general material balance of reacting system batch …bernauem/ark/lectures/chapter 4.pdfsummary •...

27
Summary General material balance of reacting system Batch reactor Continuous-flow reactors: CSTR (Continuous Stirred Tank Reactor) PFR (Plug Flow Reactor) Steady state of CSTR and PFR Design tasks : outlet (final conversion), given volume of reactor x volume of reactor, given outlet conversion

Upload: others

Post on 02-Jan-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Summary • General material balance of reacting system • Batch reactor • Continuous-flow reactors: CSTR (Continuous Stirred Tank Reactor) PFR (Plug Flow Reactor) • Steady state of CSTR and PFR • Design tasks : outlet (final conversion), given volume of reactor x volume of reactor, given outlet conversion

Page 2: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

1

2

.

.

.

o

o

o

N

F

F

F

1

2

.

.

.

N

F

F

F

Inlet convective molar

flows (mol/s)

Outlet convective molar

flows (mol/s)

1

0 1,

( )

( )

N

ki i

i

i

A k NR

n t

V t

0

,

1

NR

i

i i ki V k iV

k V

nF F r dV c dV

t t

, ,

1 1 1 1

N N NR NR

o o

i i ki V k k V kV V

i i k k

nF F r dV F F r dV

t

T=const.

4. The material balances for isothermal ideal reactor models

Molar balance of species i

Overall molar balance

1

N

ki k

i

Arbitrary volume element

Page 3: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Batch reactors

0

,

1R

NR

i

i i ki V kV

k

nF F r dV

t

RkV

NR

k

ki

i Vrdt

dn.

,

1

Manometer

P=f(t)

Mixer

Q

Laboratory

Pharmaceutical industry

Special chemicals

Polymers

.

.

.

Heat flux

Vconst.

T=const.

Perfect mixing

Molar balance of species i

1

0 1,

( )

( ) V olum e of reaction m ixture

N

ki i

i

i

R

A k NR

n t

V t

Page 4: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Reactor volume constant (VR=const.)

, 1 2

1

1, , ...

i

NR

Ri i

ki V k N

kR

ndVdn dc

r c c cV dt dt dt

Reactor pressure constant (P = konst.)

RiiVcn .

kV

NR

k

ki

R

i

iRi

R

i

R

rdt

Vdc

dt

dc

dt

Vcd

Vdt

dn

V,

1

ln.11

dt

Vdcr

dt

dcR

ikV

NR

k

ki

iln

,

1

state equation f(T ,P,V,

To calculate ( ) o

composition)

r ( )

is needed = 0

RP t V t

Page 5: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Example Constant volume isothermal batch reactor, ideal gas mixture

1

N

kj k

j

1

, ,

1 1 1 1

,

1

ln( )

N

R j

j

N N NR NRjR R

R kj V k k V k

j j k k

NR

R

k V k

k

RTV n

P

dndV RTVRT RTV r r

dt P dt P P

d V RTr

dt P

1

, ,

1 1 1 1

N

j

jR

N N NR NRj

R kj V k k V k

j j k kR R

RTP n

V

dndP RT RTV r RT r

dt V dt V

Constant pressure isothermal batch reactor, ideal gas mixture

, ,

1 1

, ,

1 1

NR NR

i

ki V k i k V k

k k

NR NR

ki V k i k V k

k k

dc RTr c r

dt P

r y r

*i i

Pc y

RT

Page 6: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Example Constant volume batch reactor, liquid mixture constant pressure

Second order irreversible reaction

A1(l) + A2(l) A3(l)

2 1

1

1

1 2

1

1 2

2

1 2

3

1 2

1 1 2 2 2 1 1 2 3 1 1

1 11 2

1

2

1 1 1 2

01 1 1 2

1

1

,

,

o oo

i

i V i

o o o o o

c t

o o

o o

o o

o

c

oc c kt

dcr kc c

dt

dckc c

dt

dckc c

dt

dckc c

dt

c c c c c c c c c c c

dc dckc c c c

ck dt

dt c c

c

ec cc

c

c

1

1 2 1

1

1

o o

oc c c kt

c

1 2 1 1 2 2 3, 0, , , 0

o o

Vr kc c t c c c c c

0

0.5

1

1.5

2

2.5

0 2 4 6

ci mol/l

t/min

c1

c2

c3

1

2

3

2 m ole/l

1 mole/l

0

o

o

o

c

c

c

Page 7: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Continuous-flow reactors

