geology and tectonic setting of the tawallah group ... · australian bureau of meteorology, 1988....

63
References

Upload: others

Post on 15-Sep-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

References

Australian Bureau of Meteorology, 1988. Climatic averages, Australia. Australian Government Publishing Service: Canberra.

Ahmad M., Hallenstein C. P. and Wygralk A., 1984. Paleoplacer potential in the mid­Proterozoic of the Northern Territory: a study of the Westmoreland Conglomerate. In Darwin Conference 1984. AusiMM: Melbourne. pp 357-366.

Amireh B.S., Schneider W. and Abed A.M., 1994. Evolving fluvial-marine deposition through the Cambrian sequence of Jordan. Sed. Geol., 89: 65-90.

Angelier J., 1984. Tectonic analysis of fault slip data sets. J. Geophys. Res., 89 (B7): 5835-5848.

Angelier J ., 1989. From orientation to magnitudes in paleostress determinations using fault slip data. J. Struct. GeoL, 11 (1/2): 37-50.

Angelier J., Colletta B., Chorowicz J., Ortlieb L. and Rangin C., 1981. Fault tectonics of the Baja California Peninsula and the opening of the Sea of Cortez, Mexico. J. Struct. Geol., 3 (4): 347-357.

Asmerom Y., Jacobsen S. B. and Wernicke B. P., 1994. Variations in magma source regions during large-scale continental extension, Death Valley region, western United States. Earth Planet. Sci. Lett., 125: 235-254.

Aydin A. and Page B. M., 1984. Diverse Pliocene-Quaternary tectonics in a transform environment, San Francisco Bay region, California. Bull. Geol. Soc. Am., 95: 1303-1317.

Baker E. M., Kirwin D. J. and Taylor R. G., 1986. Hydrothermal breccia pipes. In Laing W. P. (Ed.): Contributions of the Economic Geology Research Unit 12. Department of Geology, James Cook University.

Barber D. J., 1985. Dislocations and microstructures. In Wenk H.-R. (Ed.): Preferred orientation in deformed metals and rocks. An introduction to modem texture analysis. Academic Press: London. pp. 149-182.

Bartlett W. L., Friedman M. and Logan J. M., 1981. Experimental folding and faulting of rocks under confining pressure. Part IX. Wrench faults in limestone layers. Tectonophysics, 79: 255-277.

Bellieni G., Brotzu P., Comin-Chiaramonti P., Emesto M., Melfi A., Pacca I. G. and Piccirillo E. M., 1984. Flood basalt to rhyolite suites in the southern Parana Plateau (Brazil): palaeomagnetism, petrogenesis and geodynamic implications. J. Petrol., 25: 579-618.

Bergh S. G. and Torske T., 1986. The Proterozoic Skoadduvarri Sandstone Formation, Alta, northern Norway: a tectonic fan-delta complex. Sed. Geol., 47: 1-25.

Bhattacharyya A. and Morad S., 1993. Proterozoic braided ephemeral fluvial deposits: an example from the Dhandraul Sandstone formation of the Kalmur Group, Son Valley, central India. Sed. Geol., 84: 101-114.

Blair T. C. and McPherson J. G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes and facies assemblages. J. Sed. Res., A64 (3): 450-489.

221

Blake D. H., Etheridge M. A., Page R. W., Stewart A. J., Williams P. R. and Wyborn L. A. I., 1990. Mount Isa Inlier- regional geology and mineralisation. In Hughes F. E. (Ed.): Geology of the mineral deposits of Australia and Papua New Guinea Volume 1. Australasian Institute of Mining and Metallurgy: Monograph 14. pp. 915-925.

Blenkinsop T. G. and Rutter E. H., 1986. Cataclastic deformation of quartzite in the Moine thrust zone. J. Struct. Geol., 8 (6): 669-681.

Bott M. H. P., 1959. The mechanisms of oblique slip faulting. Geol. Mag., 96: 109-117.

BoyerS. E. and Elliot D., 1982. Thrust systems. Bull. Am. Ass. Petrol. Geol., 66 (9): 1196-1230.

Braun M. and Freidman G. M., 1969 . Carbonate lithofacies and environments of the Tribe Hill Formation (Lower Ordovician) of the Mohawk Valley, New York. J. Sed. Petrol., 39: 113-135.

Browne G. H. and Plint A. G., 1994. Alternating braidplain and lacustrine deposition in a strike-slip setting: the Pennsylvanian Boss Point Formation of the Cumberland Basin, Maritime Canada. J. Sed. Res., B64 (1): 40-59.

Buchanan D. T., 1984. The McArthur River project. In: Darwin Conference 1984. AusiMM: Parkville. pp. 49-57.

BullS. W., 1993. Progress report- sedimentology and volcanology of the southern McArthur Basin. AMIRA/ARC project P384 rep., 4: 33-53.

