generalized ramanujan primes - williams college...introduction c-ramanujan primes results...

76
Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan Ronan Advisor: Steven J. Miller http://web.williams.edu/Mathematics/sjmiller/ Young Mathematicians Conference Ohio State, August 2011 1

Upload: others

Post on 14-Mar-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Generalized Ramanujan Primes

Nadine Amersi, Olivia Beckwith, Ryan Ronan

Advisor: Steven J. Miller

http://web.williams.edu/Mathematics/sjmiller/

Young Mathematicians ConferenceOhio State, August 2011

1

Page 2: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product ofprime numbers (Fundamental Theorem of Arithmetic).

Exact spacing of primes unknown but roughly growinglogarithmically (Prime Number Theorem).

We expect linearly increasing intervals to contain anincreasing amount of primes.

2

Page 3: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product ofprime numbers (Fundamental Theorem of Arithmetic).

Exact spacing of primes unknown but roughly growinglogarithmically (Prime Number Theorem).

We expect linearly increasing intervals to contain anincreasing amount of primes.

3

Page 4: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product ofprime numbers (Fundamental Theorem of Arithmetic).

Exact spacing of primes unknown but roughly growinglogarithmically (Prime Number Theorem).

We expect linearly increasing intervals to contain anincreasing amount of primes.

4

Page 5: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Historical Introduction

Bertrand’s Postulate (1845)For all integers x ≥ 2, there exists at least one prime in(x/2, x ].

5

Page 6: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Ramanujan Primes

DefinitionThe n-th Ramanujan prime Rn: smallest integer such thatfor any x ≥ Rn, at least n primes in any (x/2, x ].

TheoremRamanujan: For each integer n, Rn exists.Sondow: Rn ∼ p2n.Sondow: As n→∞, 50% of primes are Ramanujan.

6

Page 7: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Ramanujan Primes

DefinitionThe n-th Ramanujan prime Rn: smallest integer such thatfor any x ≥ Rn, at least n primes in any (x/2, x ].

TheoremRamanujan: For each integer n, Rn exists.

Sondow: Rn ∼ p2n.Sondow: As n→∞, 50% of primes are Ramanujan.

7

Page 8: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Ramanujan Primes

DefinitionThe n-th Ramanujan prime Rn: smallest integer such thatfor any x ≥ Rn, at least n primes in any (x/2, x ].

TheoremRamanujan: For each integer n, Rn exists.Sondow: Rn ∼ p2n.

Sondow: As n→∞, 50% of primes are Ramanujan.

8

Page 9: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Ramanujan Primes

DefinitionThe n-th Ramanujan prime Rn: smallest integer such thatfor any x ≥ Rn, at least n primes in any (x/2, x ].

TheoremRamanujan: For each integer n, Rn exists.Sondow: Rn ∼ p2n.Sondow: As n→∞, 50% of primes are Ramanujan.

9

Page 10: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

For each c and integer n, does Rc,n exist? Yes!

10

Page 11: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

For each c and integer n, does Rc,n exist?

Yes!

11

Page 12: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

For each c and integer n, does Rc,n exist? Yes!

12

Page 13: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

Does Rc,n exhibit asymptotic behavior?

For c → 0, the interval is (0, x ] and Rc,n = pn.For c → 1, the interval would be (x , x ] so Rc,n doesnot exist.

Rc,n ∼ p n1−c

13

Page 14: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

Does Rc,n exhibit asymptotic behavior?

For c → 0, the interval is (0, x ] and Rc,n = pn.

For c → 1, the interval would be (x , x ] so Rc,n doesnot exist.

Rc,n ∼ p n1−c

14

Page 15: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

Does Rc,n exhibit asymptotic behavior?

For c → 0, the interval is (0, x ] and Rc,n = pn.For c → 1, the interval would be (x , x ] so Rc,n doesnot exist.

Rc,n ∼ p n1−c

15

Page 16: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

Does Rc,n exhibit asymptotic behavior?

For c → 0, the interval is (0, x ] and Rc,n = pn.For c → 1, the interval would be (x , x ] so Rc,n doesnot exist.

