generation and application of carrier envelope phase ... chen.pdfstable and controllable carrier...

61
Generation and Application of Carrier Envelope Phase Controlled Single-Cycle Optical Pulse Train Wei-Jan Chen 陳蔚然 Department of Physics, National Tsing Hua University Sep. 22, 2009

Upload: others

Post on 29-Oct-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

  • Generation and Application of Carrier Envelope Phase Controlled Single-Cycle Optical Pulse Train

    Wei-Jan Chen 陳蔚然

    Department of Physics, National Tsing Hua University

    Sep. 22, 2009

  • Generation of sub-single-cycle pulses in the optical region

    • Introduction• Review of basic concepts• Modeling molecular modulation• Present status of experiments• How to determine pulse duration• Advance concepts

  • Prefix for small and large numbers:

    micro 10-6 mega 106

    nano 10-9 giga 109

    pico 10-12 tera 1012

    femto 10-15 peta 1015

    atto 10-18 exa 1018

    zepto 10-21 zetta 1021

    yotta 10-24 yocto 1024

    shortest time -- about 100 as

    most intense light -- 1023 W/cm2Man made today:

    Courtesy C. D. Lin, Kansa State U

  • Attoworld

    www.attoworld.de/attoworld.html

    Attosecond: 10-18 second

    C x 10-18 sec = 0.3 nm

  • Time scales

    300 nm optical cycle

    Short pulses can be used to monitor and controlmolecular and electronic motion

  • Characteristic length and time scales for structure and dynamics in the microcosm

    F. Krausz & M. Ivanov, Rev. Mod. Phys. 81 163 (2009)

  • Laser pulses got shorterover the years

    Peak intensityincreased

    100

    Sho

    rtest

    opt

    ical

    pul

    se m

    easu

    red,

    fs

    102

    101

    104

    103

    1970 1980 1990 2000 20101960 1970 1990 2010

    1010

    1020

    1015

    1025

    Focu

    sed

    inte

    nsity

    , W/c

    m2

    Mode-locked Dye andTi:Sapphire lasers;

    HHG pulses . Chirped PulseAmplification

    Ultrafast science High field physics

    Molecular modulation

  • )()( 00 ωω Xettx tjFT −⎯→←−

    Correlation between time and frequency

    Fourier transform: ωω ω detxX ti∫∞

    ∞−

    −= )()(

  • In phase Random phase

    Effect of random phasePrinciple of optical interference of coherent light fields

  • What is a single cycle optical pulse

    (a) Monochromatic light: sinusoidal wave propagation(b) Beating of two waves, ω1 and ω2

    (a)

    (b)

  • (c) Many waves propagating to form a wave packet (left)(d) Ultimate wavepacket is a single-cycle and sub-cycle pulse pulse (right)

    What is a single cycle optical pulse

    (c) (d)

  • Optical cycle

    ..)(~)( cctEtE += )( 0)()(~ φω += tietAtE

    ∫∫

    =

    0

    20

    2

    0)(

    )(

    ωω

    ωωωω

    dE

    dECarrier frequency

    : Fourier transform of E(t))(ωE

    T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997)

  • cosine pulseφn = 0

    Inverted cosineφn = π

    Single cycle waveforms

    2.6 fs

    684 as

    12,820 cm-1

    50,000 cm-1

    780 nm

    200 nm

    sine pulseφn = π/2

  • Carrier envelope phase)cos()()( 00 φω += ttEtE

  • commensurate

    ω

    incommensurate

    ω

    ω m

    Constant CEP requires that the frequencies are commensurate and the relative phases form an arithmetic series

    mq nωω =

    ωn = nωm + ωceo

    Constant carrier envelope phase

    E(t) = An (t)cos(nωm (t + φm /ωm ) + φCEP )n

    φn = φCEP + nφm

    ∑ +=n

    nnn ttEtE )cos()()( φω Φn = carrier envelope phase

    φn = ωceot + φn'

  • Ingredients of an attosecond single-cycle optical pulse:

    1. Broad spectrum – 2 or more octaves2. In phase condition3. Constant carrier envelope phase:

    • Commensurate frequencies• Constant phase difference between adjacent

    spectral components4. Stable and controllable carrier envelope phase

  • Methods of generating attosecond pulses

    A

    Advantages: single pulse100 attosecond

    Disadvantages: 30-100 eV photonsvery low powerconstitutes a few cyclesKrauze et.al., Nature 421, 611 (2003)

