generator overview

Upload: nandarathana

Post on 07-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Generator Overview

    1/66

    1/29/20

    th -

    School

    Generation Track

    Overview Lecture

    Generator Design, Connections, and

    Grounding

  • 8/20/2019 Generator Overview

    2/66

    1/29/20

    Generator Main Components

    • Stator 

     – Core lamination

     – Winding

    • Rotor 

     – Shaft

     – Poles

     – Slip rings

    Stator Core

    Source: www.alstom.com/power/fossil/gas/

  • 8/20/2019 Generator Overview

    3/66

    1/29/20

    Stator (Core + Winding)

    Core Lamination

    Winding Connections

    Winding (Roebel bars)

    Typical Types of Generator Windings

    Stator Winding: Random-Wound Coils

  • 8/20/2019 Generator Overview

    4/66

    1/29/20

    Typical Types of Generator WindingsStator Winding: Form-Wound Coils

    Typical Types of Generator Windings

    Stator Winding: Roebel Bars

  • 8/20/2019 Generator Overview

    5/66

    1/29/20

    Roebel Bars Inside Stator Slot

    Source: Maughan, Clyde. V., Maintenance of Turbine Driven Generators, Maughan Engineering Consultants

    Stator Winding Combinations

    Typical for Two- and Four-Pole Machines

  • 8/20/2019 Generator Overview

    6/66

    1/29/20

    Series Connection of Roebel Bars

     

    Source:www.ansaldoenergia.com/Hydro_Gallery.asp

    Rotor 

  • 8/20/2019 Generator Overview

    7/66

    1/29/20

    Classification of Synchronous

    Generators

     

    Rotor designCylindrical rotor 

    Salient-pole rotor 

    Cooling: Stator and

    rotor 

    Direct

    Indirect

     

    connection to dc

    source

    Brushless

    Rotor Design

    Salient-Pole Rotor 

     

  • 8/20/2019 Generator Overview

    8/66

    1/29/20

    Two-Pole Round Rotor 

    Source: www.alstom.com

    Salient Pole Rotor 

    Source:www.ansaldoenergia.com/Hydro_Gallery.asp

  • 8/20/2019 Generator Overview

    9/66

    1/29/20

    Stator Winding Cooling

    Directly CooledIndirectly Cooled

    Cooling Ducts,

    Water Cooled Bar 

    Rotor Winding Cooling

    Directly CooledIndirectly Cooled

  • 8/20/2019 Generator Overview

    10/66

    1/29/20

    Field Winding Connection to DC Source

    Brush Type

    Field Winding Connection to DC Source

    Brushless

  • 8/20/2019 Generator Overview

    11/66

    1/29/20

    Generator Station Arrangements

    Generator-Transformer Unit

    Generating Station Arrangements

    Directly Connected Generator 

  • 8/20/2019 Generator Overview

    12/66

    1/29/20

    • Resonant roundin Petersen Coil

    IEEE C62.92.2-1989

    Synchronous Generator Grounding

    • Ungrounded neutral

    • High-resistance grounding

    • Low-resistance grounding

    • Low-reactance grounding

    • Effective groundingIncreasing Ground

    Fault Current

    Why Ground the Neutral?

    • Minimize damage for internal ground faults

    • Limit mechanical stress for external ground faults

     •  Allow for ground fault detection

    •  Ability to coordinate generator protection withother equipment requirements

  • 8/20/2019 Generator Overview

    13/66

    1/29/20

    Ungrounded Neutral

    • No intentional connection to round

    • Maximum ground fault current higher than forresonant grounding

    • Excessive transient overvoltages may result

    High-Resistance Grounding

     distribution transformer 

    • Resistor value selected to limit transient overvoltages

    • Maximum single-phase-to-ground fault current: 5–15 A

  • 8/20/2019 Generator Overview

    14/66

    1/29/20

    Low-Resistance Grounding

    • Limit ground fault current to hundreds of

    amperes to allow operation of selective

    (differential) relays

    • Low temporary/transient overvoltages

    Effective Grounding

    •  A low-impedance ground connectionwhere: X0 / X1  3 and R0 / X1  1

    • roun au curren s g

    • Low temporary overvoltages during phase-to-ground faults

  • 8/20/2019 Generator Overview

    15/66

    1/29/20

    Generator Capability Curves

    Defining Generator Capability• Curve provided by the generator manufacturer 

    • Defines the generator operating limits during steadys a e con ons

    •  Assumes generator is connected to an infinite bus

    • Limits are influenced by:

     – Terminal voltage

     – Coolant

     – Generator construction

  • 8/20/2019 Generator Overview

    16/66

    1/29/20

    Generator Capability Curve for a

    Round Rotor Generator 

    Generator

    Capability

    Curve for a

    Salient Pole

    Generator 

  • 8/20/2019 Generator Overview

    17/66

    1/29/20

    Capability Curve Construction

    Phasor Diagram – Round Rotor Generator 

    )cos()sin(

    )cos(

    0       

     I  Xd  E 

     I V P

    0 E 

     Xd 

     I 

    )cos()(

    coss n0

     

     

     I V  BC  Xd 

     Xd 

    )sin(   I V Q

    φ

    C

    0 E 

    P

    )sin()(

    )sin()))cos(((

    s ncos

    0

    0

     

      

     

     I V  AB Xd 

     I V V  E  Xd 

     A B

     I  Xd 

    Q I 

     

     

  • 8/20/2019 Generator Overview

    18/66

    1/29/20

    Power Angle Characteristic

    P

     

    Operation with Constant Active Power

    and Variable Excitation

    C

     I  Xd 

    C’C’’

     A B

    0 E 

    Q

     I  0  E 0    E 

     I  Xd     I  Xd   

    B’B’’

    P

     

     

     I 

     I 

    Q

    Q

    4513.1

    606.1

    87.361

    00.1

    6.1

     I 

     I 

     I 

     Xd 

    5.7831.1

    7.21466.3

    15.3334.2

    0

    0

    0

     E 

     E 

     E 

  • 8/20/2019 Generator Overview

    19/66

    1/29/20

    Power Angle Characteristic

    5.7831.1

    7.21466.315.3334.2

    0

    0

    0

     E 

     E  E P

     

    V-Curves

    ).(   u p I 

    (p.u.)0 E 

    CurrentExcitation

    inductivecos   cap.cos  

  • 8/20/2019 Generator Overview

    20/66

    1/29/20

    Operation with Constant Apparent

    Power and Variable Excitation

    0 E 

     I  Xd 

     A B

     I 

    87.361

    00.1

    6.1

     I 

     Xd 

    Operation with Constant Excitation

    and Variable Active Power 

     0  E 

    C

    0 E 

     I  Xd   

     I    T   h  e  o  r .

       S   t  a   b   i   l   i   t  y

       L   i  m   i   t

     A B

     I  Xd 

     I 

     

  • 8/20/2019 Generator Overview

    21/66

    1/29/20

    Capability Curve – Round Rotor 

     E 

     I V V  E  Xd 

    -

    0

    )sin()))cos(((

    0

    0

        

       t  a   b   i   l   i   t  y

       L   i  m

       i   t

    0P

    0

    )cos()sin(

    0

    0

     E 

     I V  E  Xd 

    V   

     Xd Q 

       T   h  e  o  r .

       S

       P   (   R  e  a

       l   P  o  w  e  r   )

    max. 