Rc,n ∼ p n1−c

16

Page 17: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

What percent of primes are c-Ramanujan?

Given Rc,n ∼ p n1−c

, it follows Rc,N(1−c) ∼ pN .

1-c

17

Page 18: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

What percent of primes are c-Ramanujan?

Given Rc,n ∼ p n1−c

, it follows Rc,N(1−c) ∼ pN .

1-c

18

Page 19: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

c-Ramanujan Primes

DefinitionThe n-th c-Ramanujan prime Rc,n: smallest integer suchthat for any x ≥ Rc,n have at least n primes in (cx , x ].

What percent of primes are c-Ramanujan?

Given Rc,n ∼ p n1−c

, it follows Rc,N(1−c) ∼ pN .

1-c

19

Page 20: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Preliminaries

Let π(x) be the prime-counting function that gives thenumber of primes less than or equal to x .

Rosser’s Theorem states:

pm = m log m + O(m log log m).

The Prime Number Theorem states:

limx→∞

π(x)x/ log(x)

= 1.

20

Page 21: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Preliminaries

Let π(x) be the prime-counting function that gives thenumber of primes less than or equal to x .

Rosser’s Theorem states:

pm = m log m + O(m log log m).

The Prime Number Theorem states:

limx→∞

π(x)x/ log(x)

= 1.

21

Page 22: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Preliminaries

Let π(x) be the prime-counting function that gives thenumber of primes less than or equal to x .

Rosser’s Theorem states:

pm = m log m + O(m log log m).

The Prime Number Theorem states:

limx→∞

π(x)x/ log(x)

= 1.

22

Page 23: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

The Prime Number Theorem

The logarithmic integral function Li(x) is defined by

Li(x) =∫ x

2

1log t

dt .

The Prime Number Theorem gives us

π(x) = Li(x) + O(

xlog2 x

),

i.e., there is a C > 0 such that for all x sufficiently large

−Cx

log x≤ π(x)− Li(x) ≤ C

xlog x

.

23

Page 24: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

The Prime Number Theorem

The logarithmic integral function Li(x) is defined by

Li(x) =∫ x

2

1log t

dt .

The Prime Number Theorem gives us

π(x) = Li(x) + O(

xlog2 x

),

i.e., there is a C > 0 such that for all x sufficiently large

−Cx

log x≤ π(x)− Li(x) ≤ C

xlog x

.

24

Page 25: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Existence of Rc,n

Theorem (Amersi, Beckwith, Ronan, 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Proof:The number of primes in (cx , x ] is π(x)− π(cx).Using the Prime Number Theorem and Mean ValueTheorem:

π(x)− π(cx) = Li(x)− Li(cx) + O(x log−2 x)= Li′(yc)(x − cx) + O(x log−2 x)

with yc(x) ∈ [cx , x ].

25

Page 26: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Existence of Rc,n

Theorem (Amersi, Beckwith, Ronan, 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Proof:

The number of primes in (cx , x ] is π(x)− π(cx).Using the Prime Number Theorem and Mean ValueTheorem:

π(x)− π(cx) = Li(x)− Li(cx) + O(x log−2 x)= Li′(yc)(x − cx) + O(x log−2 x)

with yc(x) ∈ [cx , x ].

26

Page 27: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Existence of Rc,n

Theorem (Amersi, Beckwith, Ronan, 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Proof:The number of primes in (cx , x ] is π(x)− π(cx).

Using the Prime Number Theorem and Mean ValueTheorem:

π(x)− π(cx) = Li(x)− Li(cx) + O(x log−2 x)= Li′(yc)(x − cx) + O(x log−2 x)

with yc(x) ∈ [cx , x ].

27

Page 28: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Existence of Rc,n

Theorem (Amersi, Beckwith, Ronan, 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Proof:The number of primes in (cx , x ] is π(x)− π(cx).Using the Prime Number Theorem and Mean ValueTheorem:

π(x)− π(cx) = Li(x)− Li(cx) + O(x log−2 x)

= Li′(yc)(x − cx) + O(x log−2 x)with yc(x) ∈ [cx , x ].