    R. Lopez-Martens et. al., PRL 94, 033001 (2005)

    High-order harmonic generation of phase-stabilized femtosecond pulse

  • B

    Methods of generating attosecond pulses

    High-order stimulated Raman scattering using molecular modulation

    q= -2

    δω

    -1 0 1

    43

    2 Etc.

    i

    ba

    Advantages: IR-UV regiongood powersingle-cycle

    Disadvantages: complex setup8-50 fs pulse spacinglimited to ~ 300-500 as

    M.Y. Shverdin et.al., PRL 94, 033904 (2005)

  • Three-step model

    P. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

  • Isolated Attosecond-pulse production

    M. Hentschel et al, Nature 414, 509 (2001)

  • PHYSICS TODAY October 2004Search and Discovery

    Attosecond Bursts Trace the Electric Field of Optical Laser PulsesThe familiar textbook sketch of light's oscillating electric field can now

    be drawn directly from measurements.

    A. Baltuska et al., Nature 421, 611 (2003)E. Goulielmakis et al., Science 305, 1267 (2004)

    http://www.physicstoday.org/

  • Nature 449, 1029 (2007)

  • Common theme

    Photon energies 30 eV to 100 eV (EUV to soft x-ray region)

    Traditional pump-probe measurements

    Photoelectron or photoion detection

    Weak pulses - long signal acquisition time

  • inter-nucleardistance

    time

    ω m

    n = n0 + δ cosωmtRefractive Index

    Molecular modulation is analogous to electro-optic modulation

    Molecular Modulation

    infraredinput

    multi-color

    output

    molecular

    modulator

    ωq=ω0+qωm q= -2,-1,0,1,2,3….Alexei SokolovSteve Harris

  • Two strong laser fields adiabatically drive the molecules into a maximally coherent state.

    ab

    i

    Δ ω

    δ ω

    Ω 0Ω − 1

    Coherent Molecular Excitation

    ( )

    ( )

    ( ) ( )aabbababbbaaab

    bbbabbabaabbb

    bbabbabaabaa

    iii

    i

    i

    ρρργδτ

    ρ

    ργρρτ

    ρ

    ργρρτ

    ρ

    −Ω+++Ω−Ω=∂

    −Ω−Ω−=∂

    +Ω−Ω=∂

    ||

    +=Ω=Ω

    qqqqbaab

    qqqbb

    qqqaa

    EEd

    Eb

    Ea

    *1

    *

    2

    2

    21

    2121

    Maximal coherence, ρab = 0.5

  • Coherent Molecular Excitation

    ⎥⎦

    ⎤⎢⎣

    ⎡−ΩΩ

    ΩΩ−=

    δbbbaabaa

    effH h

    +=Ω=Ω

    qqqqbaab

    qqqbb

    qqqaa

    EEd

    Eb

    Ea

    *1

    *

    2

    2

    21

    2121

    ⎟⎟⎠

    ⎞⎜⎜⎝

    +−+

    −−=

    ⎟⎟⎟

    ⎜⎜⎜

    +−+

    −−=

    ⎟⎟⎟

    ⎜⎜⎜

    +−+

    −−=

    j qaj

    jbaj

    qbj

    jbajq

    j qbj

    jb

    qbj

    jbq

    j qaj

    ja

    qaj

    jaq

    d

    b

    a

    ωωωμμ

    ωωωμμ

    ωωωμ

    ωωωμ

    ωωωμ

    ωωωμ

    2

    22

    2

    22

    2

    21

    21

    21

    h

    h

    h

  • ϕiabab eΩ=Ω

    Solution to the Hamiltonion:

    ( ) ( ) ( ) 22 422 abbbaabbaaeff

    E Ω++Ω−Ω±−Ω+Ω=−= ± δδλ hhh

    ( ) ( ) bea iϕθθ −±± +=± sincos

    ( )

    ( ) 22 42

    tanabbbaabbaa

    ab

    Ω++Ω−Ω±+Ω−Ω

    Ω=±

    δδθ

    ρab±( ) =

    12

    eiϕ sin2θ ±( ) = ± ΩabΩaa − Ωbb + δ( )

    2 + 4 Ωab2

    Ωab >> Ωaa − Ωbb + δ5.0=abρ

    Eigenfunctions

    Eigenvalues:

    Coherence:

    Coherent Molecular Excitation

  • Adiabatically prepared molecules modulate the driving fields producing a wide comb

    ∂Eq∂z

    = − jηhω q N aqρ aa Eq + dq ρbb Eq + bq*ρ ab Eq−1 + cq

    * ρab* Eq+1( )

    dispersion coupling

    E1E0E−1E−2

    P=0.1 atm

    E0E−1 H2

    At maximum coherence, ρab = 0.5 the dispersion and coupling terms become comparable. Phase-matching is then not important, and generation is collinear.