Continuous Stirred Tank Reactor – CSTR

0

,

1

NR

i

i i ki V k R

k

dnF F r V

dt

We need suplementary information

• state behavior of reaction mixture

• start-up (shut-down) molar flow rates of individual species

1

0 1,

( )

V olum e of reactor

N

ki i

i

i

R

A k NR

n t

V const

Molar balance of species i

Overall molar balance

,

1

NR

o

k V k R

k

dnF F r V

dt

Page 8: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Constant pressure isothermal CSTR, ideal gas mixture

It arises from overall molar balance (volume of reactor, VR is constant)

1

, ,

1 1 1 1

,

1

0

N

j N N NR NR

o oi i

R ki V k R k V k

i i k k

NR

o

R k V k

k

d ndn

F F V r F F V rdt dt

F F V r

and molar balance of species i becomes

, ,

1 1

,

1

,

1

( ) ( )

= ( ) ( ) 1,

NR NR

o oi

i i R k V k R ki V k

k ki

NR

o oi iR

i i R ki i k V k

k

o NR

oi

i i ki i k V k

kR

dnF y F V r V r

dt

dn dyPVF y y V y r

dt RT dt

dy RTF RTy y y r i N

dt PV P

Inlet volumetric flow rate is

o

o

RTFV

P

R R

o o

o

V PV

V RTF

Mean residence time of reaction mixture (based on inlet flow rate) is given by

1

N

j R

i

RT n pV

o o o

i iF y F

Page 9: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

and molar balance of species i becomes finally

,

1

1= ( ) ( ) 1,

NR

oi

i i ki i k V k

ko

dy RTy y y r i N

dt P

If only one reaction takes place:

1= ( ) ( ) 1,

oi

i i i i V

o

dy RTy y y r i N

dt P

Example

Start-up of an isothermal CSTR

2

2 g 2 g 2 g

4 3 o

5 1 1 -3

1 2 3 4 2 2 2

1 2 3 4

N O      N       1 / 2O

0.1 l =10 m , T =320 C , 101 kPa

= , 2.028x10 m ole.Pa . m in .m

1, 0 (1=N O , 2=O , 3=N , 4=H e)

0, 0 0, 1

1

R

V N O

o o o o

o

V P

r kP k

y y y y

t y y y y

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5

yi (-)

t (s)

N2O

He

X1 =(F1o – F1)/F1

o

N2 O2

Numerical solution of balance

equations

(fractional) conversion of N2O*)

*) The equation is valid only at steady state

Page 10: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Steady state

,

1

, 1,

NR

o

i i R ki V k

k

F F V r i N

, 1,o

i i R i VF F V r i N

If only one reaction takes place:

( )

a) T he volum e of reactor for given outle t conversion

( )

b) T he outlet conversion for given volum e of reactor

( ) ( ) 0

o

j j R j V j

jo

R j

j V j

o

j

j j V j j

R

F X V r X

XV F

r X

FX r X f X

V

using fractional conversion of key species j

o

j j

j o

j

F FX

F

Graphical or numerical (iterative)

solution

Simple substitution

Page 11: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

1

( )j V jr X

jX

( )

j

j V j

X

r X

Graphical assessment of the CSTR volume

Levenspiel

diagram

usually 1jv

Page 12: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

( )j V jr X

jX

o

j

j

R

FX

V

Graphical assessment of the outlet conversion

Page 13: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Cascade of CSTR

( ) ( 1) ( ) ( )

( )

( )

( ) (

( )

)

( ) (

)

)

)

( 1) (

(

, 1, 1,

(1 )

( ), 1,

n n n n

i i R i V CSTR

o n

j jn

j o

j

n o n

j j j

n o o ni

o

j n n n

j j j V j CSTRn

R

i i j j

j

F F V r i N n N

F FX

F

F F X

F F F

FX X r X n N

V

X

……… ………

n-th member of

the cascade

( 1)n

jF

( )n

jF

Steady state

( )

( )

n

R

n

j

V

X

Page 14: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

( )j V jr X

jX

(1)

o

j

j

R

FX

V

Graphical assessment of the outlet conversion in the cascade of CSTR

(1)

jX

(1)

( 2 )

o

j

j j

R

FX X

V

( 2 )

jX

Homework 6

Prove that for first order constant-volume reaction.