28

Page 29: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Existence of Rc,n

Theorem (Amersi, Beckwith, Ronan, 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Proof:The number of primes in (cx , x ] is π(x)− π(cx).Using the Prime Number Theorem and Mean ValueTheorem:

π(x)− π(cx) = Li(x)− Li(cx) + O(x log−2 x)= Li′(yc)(x − cx) + O(x log−2 x)

with yc(x) ∈ [cx , x ].

29

Page 30: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Existence of Rc,n

π(x)− π(cx) = (1−c)xlog yc

+ O(x log−2 x).

Since log yc = log x − bc, for bc ∈ [0,− log c],

π(x)− π(cx) =(1− c)x

log x − bc+ O

(x

log2 x

).

For sufficiently large x , π(x)− π(cx) is strictlyincreasing and π(x)− π(cx) ≥ n, for all integers n.

30

Page 31: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Existence of Rc,n

π(x)− π(cx) = (1−c)xlog yc

+ O(x log−2 x).

Since log yc = log x − bc, for bc ∈ [0,− log c],

π(x)− π(cx) =(1− c)x

log x − bc+ O

(x

log2 x

).

For sufficiently large x , π(x)− π(cx) is strictlyincreasing and π(x)− π(cx) ≥ n, for all integers n.

31

Page 32: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Existence of Rc,n

π(x)− π(cx) = (1−c)xlog yc

+ O(x log−2 x).

Since log yc = log x − bc, for bc ∈ [0,− log c],

π(x)− π(cx) =(1− c)x

log x − bc+ O

(x

log2 x

).

For sufficiently large x , π(x)− π(cx) is strictlyincreasing and π(x)− π(cx) ≥ n, for all integers n.

32

Page 33: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Bounds on Rc,n

Rc,n ≥ pn

≥ n log n.

Want Rc,n ≤ αcn log(αcn) for large n.

Conjecture αc = 21−c .

To prove, must showπ(x)− π(cx) ≥ n ∀x ≥ αcn log(αcn).

We then obtain bounds on log Rc,n :

(1− βc log log n

log n

)log n ≤ log Rc,n ≤

(1 +

βc log log nlog n

)log n.

33

Page 34: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Bounds on Rc,n

Rc,n ≥ pn ≥ n log n.

Want Rc,n ≤ αcn log(αcn) for large n.

Conjecture αc = 21−c .

To prove, must showπ(x)− π(cx) ≥ n ∀x ≥ αcn log(αcn).

We then obtain bounds on log Rc,n :

(1− βc log log n

log n

)log n ≤ log Rc,n ≤

(1 +

βc log log nlog n

)log n.

34

Page 35: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Bounds on Rc,n

Rc,n ≥ pn ≥ n log n.

Want Rc,n ≤ αcn log(αcn) for large n.

Conjecture αc = 21−c .

To prove, must showπ(x)− π(cx) ≥ n ∀x ≥ αcn log(αcn).

We then obtain bounds on log Rc,n :

(1− βc log log n

log n

)log n ≤ log Rc,n ≤

(1 +

βc log log nlog n

)log n.

35

Page 36: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Bounds on Rc,n

Rc,n ≥ pn ≥ n log n.

Want Rc,n ≤ αcn log(αcn) for large n.

Conjecture αc = 21−c .

To prove, must showπ(x)− π(cx) ≥ n ∀x ≥ αcn log(αcn).

We then obtain bounds on log Rc,n :

(1− βc log log n

log n

)log n ≤ log Rc,n ≤

(1 +

βc log log nlog n

)log n.

36

Page 37: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Bounds on Rc,n

Rc,n ≥ pn ≥ n log n.

Want Rc,n ≤ αcn log(αcn) for large n.

Conjecture αc = 21−c .

To prove, must showπ(x)− π(cx) ≥ n ∀x ≥ αcn log(αcn).

We then obtain bounds on log Rc,n :

(1− βc log log n

log n

)log n ≤ log Rc,n ≤

(1 +

βc log log nlog n

)log n.

37

Page 38: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Bounds on Rc,n

Rc,n ≥ pn ≥ n log n.

Want Rc,n ≤ αcn log(αcn) for large n.

Conjecture αc = 21−c .