    Sideband Generation and Propagation

    Propagation equation for the qth sideband: ωq = ωq-1 + ω0 – ω-1

    |b>|a>

    |i>

    E0 E1 E2 E3E−2 E−1

    Courtesy M. Shverdin

  • Stimulated Raman Scattering

    Traditional SRS:

    Generation occurs at high gas pressureMolecular excitation occurs on-resonanceAnti-Stokes generation occurs off-axisFew Stokes and anti-Stokes orders are observed.

    Courtesy M. Shverdin

  • Why low temperature1. Put all molecules into one ro-vibrational state

    make all molecules contribute to the process

    μλλνν )(

    )(110285.1212

    0

    11

    0

    0 KTnmm

    kTmkT

    cD×===Δ

    T = 300K ΔνD, D2 = 778 MHzT = 77K ΔνD, D2 = 389 MHz

    T = 300K ΔνD, H2 = 1100 MHz ∑

    ⎟⎟⎠

    ⎞⎜⎜⎝

    +−+

    −−=

    ⎟⎟⎟

    ⎜⎜⎜

    +−+

    −−=

    ⎟⎟⎟

    ⎜⎜⎜

    +−+

    −−=

    j qaj

    jbaj

    qbj

    jbajq

    j qbj

    jb

    qbj

    jbq

    j qaj

    ja

    qaj

    jaq

    d

    b

    a

    ωωωμμ

    ωωωμμ

    ωωωμ

    ωωωμ

    ωωωμ

    ωωωμ

    2

    22

    2

    22

    2

    21

    21

    21

    h

    h

    h

    2. Reduce Doppler width to increase the coherencemolecules with equal detuning but opposite in sign will off-set their contribution to the coherence build up

    ( )1*110

    +−− +++=∂

    ∂qabqqbaqqbbqqaaq

    qq EdEdEbEac

    iNEρρρρ

    εω

    ξh

  • All Three Spectra

    VisibleIR UV1.56 μm 195 nm

    10 μJ1 mJ10 mJ 100 μJ

    H2 Rotation Spectra: 29 sidebands, spaced by 587 cm-1

    D2 Vibration Spectra: 16 sidebands, spaced by 2994 cm-1

    395 nm

    195 nm

    1 μ m

    1.06 μm

    Multiplicative Spectra: ~ 200 sidebands, spaced by < 587 cm-1

    Phys. Rev. A (R)(1997)Phys. Rev. Lett. 81 (1998)Opt. Lett. 24 (1999)Phys. Rev. Lett. 84 (2000)Phys. Rev. Lett. 85 (2000)Phys. Rev. A 63 (2001)Phys. Rev. Lett. 91 (2003)Phys. Rev. Lett. 93 (2005)

  • Motivation• form subfemtosecond pulses• produce THz pulse train • generate tunable high power vacuum uv pulses• arbitrary waveform synthesis

    Use gas phase hydrogen at room temperature

    Cons:large Doppler widthrequires two tunable high-

    power high- resolution lasers spaced 4155 cm-1 apart

    smaller pulse train pulse-to-pulse spacing

    Pros:large Raman transition of 4155

    cm-1 for Q(1)2/3 population in single

    quantum state (v=0, j=1) at room temperature

    many parameters are knownnondestructibleroom temperature is easy to

    operate

  • δ

    0ω1−ω

    a

    b

    j⎥⎦

    ⎤⎢⎣

    ⎡−ΩΩ

    ΩΩ−=

    δbbbaabaa

    effH h∑

    +=Ω=Ω

    qqqqbaab

    qqqbb

    qqqaa

    EEd

    Eb

    Ea

    *1

    *

    2

    2

    21

    2121

    ⎟⎟⎠

    ⎞⎜⎜⎝

    +−+

    −−=

    ⎟⎟⎟

    ⎜⎜⎜

    +−+

    −−=

    ⎟⎟⎟

    ⎜⎜⎜

    +−+

    −−=

    j qaj

    jbaj

    qbj

    jbajq

    j qbj

    jb

    qbj

    jbq

    j qaj

    ja

    qaj

    jaq

    d

    b

    a

    ωωωμμ

    ωωωμμ

    ωωωμ

    ωωωμ

    ωωωμ

    ωωωμ

    2

    22

    2

    22

    2

    21

    21

    21

    h

    h

    h

    ( )