In the limit

( )

( )1 (1 ) ,

n

n n R

j o o

o

VX k

V

( )

( )lim 1 ,oR

n

kn R

j oRn

o

nVX e

V

Page 15: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Plug Flow reactor – PFR

z + z

VR + VR

z

VR

( )i RF V ( )

i R RF V V

v

R RV S z

,

1

( , ) ( , )1= ( , ) 1,

NR

i i

ki V k

kR

c t z F t zr t z i N

t S z

Molar balance of species i

Tubular reactors

High production capacity

Catalytic reactors (e.g. ammonia

synthesis)

.

.

.

Page 16: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Steady state

If only one reaction takes place:

using fractional conversion of key species j

o

j j

j o

j

F FX

F

,

1

1,

NR

i

ki V k

kR

dFr i N

dV

1,i

i V

R

dFr i N

dV

( )jo

j j V j

R

dXF r X

dV

( 2 )

(1)

( )

j

j

X

jo

j R

X j V j

dXF V

r X

1 1

3 1

,

m olar volum e (m m ole )

i i i i

i iN N

m

j m j

j j

m

F F y Fy c

V VF V F

V

useful relations:

Page 17: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

BATCH, CSTR, PFR (PBCR), one reaction, fractional conversion of key component

BATCH 1

1

0 0

0 0

( )

( )

j R

j R

X to

j j

R

j R V j

X to

j j

R

V jj

n dXdt t

V r X

c dXdt t

r X

CSTR 1 1

1 1( ) ( )

o o

j j j j

R

j V j V jj

F X F XV

r X r X

PFR 1 1

0 0( ) ( )

j jX Xo o

j j j j

R

j V j V jj

F dX F dXV

r X r X

1 1

0 0( )

j jX Xo o

j j j j

j M M jj

F dX F dXW

r r X

Packed Bed Catalytic Reactor

PBCR

1

j Vr

jX

CSTR PFR

1

jX

Page 18: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Mean residence time

RV

V

1

0( )

jXo

j j

o

V jj

c dX

r X

1

1( )

o

j j

o

V jj

c X

r X

R

o

o

V

V

BATCH, PFR

CSTR

volumetric flow rate (m3/s) of reaction

mixture at inlet conditions oV

Page 19: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

3

3

G as volum etric flow rate(m /hr)

V olum e of reactor (m )GHSV

3

3

Liquid volum etric flow rate (m /hr)

V olum e of reactor (m )LHSV

Gas Hourly Space Velocity

Liquid Hourly Space Velocity

Page 20: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Tasks

1. Calculate the volume of reactor (mass of catalyst) (CSTR,

PFR, PBCR) or time of reaction (BATCH) to obtain given

conversion.

2. Calculate the outlet conversion for given volume of reactor.

3. Calculate the reaction rate in laboratory reactor to obtain

kinetic law and estimate the kinetic parameters.

Page 21: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

1 1

0 =

N N

i i i

i i

A

NR = 1 j – subscript of key component

BATCH

FLOW

.o o oi

i i i i j j

j

n n n n X

. .o o oi

i i i V R i j j

j

F F r dV F F X

1 1

. .

N N

o o o o

i i j j

i i j

n n n n n X

.o o

j j

j

F F F X

. .

. 1 .

o oi o oii j j i j j

ji k

io o o

j j j j

j j

n n X x x Xn

xn

n n X x X

. .

. 1 .

o o o oi i

i j j i j j

j ji

io o o

j j j j

j j

F F X x x XF

xF

F F X x X

3

.1

.1 .

- m olar volum e of reaction m ixture

(m /m ol)

o oi

i j j

ji i i

io

m m mj j

j

m

x x Xn n x

cV n V V V

x X

V

.1

.1 .

o oi

i j j

ji i i

io

m m mj j

j

x x XF F x

cV F V V V

x X

Page 22: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Gas phase - Ideal state behavior

.