To prove, must showπ(x)− π(cx) ≥ n ∀x ≥ αcn log(αcn).

We then obtain bounds on log Rc,n :

(1− βc log log n

log n

)log n ≤ log Rc,n ≤

(1 +

βc log log nlog n

)log n.

38

Page 39: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Bounds on Rc,n

Rc,n ≥ pn ≥ n log n.

Want Rc,n ≤ αcn log(αcn) for large n.

Conjecture αc = 21−c .

To prove, must showπ(x)− π(cx) ≥ n ∀x ≥ αcn log(αcn).

We then obtain bounds on log Rc,n :

(1− βc log log n

log n

)log n ≤ log Rc,n ≤

(1 +

βc log log nlog n

)log n.

39

Page 40: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Asymptotic Behavior

Theorem (Amersi, Beckwith, Ronan, 2011)For any fixed c ∈ (0,1), the nth c-Ramanujan prime isasymptotic to the n

1−c th prime as n→∞

By the triangle inequality∣∣∣Rc,n − p n1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣

≤ γcn log log n

Since n log log npn

→ 0 as n→∞⇒ Rc,n ∼ p n1−c

40

Page 41: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Asymptotic Behavior

Theorem (Amersi, Beckwith, Ronan, 2011)For any fixed c ∈ (0,1), the nth c-Ramanujan prime isasymptotic to the n

1−c th prime as n→∞

By the triangle inequality∣∣∣Rc,n − p n1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣≤ γcn log log n

Since n log log npn

→ 0 as n→∞⇒ Rc,n ∼ p n1−c

41

Page 42: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Asymptotic Behavior

Theorem (Amersi, Beckwith, Ronan, 2011)For any fixed c ∈ (0,1), the nth c-Ramanujan prime isasymptotic to the n

1−c th prime as n→∞

By the triangle inequality∣∣∣Rc,n − p n1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣≤ γcn log log n

Since n log log npn

→ 0 as n→∞

⇒ Rc,n ∼ p n1−c

42

Page 43: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Asymptotic Behavior

Theorem (Amersi, Beckwith, Ronan, 2011)For any fixed c ∈ (0,1), the nth c-Ramanujan prime isasymptotic to the n

1−c th prime as n→∞

By the triangle inequality∣∣∣Rc,n − p n1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣≤ γcn log log n

Since n log log npn

→ 0 as n→∞⇒ Rc,n ∼ p n1−c

43

Page 44: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (Amersi, Beckwith, Ronan, 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Define N = b n1−c c.

|aN

|pN

|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

44

Page 45: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (Amersi, Beckwith, Ronan, 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

45

Page 46: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (Amersi, Beckwith, Ronan, 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:

Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

46

Page 47: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (Amersi, Beckwith, Ronan, 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,

Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

47

Page 48: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (Amersi, Beckwith, Ronan, 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

48

Page 49: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (Amersi, Beckwith, Ronan, 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

49

Page 50: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m) x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x) x

3 Prime Number Theorem X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

50

Page 51: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m)

x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x) x

3 Prime Number Theorem X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

51

Page 52: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m) x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x) x

3 Prime Number Theorem X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

52

Page 53: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m) x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x) x

3 Prime Number Theorem X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

53

Page 54: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m) x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x)

x

3 Prime Number Theorem X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

54

Page 55: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m) x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x) x

3 Prime Number Theorem X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

55

Page 56: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m) x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x) x

3 Prime Number Theorem

X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

56

Page 57: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m) x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x) x

3 Prime Number Theorem X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

57

Page 58: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Frequency of c-Ramanujan Primes

1 Rosser’s Theorem:

pm = m log m + O(m log log m) x

2 Riemann Hypothesis:

π(x) = Li(x) + O(√

x log x) x

3 Prime Number Theorem X

⇒ π(bN)− π(aN)

π(pN)≤ ξ

log log Nlog N

→ 0 as N →∞

58

Page 59: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Prime Numbers

2 3 5 7 11 13 1719 23 29 31 37 41 4347 53 59 61 67 71 7379 83 89 97 101 103 107109 113 127 131 137 139 149151 157 163 167 173 179 181191 193 197 199 211 223 227