    ( )

    ( ) ( )aabbababbbaaab

    bbbabbabaabbb

    bbabbabaabaa

    iii

    i

    i

    ρρργδτ

    ρ

    ργρρτ

    ρ

    ργρρτ

    ρ

    −Ω+++Ω−Ω=∂

    −Ω−Ω−=∂

    +Ω−Ω=∂

    ||

    Simulation

    Thanks to Prof. Fam Le Kien for the full set of matrix element data

    ∂Eq∂z

    = − jηhωq N(aqρaa Eq + dqρbb Eq ) + 0.666N(bq*ρab Eq−1 + bq +1ρab

    * Eq +1)[ ]

  • Experimental Arrangement

    δωlaser ~ 100 MHzΔtlaser ~5 nsλ0=589 nmλ-1=780 nm

    H2 pressure ~1 atm.H2 Doppler width 250-750 MHz

    Intensity ~ 12 GW/cm2Ωab,z=0~2 GHzρab ~0.4tdelay~0-1 ns

    H2

    MgF2

    Telescope

    Beam combiner

    589 nm

    780 nm

    q=-2 to 8

    q=8 and higher

  • Raman sidebands generated

    15th order at 126 nm observed 124 126 128 130 132 134 136

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    arb.

    uni

    ts

    nm

    15

    14

    q= -2

    δω

    -1 0 1

    43

    2 Etc.

    i

    ba

    q = 3, λ = 339.6 nm6 238.6 nm9 183.9 nm

    12 149.6 nm14 133.0 nm

    Total spectral span >70,000 cm-1(~500 as)

    -4 -2 0 2 4

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    puls

    e en

    ergy

    (mJ)

    detuning (GHz)

    3 4 5 6 7 8 9

    -4 -2 0 2 4

    0

    10

    20

    30

    40

    50

    puls

    e en

    ergy

    (mJ)

    detuning (GHz)

    total -2 -1 0 1 2

  • Note:

    589 nm ↔ 16978 cm-1 ( 4 x 4155.2 = 16621 cm -1)

    780 nm ↔ 12822.8 cm-1 (3 x 4155.2 cm-1 = 12465.6 cm-1)

    The sidebands are not commensurate.

    New input wavelengths:

    ω0 = 16621 cm-1 (602 nm)ω-1 = 12465.6 cm-1 (802 nm)

    These wavelengths produce a commensurate set of sidebands, as shown on the right:

    Raman Order

    nm cm-1 4 wave-mixing order

    ∞ 0

    -3 2407 4155

    -2 1203 8310 1

    -1 802 12465 2

    0 602 16620 3

    1 481 20775 4

    2 401 24930 5

    3 344 29085 6

    4 301 33240 7

    5 267 37395 8

    6 241 41550 9

    7 219 45705 10

    8 201 49860 11

    9 185 54015

    mq nωω =

  • Phase adjustment Setup

    Dye Laser

    Ti:Sapphier Laser

    Xe

    602nm

    802nm

    PMT

    Phase Modulator

    n

    a

    b

    0E1−E

    2−E3−E

    2E3E

    + + +

    Four Wave Mixing

    Raman Sidebands Generation

    f=50cm f=20cm

    (filter)

    (achromatic lens f=25cm for IR to UV)

    (achromatic lens f=8cm for IR to UV)

    E1

    M. Y. Shverdin et al. PRL 94, 033904 (2005)

  • LC phase modulator

    λcutoff430 nm --> 380 nm

    6 sidebands 7 sidebands

  • UV sidebands are generated at efficiencies 10-8 to 10-12 by a four-wavemixing process in a xenon cell at ~100 torr. Phasematching allows onlythe two photons up one photon down type of conversion. A total of n-1 different UV sidebands, beginning at the next short wavelength sideband, are generated.

