generalized fourier transforms with the spectral tensor network

51
Generalized Fourier transforms with the Spectral Tensor Network Andy Ferris ICFO – Ins>tute of Photonic Science (Spain) Recently jointly with: Max Planck Ins>tute for Quantum Op>cs

Upload: votruc

Post on 13-Feb-2017

235 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Generalized Fourier transforms with the Spectral Tensor Network

Generalized  Fourier  transforms  with  the  Spectral  Tensor  Network  

Andy  Ferris  ICFO  –  Ins>tute  of  Photonic  Science  (Spain)  

 

Recently  jointly  with:  Max  Planck  Ins>tute  for  Quantum  Op>cs  

 

Page 2: Generalized Fourier transforms with the Spectral Tensor Network

What  am  I  talking  about  today?  

•  Overall  goal:  use  tensor  networks  to  study  fermionic  models  in  2D  and  beyond  

•  Introduce  a  generalized  Fourier  transform  for  bosons  and  fermions  (and  more!)  

•  This  suggests  a  new  tensor  network  ansatz  to  use  varia>onally  with  interac>ng  systems  

Page 3: Generalized Fourier transforms with the Spectral Tensor Network

Tensor  networks    and  area  law  

Many  low-­‐energy  systems  have    entanglement  bounded  by  boundary  area,  not  volume.  E.g.  in  2D,    

Can  use  tensor  networks  to  accurately  and  efficiently  describe  such  states    

But:  some  “cri>cal”  2D  systems  obey:  

S / L logL

S / L

R.  Orus,  arXiv:1306.2164  (2013)  

Page 4: Generalized Fourier transforms with the Spectral Tensor Network

Free-­‐fermions  •  Simple  quadra>c  /  bi-­‐linear  Hamiltonian  

•  Represents  metals,  band  insulators,  etc  

•  Could  be  more  complicated  – Spins/orbitals,  longer  range  interac>ons,  etc  – Anamolous  pair  terms  

H =X

i

tc†i ci+1 + h.c.

c†i c†j + h.c.

Page 5: Generalized Fourier transforms with the Spectral Tensor Network

Entanglement  in  free-­‐fermion  systems  

•  Free-­‐fermions  exactly  diagonalized  by  Fourier  transform    

•  No  entanglement  in  momentum  space!  •  Lots  of  entanglement  in  real  space,  more  than  area  law  (depending  on  Fermi  surface)  

 

   1D:                  2D:  

c†k

=1pn

X

x

c†x

eikx

S / logL S / L logL

Page 6: Generalized Fourier transforms with the Spectral Tensor Network

Where  to?  

•  Given  the  large  amount  of  entanglement  in  rela>vely  simple  systems,  tensor  networks  like  PEPS  might  not  offer  very  efficient  descrip>on  of  the  state  

•  Here  we  make  use  of  the  fact  that  the  state  has  no  entanglement  in  momentum  space  

Page 7: Generalized Fourier transforms with the Spectral Tensor Network

The  rest  of  this  talk…        

Fourier  transform  for  quantum  many-­‐body  systems  

Page 8: Generalized Fourier transforms with the Spectral Tensor Network

Transla>on  invariance  

Transla>onally  invariant  states  don’t  change  under  transla>on:        The  Fourier  transform  is  a  unitary  that  diagonalizes              .  Eigenvalues  of                are              .      

T1| i = eik| i

T1 T1 eik

Page 9: Generalized Fourier transforms with the Spectral Tensor Network

Fast  Fourier  transform  

Fourier  transform  of  vector  of  numbers,            .      Linear  transforma>on  represented  by  matrix:  

xj

2

664

1 1 1 11 i �1 �i1 �1 1 �11 �i �1 i

3

775F4 =

ak

=X

x

ax

eikx

Page 10: Generalized Fourier transforms with the Spectral Tensor Network

Fast  Fourier  transform  

Matrix  can  be  decomposed  into  product  of  sparse  matrices  (prime  factors).        

2

664

1 1 1 11 i �1 �i1 �1 1 �11 �i �1 i

3

775 = (F2 ⌦ I2)W (I ⌦ F2)P

F2 =

1 11 �1

� Diagonal  phases  “twiddle  factors”  

Permuta>on  matrix  

Page 11: Generalized Fourier transforms with the Spectral Tensor Network

Classical  Fourier  decomposi>on  

The  Fourier  transform  can  be  re-­‐wrieen  as  a  sum  of  two  smaller  Fourier  transforms:              Can  be  applied  itera>vely  for  2N  sites  