1 .

o oi

i j j

ji i

io

j j

j

x x Xx P P

cRT RT RT

x XP

.

. 1 .

o oi

i j j

ji i i

io

j j

j

x x XF F P P

cRTV RT RT

F x XP

(1 )

. .1

1 1

i i

i

oo

o j j

o j

o o o oi i

i j j i j j

j jo o

o oo o o

j j j j

j j

n nc

PTVV x XT P

n n X c c XT TP P

T P V T Px X x X

1

. .1

1 1

i i

i

oo

o j j

o j

o o o oi i

i j j i j j

j jo o

o oo o o

j j j j

j j

F Fc

V PTV x XT P

F F X c c XT TP P

T P V T Px X x X

m

RTV

P

Page 23: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Homework 7 Calculate volume of PFR to produce 150 kt ethylen/year. Reaction of the 1st order

C2H6(g) C2H4(g) + H2(g)

takes place at 1100 K and 0,6 Mpa. Final conversion of ethan is 80 %. Reaction rate is given by

rV = k. cA

k (1000 K) = 0,072 s-1 E = 343,6 kJ/mol

Pure ethan is fed into the reactor.

Assumptions:

Ideal gas, molar weight of ethylen is 28,054 kg/kmol.

K. J. Laidler and B. W. Wojciechowski: Kinetics and Mechanisms of the Thermal Decomposition of Ethane.

I. The Uninhibited Reaction, Proceedings of the Royal Society of London. Series A, Mathematical and

Physical Sciences, Vol. 260, No. 1300 pp. 91-102

Page 24: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Homework 4 (due after Chapter 4) Calculate volumes of CSTR a PFR working at 150 oC and 300 kPa to produce 1 t COCl2/day

with CO conversion equal to 95 %. A mixture of CO and Cl2 (molar ratio 1:1) is fed at 300

kPa and 150 oC.

Data

k(423 K) = 0.07 (m3mol-1)3/2.s-1

MCOCl2 = 98.92 kg/kmol.

Answer:

VCSTR = 0.053 m3 VPFR = 0.0021 m3

IN OUT

CO (1)

Cl2 (2)

COCl2 (3) 0

1

oF

1

oF

12

o oF F

1 1 11

oF F X

2 1 11

oF F X

3 1 1

oF F X

1 12

oF F X

CO(g) + Cl2(g) → COCl2(g) o

iF i

F

steady state; j - key com ponent

o oi

i i j j

j

F F F X

Page 25: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

2

2

3

1 1 1 31 1 1

1 2

1 1 1

5 / 25 / 2

3 / 2 31

1

6

3

1 1

1

ideal gas [m /m ol]

1 1 [m ol/m ]

2 2

1[m ol/m /s]

2

1 10 / 98.92 / 24 3600

0.90.1231 m

563 o

m

o

CO Clo

m

V CO Cl

o

RTV

P

F X XF F FP P Pc c c c

V V F RT F RT F X RT X

XPr kc c k

RT X

FF

X

1 1

1 1 1 1

5 / 2 5 / 21 5 / 25 / 2 311 1

1

1

1

3

l/s

0.1231

( ) 1 300 10 1 0.9510.07

8.3145 423 2 0.952

0.0503

63 0.

m

95o o

CSTR

V

F X F XV

r X XPkRT X

Page 26: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

1 5 / 25 / 20.95 0.95

1 1 1 1

15 / 25

3

/ 2

10 0 01

1

5 / 2

3

3

2

( ) 1 11

2

8.310.12316379.42692225 2.08 10

45 423

0.07 300 1m

0

jXo o o

j j

PFR

V jj

F dX F dX F XRTV dX

r X k P XXPkRT X

Page 27: General material balance of reacting system Batch …bernauem/ark/lectures/Chapter 4.pdfSummary • General material balance of reacting system • Batch reactor • Continuous-flow

Summary • General material balance of reacting system • Batch reactor • Continuous-flow reactors: CSTR (Continuous Stirred Tank Reactor) PFR (Plug Flow Reactor) • Steady state of CSTR and PFR • Design tasks : outlet (final conversion), given volume of reactor x volume of reactor, given outlet conversion