Bull S. W. and Rogers J. R., 1994. Structure and sedimentology of the Tawallah and lower McArthur Groups, Batten Range. AMIRAJARC project P384 rep., 6: 41-52.

Bilrgmann R., Pollard D. D. and Martel S. J., 1994. Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol., 16 (12): 1675-1690.

Byerlee J.D., 1978. Friction of rocks. Pure appl. Geophys., 116: 615-626.

Cas R. A. F. and Wright J. V., 1987. Volcanic successions: modem and ancient. Allen & Unwin: London.

Casas-Sainz A.M. and Sim6n-G6mez J. L., 1992. Stress field and thrust kinematics: a model for the tectonic inversion of the Cameros Massif (Spain). J. Struct. Geol., 14 (5): 521-530.

Chappell B. W. and White A. J. R., 1974. Two contrasting granite types. Pacific Geol., 8: 173-174.

Chappell B. W. and White A. J. R., 1992. I- and S-type granites in the Lachlan Fold Belt. Trans. Roy. Soc. Edinburgh: Earth. Sci., 83: l-26.

Clague D. A. and Frey F. A., 1982. Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: Implications for the oceanic mantle below Hawall. J. Petrol., 23 (3): 447-504.

Clifton H. E., 1969. Beach lamination: nature and origin. Marine Geol., 7: 553-559.

222

Clifton H. E., Hunter R. E. and Phillips R. L., 1971. Depositional structures and processes in the non-barred high-energy nearshore. J. Sed. Petrol., 41 (3): 651-670.

Cooke D. R., 1993. Transport and deposition of base metals from high temperature (250°C) sedimentary brines. AMIRA/ARC project P.384, Report No. 4: 111-130.

Cooke D. R., Bull S. W. and Donovan S., 1995. Potassic alteration in the Settlement Creek and Gold Creek Volcanics, McArthur Basin, Northern Territory -implications for base metal mineralisation. AMIRA/ARC project P384., Final Report: 183-225.

Cox K. G., 1980. A model for flood basalt vulcanism. J. Petrol., 21 (4): 629-650.

Cox S. F., Etheridge M.A. and Wall V. J., 1986. The role of fluids in syntectonic mass transport, and the localization of metamorphic vein-type ore deposits. Ore Geol. Rev., 2: 65-86.

Cox S. J. D. and Scholz C. H., 1988. On the formation and growth of faults: an experimental study. J. Struct. Geol., 10 (4): 413-430.

Crawford A. J. and Hilyard D., 1990. Geochemistry of Late Proterozoic tholeiitic flood basalts. Adelaide Geosyncline, South Australia. In Jago J. B. and Moore P. S. (Eds.): The evolution of a Late Precambrian-Early Palaeozoic rift complex: the Adelaide Geosyncline. Geol. Soc. Aust. Spec. Publ.16. pp. 49-67.

Crawford A. J. and von Rad U., 1994. The petrology, geochemistry and implications of basalts dredged from the Rowley Terrace-Scott Plateau and Exmouth Plateau margins, northwestern Australia. AGSO J. Aust. Geol. Geophys., 15 (1): 43-54.

Crawford M. L., 1981. Fluid inclusions in metamorphic rocks -low and medium grade. In Hollister L. S. and Crawford M. L. (Eds.): Fluid Inclusions: applications to petrology. Mineral. Assoc. Can. 6. pp. 157-181.

Darby P., 1986. Petrology and geochemistry of igneous rocks of the Tawallah Group, in the southern part of the McArthur Basin. NTGS Technical Report, GS86/10 (unpublished).

Davidson G. J. and Dashlooty S. A., 1993. The Glyde Sub-basin: A volcaniclastic­bearing pull-apart coeval with the McArthur River base-metal deposit, Northern Territory. Aust. J. Earth Sci., 40: 527-543.

Davis R. A. J. and Fox W. T., 1972. Coastal processes and nearshore sand bars. J. Sed. Petrol., 42 (2): 401-412.

Donovan S., 1993. The geology of west Mallapunyah Dome, southern McArthur Basin, Northern Territory. University of Tasmania, BSc hons. thesis (unpublished).

Duke W. L., Arnott R. W. C. and Cheel R. J., 1991. Shelf sandstones and hummocky cross-stratification: New insights on a stormy debate. Geology, 19: 625-628.

Duncan A. R., 1987. The Karoo igneous province- a problem area for inferring tectonic setting from basalt geochemistry. J. Volcan. Geotherm. Res., 32: 13-34.

Dunn D. E., LaFountain L. J. and Jackson R. E., 1973. Porosity dependance and mechanism of brittle fracture in sandstones. J. Geophys. Res., 78 (14): 2403-2417.

223

Dupin J.-M., Sassi W. and Angelier J., 1993. Homogeneous stress hypothesis and actual fault slip: a distinct element analysis. J. Struct. Geol., 15 (8): I 033-1043.

Ehlers E. G. and Blatt H., 1982. Petrology: Igneous, Sedimentary and Metamorphic. Freeman: San Francisco.