Even  sites   Odd  sites  Phase  factor  

FT  over  all  N  sites   FT  over  N/2  even  sites   FT  over  N/2  odd  sites  

N�1X

x=0

e2⇡ikx

N ax

=

N/2�1X

x

0=0

e2⇡ikx

0N/2 a2x0 + e

2⇡ik

N

N/2�1X

x

0=0

e2⇡ikx

N/2 a2x0+1

Page 12: Generalized Fourier transforms with the Spectral Tensor Network

Classical  Fourier  decomposi>on  

The  Fourier  transform  can  be  re-­‐wrieen  as  a  sum  of  two  smaller  Fourier  transforms:              Can  be  applied  itera>vely  for  2N  sites  

Even  sites   Odd  sites  Phase  factor  

FT  over  all  N  sites   FT  over  N/2  even  sites   FT  over  N/2  odd  sites  

N�1X

x=0

e2⇡ikx

N ax

=

N/2�1X

x

0=0

e2⇡ikx

0N/2 a2x0 + e

2⇡ik

N

N/2�1X

x

0=0

e2⇡ikx

N/2 a2x0+1

Page 13: Generalized Fourier transforms with the Spectral Tensor Network

Apply  decomposi>on  successively  

!ab = �12a/b

The  trick:  use  one-­‐  and  two-­‐body  linear  elements  

Momentum  space  

Real  space  

Page 14: Generalized Fourier transforms with the Spectral Tensor Network

Quantum  unitary  circuit  for  Fourier  transform  

Can  use  graphical  iden>>es  to  manipulate  it,  in  addi>on  to                                          .  (Similar  freedom  in  FFT)  FT

n = Fn

Page 15: Generalized Fourier transforms with the Spectral Tensor Network

Gates  for  fermions,  bosons…  

•  Gates  are  linear:    •  For  fermions  these  are  4  x  4  

•  When  wires  cross,  mul>ply  by  -­‐1  when  two  fermions  are  exchanged.  

c01 =c1 + c2p

2

c02 =c1 � c2p

2

U =

2

664

1 0 0 00 1/

p2 1/

p2 0

0 1/p2 �1/

p2 0

0 0 0 �1

3

775

c0† = c†ei�

Page 16: Generalized Fourier transforms with the Spectral Tensor Network

Fourier  transform  quantum  circuit  

!ab = �12a/b

Page 17: Generalized Fourier transforms with the Spectral Tensor Network

Spectral  tensor  network  

Page 18: Generalized Fourier transforms with the Spectral Tensor Network

Expecta>on  values  

Page 19: Generalized Fourier transforms with the Spectral Tensor Network

Tensor  contrac>ons  •  The  remaining  tensor    network  isomorphic  to    a  tree  – Fold  through  middle  

•  Can  be  contracted  with  cost                                      .  

•  Everything  with  

•  Two  body  

O(�5 n)

O(�8 n log n)

O(�8)

Page 20: Generalized Fourier transforms with the Spectral Tensor Network

2D  Fourier    transform  

Actually,  the  structure  of  the  Fourier  transform  is  very  similar  in  2D,  3D,  etc…    

No  change  in  cost.  

Page 21: Generalized Fourier transforms with the Spectral Tensor Network

Results:  1D  

Filling  the  lowest  momentum  states.  

H =X

i

tc†i ci+1 + h.c.

g

(1)(�x) =hc†

i

c

i+�x

ihni

−6 −4 −2 0 2 4 6−0.5

0

0.5

1

1.5

6 x

Cor

rela

tion

func

tion

g(1)

g(2)

g

(2)(�x) =hn

i

n

i+�x

ihni2

Page 22: Generalized Fourier transforms with the Spectral Tensor Network

Results:  2D  

•  Start  with  512  x  512  lagce  (1/4  million  sites)  •  Low  filling  factor  (approximates  free  space)  

6 x

6 y

g(1)

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

∆ x

∆ y

(b)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4 0

0.2

0.4

0.6

0.8

1g(2)

Page 23: Generalized Fourier transforms with the Spectral Tensor Network

Bogoliubov  transforma>ons  H =

X

i

tc†i ci+1 +�c†i c†i+1 + h.c.

H =X

i

�x

i

�x

i+1 + h�z

i

Correla>ons  between                modes    

±k

⌘k = uk ck + vk c†�k

0.8 0.9 1 1.1 1.20

0.5

1

1.5

2

2.5

h

r

1024  sites  (c-­‐cyclic  approxima>on)    

Page 24: Generalized Fourier transforms with the Spectral Tensor Network

Free  fermions:  Other  things  to  calculate  

•  Few-­‐site  correla>ons,  finite  temperature,  3D  systems,  entanglement  entropy  of  blocks  

•  Mul>ple  bands  or    species  per  site  – Conductors  (metals)    with  arbitrary  Fermi-­‐  surface  or  Dirac  points  

– Band-­‐insulators  – Topological  phases    (chiral,  Majorana,  SPTO…)   0

0

2

4

6

8

+kLkLQuasimomentum q

Energy�(E

R)

Page 25: Generalized Fourier transforms with the Spectral Tensor Network

Interac>ng  systems?  