    Xe

    generated UV

    Raman

    Raman sidebands

    f=15cm

    PMT

    filter

    Four-wave Mixing

  • 6ω6ω

    7ω 5ω

    8475 ωωωω =−+

    8356 ωωωω =−+

    8576 ωωωω =−+

    Four wave mixing:

    q= -2

    δω

    -1 0 1

    43

    2 Etc.

    i

    ba

    Multiple quantum paths interference

  • Four Wave Mixing in Xe

    + + +

    *kji EEEE χα =

    144135245355

    −+−+−+−+:7

    ⇒⎩⎨⎧

    =−=−=−=−=−

    ts

    32

    1425

    132435

    φφφφφφφφφφ

    s415 += φφ)− t325 += φφ

    st 4321 −=− φφts

    32

    14

    24

    +=+=

    φφφφ

    )−

    ts 3221 −=− φφ

    ⇒st

    tsst=

    −=− 3243

    ⎪⎪⎩

    ⎪⎪⎨

    +=+=+=+=

    4Δφφ

    3Δφφ

    2Δφφ

    Δφφ

    15

    14

    13

    12

    kji φφφφα −+=

  • In phase condition

    7=6+6-5, 6+5-4, 6+4-3, 6+3-2, 6+2-1.

    5+5-3, 5+4-2, 5+3-1.

    4+4-1

    6, 5, 4 : 6+6-5, 6+5-4 Φ65=Φ54+3 : 6+4-3, 5+5-3 Φ65=Φ54=Φ43+2 : 6+3-2, 5+4-2 Φ65=Φ54=Φ43=Φ32+1 : 6+2-1, 5+3-1, 4+4-1 Φ65=Φ54=Φ43=Φ32=Φ21

    1: 1203nm

    2: 802nm

    3: 602nm

    4: 481nm

    5: 401nm

    6: 344nm

    7: 301nm

  • Searching in phase condition

    -2 -1 0 1 20.00

    0.01

    0.02

    0.03

    (a) 481 nm

    -2 -1 0 1 20.00

    0.04

    0.08

    (b) 602 nm

    -1 0 10.0

    0.1

    0.2

    301

    nm s

    igna

    l int

    ensi

    ty(a

    . u.)

    Relative phase shift (π radian)

    (c) 802 nm

    -1 0 10.0

    0.1

    0.2

    0.3

    (d) 1203 nm

  • How to measure the pulse width?

    Solution: Correlation using pulses formed by the sidebands themselves.

    Synthesize two pulses from the subsets of sidebands and electronically delay one pulse with respect to the other. Measure the resulting four-wave signal with a photomultiplier.

    Autocorrelation is standard way to measure ultrafast pulsewidth.However it could not be done here because of the wide bandwidth.

    pulse 2

    pulse 1

    simulation

  • 0 . 0 2 . 5 5 . 0 7 . 5 1 0 . 0 1 2 . 5 1 5 . 0 1 7 . 5 2 0 . 0

    e r r o r b a r = 1 5 %

    Cross Correlation of Single Cycle Pulse Train

    (1,2,3)

    (4,5,6)

    Sideband Orders

    Simulation

    Experiment

    - 1 6 - 8 0 8 1 60 . 0

    0 . 1

    0 . 2

    0 . 3

    0 . 4

    0 . 5

    0 . 6

    Pow

    er (a

    rb. u

    nits

    )

    - 1 6 - 8 0 8 1 60 . 0

    0 . 1

    0 . 2

    0 . 3

    0 . 4

    0 . 5

    0 . 6

    Pow

    er (a

    rb. u

    nits

    )

    T i m e d e l a y ( f e m t o s e c o n d )

  • Cross correlation signal of incommensurate pulses

    CEO frequency ~ 349 cm-1Waveform repeats every 96 fs

  • Pulse train

    -16 -8 0 8 16-1

    0

    1 (b)

    E fi

    eld

    ampl

    itude

    (a. u

    .)

    Time (fs)

    -16 -8 0 8 16-1

    0

    1

    (a)

    Commensurate

    Incommensurate

  • Carrier envelope phase is constant to ~2.5 part in 106

    Total phase slip of

  • Status of sub-cycle optical pulse generation by molecular modulation

    0.833 cycle per pulse1.4 fs envelope440 as cycle widthconstant carrier envelope phase 2 ns pulse train duration8.0 fs pulse spacing~1 MW peak power

    IAMS sub-cycle source

    Total spectral span >70,000 cm-1

    Phys. Rev. Lett. 100, 163906 (2008)

  • Ingredients of an attosecond single-cycle optical pulse:

    1. Broad spectrum – 2 or more octaves2. In phase condition3. Constant carrier envelope phase:

    • Commensurate frequencies• Constant phase difference between adjacent

    spectral components4.Stable and controllable carrier envelope phase

  • CEP control

  • Phys. Rev. Lett. 102, 213902 (2009)

