()1)(((2

)1,',)1)((1,',)1)(((2

,ˆ',

1,'1,'

mmmm

x

mjmjmjmj

mjmjmjmjmjmjmjmjmjJmj

))1)(()1)(((2

)1,',)1)((1,',)1)(((2

,ˆ',

1',1',

mmmm

y

mjmjmjmji

mjmjmjmjmjmjmjmji

mjJmj

',',,,ˆ'. mmz mmjmjmmjJmj

Using this formula, we can get the matrix of xJ , yJ , and zJ for each j (= 1/2, 1, 3/2, 2,

5/2, ....) and m (=j, j-1, j-2,...., -j+1, -j). 7. Effect of fluctuation in the direction of J

We now consider the fluctuation of the angular momentum,

22222 ˆˆˆ,)1ˆˆ(, xxxxxx JJJmjJJmjJ

22222 ˆˆˆ,)1ˆˆ(, yyyyyy JJJmjJJmjJ

Then we have

2222

222

222

22

ˆ

ˆˆˆ

)1(ˆ

mJJ

JJJ

JJJ

jj

xx

zxx

zyx

J

or

])1([ 2222 mjjJJ xx

The fluctuation in the component of the angular momentum which is normal to the z axis will be a minimum when m = j. We therefore obtain

2min

22 ][ jJJ xx

Page 12: General formalism of angular momentum - Binghamton University

12

This means in a rough manner of speaking that the minimum angle between the direction of the J vector and the z axis is given by

1

1

)1(sin min

jjj

j

or

)1(cos min

jj

j

((D. Bohm, quantum theory, p.319))

It is not correct to imagine that the angular momentum points in some definite direction which we do not happen to be able to measure with complete precision. Instead,

whenever 2J and zJ have definite values, one should imagine that the entire cone of directions corresponding to those values of Jx and Jy consistent with the given j2 and m are covered simultaneously because important physical consequence may follow from the effects of interference of wave functions corresponding to different components of angular momentum. 8. Vector representation of allowed angular momentum

We consider a case which j is some fixed number (j = 1/2, 1, 3/2, 1,...). Then the total angular momentum may be represented by a vector of length

)1( jj

The component m in the z direction is

m = j, j - 1, j - 2, ........, -j + 1, -j The vector J should be thought of as covering a cone, with vector angle given by

)1(cos

jj

mm

_______________________________________________________________________ (a)

j = 1/2 m = 1/2, -1/2

Page 13: General formalism of angular momentum - Binghamton University

13

1 2 1 2 + 1

m=12

m=-12

(b)

j = 1 m = 1, 0, -1

Page 14: General formalism of angular momentum - Binghamton University

14

1 1+ 1

m=1

m=0

m=-1

(c)

j = 3/2 m = 3/2, 1/2, -1/2, -3/2

Page 15: General formalism of angular momentum - Binghamton University

15

3 2 3 2 + 1

m=32

m=12

m=-12

m=-32

(d)

j = 3 m = 3, 2, 1, 0, -1, -2, -3

Page 16: General formalism of angular momentum - Binghamton University

16

3 3+ 1

m=3

m=2

m=1

m=0

m=-1

m=-2

m=-3

(e)

j = 6 m = 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6

Page 17: General formalism of angular momentum - Binghamton University

17

6 6+ 1

m=6

m=5

m=4

m=3

m=2

m=1

m=0

m=-1

m=-2

m=-3

m=-4

m=-5

m=-6

(a) j = integers

Page 18: General formalism of angular momentum - Binghamton University

18

(b) j = half integer

Page 19: General formalism of angular momentum - Binghamton University

19

REFERENCES J.J. Sakurai, Modern Quantum Mechanics, Revised Edition (Addison-Wesley, Reading

Massachusetts, 1994). C. Cohen-Tannoudji and B. Diu, and F. Laloe, Quantum Mechanics, vol.1 and vol. 2

(John Wiley & Sons, New York, 1977). A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press,

1957).

Page 20: General formalism of angular momentum - Binghamton University

20

M.E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, 1957, New York, Dover Publications, New York, 1957).

L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics (Addison-Wesley, Reading, 1981).

D.M. Brink and G.R. Satchler, Angular Momentum, 2nd edition (Clarendon Press, Oxford, 1968).

D.H. McIntyre, Quantum Mechanics: A paradigms Approach (Pearson, 2012). V. Devanthan, Angular Momentum Techniques in Quantum Mechanics (Kluwer

Academic).