Page 26: Generalized Fourier transforms with the Spectral Tensor Network

Varia>onal  approach  

The  “spectral  tensor  network”  can  be  used  as  a  wave-­‐func>on  ansatz  

Fill  with  arbitrary  unitary  

Page 27: Generalized Fourier transforms with the Spectral Tensor Network

Generalized  Fourier  transform  The  operator  that  diagonalizes  the  shil  operator  is  not  unique      

 

Notably:  a  simple  constraint  on  the  gates  leads  to  the  same  decomposi>on  as  standard  FFT.  

Page 28: Generalized Fourier transforms with the Spectral Tensor Network

2-­‐site  Fourier  transform  

The  gate  must  diagonalize  – Eigenvalues                    (symmetric  or  an>symmetric)  

T1 = ˆSWAP±1

Parity  of  state  in  real  space  =  number  parity  of        -­‐momentum  state  ⇡

(real  space)  

(momentum  space)  

*  

k=⇡k=0 k=⇡k=0

Page 29: Generalized Fourier transforms with the Spectral Tensor Network

4-­‐site  Fourier  transform  

Using  any  such  a  gate  we  can  construct  a  Fourier  transform!  

!04 = 1

!14 = i

!24 = �1

!34 = �i

Page 30: Generalized Fourier transforms with the Spectral Tensor Network

4-­‐site  Fourier  transform  

Using  any  such  a  gate  we  can  construct  a  Fourier  transform!  

!04 = 1

!14 = i

!24 = �1

!34 = �i

Page 31: Generalized Fourier transforms with the Spectral Tensor Network

4-­‐site  Fourier  transform  

Using  any  such  a  gate  we  can  construct  a  Fourier  transform!  

!04 = 1

!14 = i

!24 = �1

!34 = �i

Page 32: Generalized Fourier transforms with the Spectral Tensor Network

4-­‐site  Fourier  transform  

Using  any  such  a  gate  we  can  construct  a  Fourier  transform!  

!04 = 1

!14 = i

!24 = �1

!34 = �i

Page 33: Generalized Fourier transforms with the Spectral Tensor Network

4-­‐site  Fourier  transform  

Using  any  such  a  gate  we  can  construct  a  Fourier  transform!  

!04 = 1

!14 = i

!24 = �1

!34 = �i

Page 34: Generalized Fourier transforms with the Spectral Tensor Network

4-­‐site  Fourier  transform  

Using  any  such  a  gate  we  can  construct  a  Fourier  transform!  

!04 = 1

!14 = i

!24 = �1

!34 = �i

Page 35: Generalized Fourier transforms with the Spectral Tensor Network

4-­‐site  Fourier  transform  

Using  any  such  a  gate  we  can  construct  a  Fourier  transform!  

!04 = 1

!14 = i

!24 = �1

!34 = �i

Page 36: Generalized Fourier transforms with the Spectral Tensor Network

4-­‐site  Fourier  transform  

Using  any  such  a  gate  we  can  construct  a  Fourier  transform!  

!04 = 1

!14 = i

!24 = �1

!34 = �i

Page 37: Generalized Fourier transforms with the Spectral Tensor Network

Larger  systems  The  paeern  con>nues…            Generally,  can  decompose  any  non-­‐prime  system  size.  

Page 38: Generalized Fourier transforms with the Spectral Tensor Network

The  meaning  of  the  phase  factors  

We  can  interpret  the  phase  factors  as  applying  a  half-­‐quanta  momentum-­‐boost  to  the  right  system    

T.I.  system  1   T.I.  system  2  

Page 39: Generalized Fourier transforms with the Spectral Tensor Network

Generalized  fast  Fourier  transform  

Page 40: Generalized Fourier transforms with the Spectral Tensor Network

Spectral  tensor  network  (1D)  

Page 41: Generalized Fourier transforms with the Spectral Tensor Network

The  possibili>es  

•  We  now  have  a  tool  for  crea>ng  a  wide  variety  of  transla>onally  invariant  states.  Known  cases:  

•  Bosons:  problem  -­‐  large  bond  dimension  •  Fermions:    small  Fock  space  – Free  fermions  include  beyond  area-­‐law,  chiral  states,  Majorana/SPTO,  etc…  

–  Interac>ng  fermions?  