    625.0VV-

     Q  

     Xd 

    0.1

    6.1

     Xd 

    Q (Reactive Power)

    Generator Fault Protection

  • 8/20/2019 Generator Overview

    22/66

    1/29/20

    Generator Fault Protection

    • Stator phase faults

    • Stator ground faults

    • Field ground faults

    • External faults (backup protection)

    Stator Phase Fault Protection

    • Phase fault protection

     – Percentage differential

     – High-impedance differential

     – Self-balancing differential

    • Turn-to-turn fault protection

     – Split-phase differential

     – Split-phase self-balancing

  • 8/20/2019 Generator Overview

    23/66

    1/29/20

    Phase Fault Protection

    Percentage Differential

    Dual-Slope Characteristic

  • 8/20/2019 Generator Overview

    24/66

    1/29/20

    Phase Fault Protection

    High-Impedance Differential

    O O O

    Phase Fault Protection

    Self-Balancing Differential

    http://www.polycastinternational.com/old_cat/pdfs/Section4/Section4-Part2.pdf 

  • 8/20/2019 Generator Overview

    25/66

    1/29/20

    Stator Winding Coils with Mult iple Turns

    Turn-to-Turn Fault Protection

    Split-Phase Self-Balancing

  • 8/20/2019 Generator Overview

    26/66

    1/29/20

    Turn-to-Turn Fault Protection

    Split-Phase Percentage Differential

    Stator Ground Fault Protection

    • High-impedance-grounded generators

     – Neutral fundamental-frequency overvoltage

     – Third-harmonic undervoltage or differential

     – Low-frequency injection

    • Low-impedance-grounded generators

     – Ground overcurrent

     – Ground directional overcurrent

     – Restricted earth fault (REF) protection

  • 8/20/2019 Generator Overview

    27/66

    1/29/20

    Ground Fault in a Unit-Connected

    Generator

    High-Impedance Grounded Generator 

    Neutral Fundamental Overvol tage

    Fault Location/

    % of Winding

    Voltage V

    F1 / 3%

    F2 / 85%

    3%•3

    Vnom

    85%•3

    Vnom

  • 8/20/2019 Generator Overview

    28/66

    1/29/20

    Generator – Flux Distribution in Air Gap

    Total Flux

    Fundamental

    Harmonics

    Generator – Flux Distribution in Air Gap

    Neutral Third-Harmonic Undervoltage

    F1

    GSU

    High-Impedance Grounded Generator 

    59GNRV(3) OR (2)

    27TN

    Full Load

    No LoadVN3

    No Fault

    VP3

     

    No Load

    VP3

    VN3

    Fault at F1

  • 8/20/2019 Generator Overview

    29/66

    1/29/20

    Third-Harmonic DifferentialGSU

    High-Impedance Grounded Generator 

    59GNRV

    (3)

    (3)

     –+

    Pickup Setting

    • 3 3k VP VN  

    Third-Harmonic Differential Element

    Generator Winding Analysis

    • Generator data

     –  

     – 216 slots

    • Winding pitch

     – Full pitch = 216/18 = 12 slots

     – Actual pitch = 128 – 120 = 8 slots

     – Actual pitch / full pitch = 8/12 = 2/3

  • 8/20/2019 Generator Overview

    30/66

    1/29/20

    Full-Pitch Winding

    2/3 Pitch Winding

    Removes Third Harmonic

  • 8/20/2019 Generator Overview

    31/66

    1/29/20

    Low-Frequency InjectionGSU

    High-Impedance Grounded Generator 

    (3) OR (2)

    I

    59GNR V

    64S

    Coupling

    Filter 

    Low-Frequency

    Voltage Injector 

    Protection

    Measurements

    100% Stator Ground Fault Protection

    Elements Coverage

  • 8/20/2019 Generator Overview

    32/66

    1/29/20

    Low-Impedance-Grounded Generator Ground Overcurrent and Directional Overcurrent

    Low-Impedance-Grounded Generator 

    Ground Differential

  • 8/20/2019 Generator Overview

    33/66

    1/29/20

    Low-Impedance-Grounded Generator 

    Self-Balancing Ground Differential

    Zero-Sequence CTs

       5   /   $   f   i   l  e   /   1  v  a  p

       4   2   8   5   6   1  -   d

       b_

       b  y  z .  p

       d   f

      r   i   t  y   d   i  s  p

       l  a  y

       /   b  e  a  a  e

       b   0   1   2   3   3   7   6   5   4   1   8   3   2   5   7   3   4   6   0   0   6   2  a