59

Page 60: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Ramanujan Primes

2 3 5 7 11 13 1719 23 29 31 37 41 4347 53 59 61 67 71 7379 83 89 97 101 103 107109 113 127 131 137 139 149151 157 163 167 173 179 181191 193 197 199 211 223 227

60

Page 61: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,

P, the probability of Heads,N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

)Var[LN ] ≈ π2

6 log2 (1/P)+

112

61

Page 62: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,

N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

)Var[LN ] ≈ π2

6 log2 (1/P)+

112

62

Page 63: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,N, the number of trials,

LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

)Var[LN ] ≈ π2

6 log2 (1/P)+

112

63

Page 64: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

)Var[LN ] ≈ π2

6 log2 (1/P)+

112

64

Page 65: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

)

Var[LN ] ≈ π2

6 log2 (1/P)+

112

65

Page 66: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

)Var[LN ] ≈ π2

6 log2 (1/P)+

112

66

Page 67: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

What is P?

Define Pc as the frequency of c-Ramanujan primesamongst the primes,

As N →∞,Pc = 1− c,For finite intervals [a,b], Pc is a function of a and b,Choose a = 105,b = 106.

67

Page 68: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

What is P?

Define Pc as the frequency of c-Ramanujan primesamongst the primes,As N →∞,Pc = 1− c,

For finite intervals [a,b], Pc is a function of a and b,Choose a = 105,b = 106.

68

Page 69: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

What is P?

Define Pc as the frequency of c-Ramanujan primesamongst the primes,As N →∞,Pc = 1− c,For finite intervals [a,b], Pc is a function of a and b,

Choose a = 105,b = 106.

69

Page 70: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

What is P?

Define Pc as the frequency of c-Ramanujan primesamongst the primes,As N →∞,Pc = 1− c,For finite intervals [a,b], Pc is a function of a and b,Choose a = 105,b = 106.

70

Page 71: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Distribution of generalized Ramanujan primes

Length of the longest run in [105,106] ofc-Ramanujan primes Non-c-Ramanujan primes

c Expected Actual Expected Actual

0.50 14 20 16 36

71

Page 72: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Distribution of generalized c-Ramanujan primes

Length of the longest run in [105,106] ofc-Ramanujan primes Non-c-Ramanujan primes

c Expected Actual Expected Actual0.10 70 58 5 30.20 38 36 7 70.30 25 25 10 120.40 18 21 13 160.50 14 20 16 360.60 11 17 22 420.70 9 14 30 780.80 7 9 46 1540.90 5 11 91 345

72

Page 73: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Open Problems

1 Laishram and Sondow: p2n < Rn < p3n for n > 1.Can we find good choices of ac and bc such thatpacn ≤ Rc,n ≤ pbcn for all n?

2 For a given prime p, for what values of c is p ac-Ramanujan prime?

3 Is there any explanation for the unexpecteddistribution of c-Ramanujan primes amongst theprimes?

73

Page 74: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Open Problems

1 Laishram and Sondow: p2n < Rn < p3n for n > 1.Can we find good choices of ac and bc such thatpacn ≤ Rc,n ≤ pbcn for all n?

2 For a given prime p, for what values of c is p ac-Ramanujan prime?

3 Is there any explanation for the unexpecteddistribution of c-Ramanujan primes amongst theprimes?

74

Page 75: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Open Problems

1 Laishram and Sondow: p2n < Rn < p3n for n > 1.Can we find good choices of ac and bc such thatpacn ≤ Rc,n ≤ pbcn for all n?

2 For a given prime p, for what values of c is p ac-Ramanujan prime?

3 Is there any explanation for the unexpecteddistribution of c-Ramanujan primes amongst theprimes?

75

Page 76: Generalized Ramanujan Primes - Williams College...Introduction c-Ramanujan primes Results Distribution Conclusion Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan

Introduction c-Ramanujan primes Results Distribution Conclusion

Acknowledgements

This work was supported by the NSF, Williams College,University College London.

We would like to thank Jonathan Sondow and ourcolleagues from the 2011 REU at Williams College.

76