•  Abelian  anyons:  E.g.  parafermions  

Page 42: Generalized Fourier transforms with the Spectral Tensor Network

A  simple  example  

Generalized  Bose  “condensate”  

Page 43: Generalized Fourier transforms with the Spectral Tensor Network

A  simple  example  

Generalized  Bose  “condensate”  Coherent  state        

MoE  state  (repulsive)          

Collapsed  state/“Bosanova”  (aEracMve)          

| i = |↵i|↵i . . . |↵i

| i = |1111 . . . i| i = |101010 . . . i+ |010101 . . . i

| i = |N00 . . . i+ |0N0 . . . i+ . . .

Page 44: Generalized Fourier transforms with the Spectral Tensor Network

Beeer  example:  Hubbard  model  

Each  site  has  two  fermion  orbitals  (spin  up/down).  

Unitary  has  significant  freedom.  

H =X

i,s

�ta†i,sai+1,s + h.c.+ Uni,"ni,#

Page 45: Generalized Fourier transforms with the Spectral Tensor Network

Arbitary  unitary  

Beeer  example:  Hubbard  model  Unitary  must  preserve  number  &  sort  momenta:  

n = 0

n = 1

n = 2

n = 3

n = 4

k = 0 k = ⇡|00i

| " 0i+ |0 "i | " 0i � |0 "i| # 0i � |0 #i| # 0i+ |0 #i

|22i

| ""i| ##i| "#i+ | #"i | "#i � | #"i|20i � |02i|20i+ |02i

|2 "i+ | " 2i|2 "i � | " 2i|2 #i � | # 2i

|2 #i+ | # 2i

,

Page 46: Generalized Fourier transforms with the Spectral Tensor Network

|2 "i+ | " 2i|2 "i � | " 2i|2 #i � | # 2i

|2 #i+ | # 2i

Arbitary  unitary  

Beeer  example:  Hubbard  model  Unitary  must  preserve  number  &  sort  momenta:  

n = 0

n = 1

n = 2

n = 3

n = 4

k = 0 k = ⇡|00i

| " 0i+ |0 "i | " 0i � |0 "i| # 0i � |0 #i| # 0i+ |0 #i

|22i

| ""i| ##i| "#i+ | #"i | "#i � | #"i|20i � |02i|20i+ |02i,

Page 47: Generalized Fourier transforms with the Spectral Tensor Network

Z3  parafermions  •  Non-­‐interac>ng  parafermions.  No  more  than  two  par>cles  per  site.    

•  Operators  get  phase  when  commuted:  

•  Local  representa>on  of  operator:  

a† 3i = 0

aiaj = e2⇡i/3aj ai (i < j)

a†i aj = e2⇡i/3aj a†i (i < j)

a†i =

2

40 1 00 0

p2

0 0 0

3

5 Like  bosons  with  truncated  Fock  

space  

Page 48: Generalized Fourier transforms with the Spectral Tensor Network

Z3  parafermions  

•  Can  find  a  two-­‐body  gate  such  that    

•  This  gate  sa>sfies  the  condi>ons  for  the  spectral  tensor  network.  Implica>ons:  – Can  easily  perform  (linear)  Fourier  transform  on  these  parafermions  

– Exactly  solve  transla>onally  invariant,  quadra>c  Hamiltonians  (1D,  2D,  long-­‐range  hopping  +  chemical  poten>al)  

U a1U† =

a1 + a2p2

U a2U† =

a1 � a2p2

Page 49: Generalized Fourier transforms with the Spectral Tensor Network

Parafermion  “Jordan-­‐Wigner”  transforma>on  

•  Can  perform  a  more  general  Jordan-­‐Wigner  transforma>on  to  a  spin-­‐1  chain.  

•  Doesn’t  work  for  anomalous  terms.    •  Gives  a  very  messy  spin-­‐1  Hamiltonian    –  I  won’t  even  write  it  here!  

•  (previously  known  result)  

ai = exp(2⇡i/3X

j<i

(

ˆZj + 1)

ˆMi)

Page 50: Generalized Fourier transforms with the Spectral Tensor Network

Discussion  

•  We  are  just  scratching  the  surface  of  what  is  possible  

•  Many  ways  to  implement  /  extend  the  ansatz  – TN  geometry,  system  type,  Bogoliubov,  MPS…  

•  Many  open  ques>ons  – Efficient  for  interac>ng  models?  Fermi  liquids?  – Open  boundary  condi>ons?  (DST/DCT)  –  Impurity  problems  or  other  non-­‐transla>onally  invariant  systems?  

Page 51: Generalized Fourier transforms with the Spectral Tensor Network

Thank  you!