  • Summary and Outlook

    • Generated commensurate pulse train • Single pulse duration 1.4fs• Sub-single-cycle pulse: 0.8 cycles• CEP (carrier-envelope phase) control

    • Sub-femtosecond pulse generation• Arbitrary waveform• Application for ultra-fast dynamics

  • Harmonics1203

    802

    602

    481

    401

    344

    301

    ~25,000cm-1

    1064

    532

    355

    266

    213

    ~37,600cm-1

    0.833 cycle per pulse1.4 fs envelope440 as cycle widthconstant carrier

    envelope phase 2 ns pulse train

    duration8.0 fs pulse spacing~1 MW peak power

    -4 -2 0 2 4-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.0

    Ele

    ctric

    Fie

    ld A

    mpl

    itude

    (arb

    . uni

    ts)

    Time (fs)

    ElectricField

    WaveEnvelope

    CEP = 0

    -4 -2 0 2 4-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.0

    CEP = π/2

    Ele

    ctric

    Fie

    ld A

    mpl

    itude

    (arb

    . uni

    ts)

    Time (fs)

  • Attosecond pulse train

    Raman Order

    nm cm-1

    1 2407 4155

    2 1203 8310

    3 802 12465

    4 602 16620

    5 481 20775

    6 401 24930

    7 344 29085

    8 301 33240

    9 267 37395

    10 241 41550

    11 219 45705

    12 201 49860

    13 185 54015

    Nd:YAGHarmonics

    nm cm-1

    1 1064 9398

    2 532 18796

    3 355 28194

    4 266 37592

    5 213 46990

    We can control the CEP and shape the pulse waveform.We can synthesize a waveform which like the XUV-IR combination.

  • Advance Concepts

    • Generate subfemtosecondpulses: add more sidebands and improve sideband power

    • Increase pulse-to-pulse spacing

    • Develop control of carrier envelope phase

    • Modulate in photonic crystal fiber

    • Arbitrary waveform synthesis

    • Optical-deep uv attosecond pump-probe• Tracing molecular vibrational wavepacket• Low energy electron dynamics in atoms• Electron dynamics in semiconductors: direct bandgap vs indirect bandgap

    Technology Science

  • GroupIAMS Andy Kung(孔慶昌) Wei-Jan Chen(陳蔚然)

    Zhi-Ming Hsieh(謝智明) Shu Wei Huang(黃書偉)Hao-Yu Su(蘇皓瑜) Chien-Jen Lai(賴建任) Sih-Ying Wu(吳思螢)

    National Chiao Tung University: Ci-Ling Pan(潘犀靈) Ru-Pin Pan(趙如蘋) Tsung-Ta Tang(湯宗達)Han-Sung Chan(詹翰松)

    National Sun-Yat-Sen UniversityChao-Kuei Lee(李晁逵)

    National Tsing Hua University

    Acknowledgement

    Stanford: Steve Harris and his students

    TAMU: Alexei Sokolov

    Berkeley: Ron Shen

    Research supported by Academia Sinica and the NSC

  • Thanks for your attention

    Generation and Application of Carrier Envelope Phase Controlled Single-Cycle Optical Pulse TrainGeneration of sub-single-cycle pulses in the optical region投影片編號 3Attoworld投影片編號 5Time scalesCharacteristic length and time scales for structure and dynamics in the microcosmLaser pulses got shorter�over the years投影片編號 9投影片編號 10Effect of random phase�Principle of optical interference of coherent light fields�投影片編號 12投影片編號 13Optical cycle投影片編號 15Carrier envelope phase投影片編號 17投影片編號 18投影片編號 19投影片編號 20Three-step modelIsolated Attosecond-pulse production投影片編號 23投影片編號 24投影片編號 25Molecular ModulationCoherent Molecular ExcitationCoherent Molecular Excitation投影片編號 29Sideband Generation and PropagationStimulated Raman Scattering投影片編號 32All Three SpectraMotivation投影片編號 35投影片編號 36投影片編號 37投影片編號 38Phase adjustment Setup投影片編號 40Four-wave Mixing投影片編號 42Four Wave Mixing in XeIn phase conditionSearching in phase conditionHow to measure the pulse width?投影片編號 47投影片編號 48Pulse train投影片編號 50投影片編號 51投影片編號 52投影片編號 53投影片編號 54投影片編號 55Summary and OutlookHarmonicsAttosecond pulse trainAdvance Concepts投影片編號 60Thanks for your attention