       7   6

       h   t   t  p  :   /

       /  w  w  w

       0   5

     .  a   b   b

     .  c  o  m

       /  g   l  o   b  a

       l   /  s  c  o

       t   /  s  c  o

       t   2   3   5

     .  n  s

       f   /  v

    Zero-sequence CT

  • 8/20/2019 Generator Overview

    34/66

    1/29/20

    Field Ground Protection

    Field Ground Protection

    • Types of rotors

    • Winding failure mechanisms

    • Importance of field ground protection

    • Field ground detection methods

    • Switched-DC injection principle of operation

    • Shaft grounding brushes

  • 8/20/2019 Generator Overview

    35/66

    1/29/20

    Salient Pole Rotor 

    Source:www.ansaldoenergia.com/Hydro_Gallery.asp

     A Round Rotor Being Milled

    Source: Maughan, Clyde. V., Maintenance of Turbine Driven

    Generators, MaughanEngineering Consultants

  • 8/20/2019 Generator Overview

    36/66

    1/29/20

    Round Rotor – End Turns

    Source: Main Generator Rotor Maintenance – Lessons Learned - EPRI

    Source: Main Generator Rotor Maintenance – Lessons Learned - EPRI

    Two-Pole Round Rotor 

    Source: www.alstom.com

  • 8/20/2019 Generator Overview

    37/66

    1/29/20

    Two-Pole Round Rotor 

    Source: www.alstom.com

    Two-Pole Round Rotor 

    Source: www.alstom.com

  • 8/20/2019 Generator Overview

    38/66

    1/29/20

    Round Rotor Slot — Cross Section

    Coil Slot

    Wedge

    Copper Winding

    Creepage BlockRetaining Ringe a n ng ng

    Insulation

    Winding Short

    Slot Armor 

    Turn InsulationEnd Windings

    Winding GroundWinding Ground

    Field Winding Failure Mechanisms inRound Rotors

    • Thermal deterioration

    • Thermal cycling

    •  Abrasion

    • Pollution

    •  

  • 8/20/2019 Generator Overview

    39/66

    1/29/20

    Salient Pole Cross Section

    Pole Body

    Turn Insulation

    Winding Turn

     

    Winding Ground

    Windin Short

    Insulation

    Pole Collar 

    * Strip-On-Edge

    Field Winding Failure Mechanisms inSalient Pole Rotors

    • Thermal deterioration

    •  Abrasive particles

    • Pollution

    • Repetitive voltage surges

    •  

  • 8/20/2019 Generator Overview

    40/66

    1/29/20

    Importance of Field Ground

    Detection

    • Presence of a single point-to-ground in fieldwinding circuit does not affect the operation ofthe generator

    • Second point-to-ground can cause severedamage to machine

     – Excessive vibration

     – Rotor steel and / or copper melting

    Rotor Ground Detection Methods

    • Voltage divider 

    • DC injection

    •  AC injection

    • Switched-DC injection

  • 8/20/2019 Generator Overview

    41/66

    1/29/20

    Voltage Divider 

    Field Breaker  Rotor and Field Winding

    +

     –

    Exciter  BrushesR1

    R2

    R3

    Grounding BrushSensitive Detector 

    DC Injection

    +

    Field Breaker Rotor and Field Winding

     –

    Exciter  Brushes

    Sensitive Detector 

    roun ngBrush

    DC Supply

    +

     –

  • 8/20/2019 Generator Overview

    42/66

    1/29/20

     AC Injection

    +

    Field Breaker Rotor and Field Winding

     –

    Exciter  Brushes

    Sensitive Detector roun ng

    Brush

     AC Supply

    Switched-DC Injection Method

    +

    Field Breaker  Rotor and Field Winding

     –

    Exciter 

    Grounding

    BrushR1

    Brushes

    Measured Voltage

    R2

    Rs

  • 8/20/2019 Generator Overview

    43/66

    1/29/20

    Switched DC Injection Princ iple of Operation

    VDC

    Voscp

    R

    R

    Cfg

    Rx

    +

     –Vrs

    Voscn

    Vosc

    Measured Voltage (Vrs)

    Rs

    V

    Vrs

    Shaft Grounding with Carbon Brush

  • 8/20/2019 Generator Overview

    44/66

    1/29/20

    Shaft Grounding with Wire Bristle Brush

    Source: SOHRE Turbomachinery, Inc. (www.sohreturbo.com)

    Generator Abnormal Operation

    Protection

  • 8/20/2019 Generator Overview

    45/66

    1/29/20

    Generator Abnormal Operation

    Protection

    • Thermal • Overvoltage

    • Current

    unbalance

    • Loss-of-field

    •  Abnormalfrequency

    • Out-of-step

    •• Motoring

    • Overexcitation

     energization

    • Backup

    Stator Thermal Protection

    Generators With Temperature Sensors

  • 8/20/2019 Generator Overview

    46/66

    1/29/20

    Stator Thermal Protection

    Generators Without Temperature Sensors

    2 2 I I 

    22

    ln   NOM 

    T  I k I 

     

    Current Unbalance Causes

    • Single-phase transformers

    • Untransposed transmission lines

    • Unbalanced loads

    • Unbalanced system faults

    • Open phases

  • 8/20/2019 Generator Overview

    47/66

    1/29/20

    Generator Current Unbalance

    Produces negative-sequence currents that:

     – Cause magnetic flux that rotates in opposition to rotor

     – Induce double-frequency currents in the rotor 

    Rotor-Induced Currents

  • 8/20/2019 Generator Overview

    48/66

    1/29/20

    Negative-Sequence Current Damage

    Negative-Sequence Current Capabil ity

    Continuous

    Type of Generator    I2 Max %

    Salient pole (C50.12-2005)

    Connected amortisseur windings 10

    Unconnected amortisseur windings 5

    Cylindrical rotor (C50.13-2005)

    Indirectly cooled 10

    Directly cooled, to 350 MVA 8

    351 to 1250 MVA 8 – (MVA – 350) / 300

    1251 to 1600 MVA 5

  • 8/20/2019 Generator Overview

    49/66

    1/29/20

    Short Time

    22 2 I t K 

    Negative-Sequence Current Capabil ity

    Type of Generator    I22t Max %

    Salient pole (C37.102-2006) 40

    Synchronous condenser (C37.102-2006) 30

    Cylindrical rotor (C50.13-2005)

    Indirectl cooled 30

    Directly cooled, to 800 MVA 10

    Directly cooled, 801 to 1600 MVA   →

    Short Time

    Negative-Sequence Current Capabil ity

  • 8/20/2019 Generator Overview

    50/66

    1/29/20

    Negative-

    Sequence

    Overcurrent

    22

    2

    K T 

     I 

     NOM 

    Common Causes of Loss of Field

    •  Accidental field breaker tripping

    • Field open circuit

    • Field short circuit

    • Voltage regulator failure

    • Loss of field to the main exciter 

    • Loss of ac supply to the excitation system

  • 8/20/2019 Generator Overview

    51/66

    1/29/20

    Effects of Loss of Field

    • Rotor temperature increases because of

    edd currents

    • Stator temperature increases because of

    high reactive power draw

    • Pulsating torques may occur 

    • Power system may experience voltage

    collapse or lose steady-state stability

    Negative-Sequence Current Caused

    Damper Winding Damage

    Damper

    Windings

  • 8/20/2019 Generator Overview

    52/66

    1/29/20

    LOF Protection Using a Mho Element

    LOF Protection Using Negative-

    Offset Mho Elements

  • 8/20/2019 Generator Overview

    53/66

    1/29/20

    LOF Protection Using Negative- and

    Positive-Offset Mho Elements

    Zone 2 Setting Considerations

  • 8/20/2019 Generator Overview

    54/66

    1/29/20

    Possible Prime Mover Damage

    From Generator Motoring

    •  

    • Hydraulic turbine blade cavitation

    • Gas turbine gear damage

     

    unburned fuel

    T ical values of reverse ower re uired to

    Small Reverse Power Flow

    Can Cause Damage

    spin a generator at synchronous speed

    Steam turbines 0.5–3%

    Hydro turbines 0.2–2+%

    Diesel engines 5–25%Gas turbines 50+%

  • 8/20/2019 Generator Overview

    55/66

    1/29/20

    Directional Power Element

    Q

    P

    32P1

    32P2

    P1

    P2

    Overexcitation Protection

    •   NOM  f V 

      

    • Overexcitation occurs when V/f exceeds

    1.05

    • Causes enerator heatin

     NOM 

     

    • Volts/hertz (24) protection should trip

    generator 

  • 8/20/2019 Generator Overview

    56/66

    1/29/20

    Core Damaged due to Overexcitation

    Source: Maughan, Clyde. V., Maintenance of Turbine Driven Generators, Maughan Engineering Consultants

    Core Damaged due to Overexcitation

    Source: Maughan, Clyde. V., Maintenance of Turbine Driven Generators, Maughan Engineering Consultants

  • 8/20/2019 Generator Overview

    57/66

    1/29/20

    Overexcitation Protection

    Dual-Level, Definite Time Characteristic

    Overexcitation Protection

    Inverse- and Defini te Time Characterist ics

  • 8/20/2019 Generator Overview

    58/66

    1/29/20

    Overvoltage Protection

    • Overvoltage most frequently occurs iny roe ec r c genera ors

    • Overvoltage protection (59):

     – Instantaneous element set at 130–150percent of rated voltage

     – Time-delayed element set at approximately

    110 percent of rated voltage

     Abnormal Frequency Protection

  • 8/20/2019 Generator Overview

    59/66

    1/29/20

    Possible Damage From

    Out-of-Step Generator Operation

    •  

    • Damage to shaft resulting from pulsating

    torques

    • High stator core temperatures

    • Thermal stress in the step-up transformer 

    Single-Blinder Out-of-Step Scheme

  • 8/20/2019 Generator Overview

    60/66

    1/29/20

    Double-Blinder Out-of-Step Scheme

    Generator Inadvertent Energization

    • Common causes: human errors, control,

    • The generator starts as an induction motor 

    • High currents induced in the rotor causerapid heating

    • High stator current

  • 8/20/2019 Generator Overview

    61/66

    1/29/20

    Inadvertent Energization Protection

    Logic

    Logic for Combined Breaker-Failure

    and Breaker-Flashover Protection

  • 8/20/2019 Generator Overview

    62/66

    1/29/20

    Backup Protection

    Directly Connected Generator 

    Generator With Step-Up Transformer 

    Voltage-Restrained Overcurrent

    Element Pickup Current

  • 8/20/2019 Generator Overview

    63/66

    1/29/20

    Mho Distance Element Characteristic

    Synchronism-Check Element

  • 8/20/2019 Generator Overview

    64/66

    1/29/20

    Power System Disturbance Caused

    by an Out-of-Synchronism Close

    Nominal Current: 10560 A

    Voltage: 6.5 kV

    Possible Damaging Effects

    During Synchronizing

     • Bearing damage

    • Loosened stator windings

    • Loosened stator laminations

  • 8/20/2019 Generator Overview

    65/66

    1/29/20

    IEEE Generator Synchronizing

    Limits

    rea er c os ng ang e –

    Generator-side voltage

    relative to system

    100% to 105%

    Source: IEEE Std. C50.12 and C50.13

    Frequency difference +/–0.067 Hz

    Issues Affecting Generator

    Synchronizing

    • Voltage ratio differences

    • Voltage angle differences

    • Voltage, angle, and slip limits

    Synchronism

    Check relay

    Synchronism

    Check relay

  • 8/20/2019 Generator Overview

    66/66

    1/29/20

    Synchronism-Check Logic Overview