Elliot T., 1986. Siliciclastic Shorelines. In Reading H. G. (Ed.): Sedimentary environments and facies. Blackwell Scientific: Oxford. pp. 155-188.

Engelder J. T., 1974. Cataclasis and the generation of fault gouge. Geol. Soc. Am. Bull., 85: 1515-1522.

Etchecopar A., Vasseur G. and Daignieres M., 1981. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. J. Struct. Geol., 3 (1): 51-65.

Etheridge M.A., Rutland R. W. R. and Wyborn L.A. I., 1987. Orogenesis and tectonic process in the Early to Middle Proterozoic of northern Australia. In Kroner A. (Ed.): Proterozoic lithospheric evolution. Geodynamic Series 17. Am. Geophys. Union: Washington DC. pp. 131-147.

Etheridge M. A. and Wall V. J., 1994. Tectonics and structural evolution of the Australian Proterozoic. Geol. Soc. Aust. (abs), 37: 102-103.

Evans J. E., 1991. Facies relationships, alluvial architecture, and paleohydrology of a Paleogene, humid-tropical alluvial-fan system: Chumstock Formation, Washington State, U.S.A. J. Sed. Petrol., 61 (5): 732-755.

Fedo C. M. and Cooper J. D., 1990. Braided fluvial to marine transition: the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California. J. Sed. Petrol., 60 (2): 220-234.

Floyd P. A. and Winchester J. A., 1975. Magma type and tectonic setting using immobile elements. Earth Planet. Sci. Lett., 27: 211-218.

Foden J.D., Buick I. S. and Mortimer G. E., 1988. The petrology and geochemistry of granitic gneisses from the east Arunta Inlier, central Australia: implications for Proterozoic crustal development. Precamb. Res., 40 (41): 233-259.

Fodor R. V., 1987. Low- and high-Ti02 flood basalts of southern Brazil: origin from picritic parentage and a common mantle source. Earth Planet. Sci. Lett., 84: 423-430.

Fodor R. V., Corwin C. and Roisenburg A., 1985. Petrology of Serra Geral (Parana) continental flood basalts, southern Brazil: crustal contamination, source material and South Atlantic magmatism. Contrib. Mineral. Petrol., 91: 54-65.

Fodor R. V. and Vetter S. K., 1984. Rift-zone magmatism: Petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin. Contrib. Mineral. Petrol., 88: 307-321.

Fournier R. 0., 1979. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot­spring systems. J. Volcan. Geotherm. Res., 5: 1-16.

Friedman G. M. and Sanders J. E., 1978. Principles of sedimentology. John Wiley and Sons: New York.

224

Fyfe W. S., Price N.J. and Thompson A. B., 1978. Developments in geochemistry 1: Fluids in the earth's crust Elsevier: Amsterdam.

Gapais D., Fiquet G. and Cobbold P.R., 1991. Slip system domains, 3. New insights in fault kinematics from plane-strain sandbox experiments. Tectonophysics, 188: 143-157.

Geiser P. A., 1988. Mechanisms of thrust propagation: some examples and implications for the analysis of overthrust terranes. J. Struct. Geol., 10 (8): 829-845.

Gephart J., 1990. Stress and the direction of slip on fault planes. Tectonics, 9 (4): 845-858.

Gibbs A. D., 1990. Linked fault families in basin formation. J. Struct. Geol., 12 (5/6): 795-803.

Gill J., 1981. Orogenic andesites and plate tectonics. Springer Verlag: Berlin.

Gray D. R., Gregory R. T. and Durney D. W., 1994. Vein and fabric development within quartzo-feldspathic turbidite successions: implications for the role of fluid during deformation. Geol. Soc. Aust. ( abs ), 36: 56.

Green D. H. and Ringwood A. E., 1967. The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15: 103-190.

Haas J. L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ. Geol., 66: 940-946.

Haas J. L. J., 1976. Physical properties of the coexisting phases and the thermochemical properties of the H20 component in boiling NaCl solutions. U.S. Geol. Surv. Bull., 1421-A.

Haines P. W., 1994. The Balma and Habgood Groups, northern McArthur Basin, Northern Territory: stratigraphy and correlations with the McArthur Group. In Hallenstein C. P. (Ed): Australian mining looks north - the challenges and choices. 1994 AusiMM Annual Conference Tecnical Program Proceedings. AusiMM: Parkville. pp 147-152. ·

Haines P. W., Pietsch B. A., Rawlings D. J. and Madigan T. L., 1993. Mount Young-1:250 000 geological map series. NTGS explanatory notes, SE53-15.

Hall D. L., Sterner S. M. and Bodnar R. J., 1988. Freezing point depression of NaCl­KCI-H20 solutions. Econ. Geol., 83: 197-202.

Hamblin A. P. and Walker R. G., 1979. Storm dominated shallow marine deposits: the Fernie-Kootenay (Jurassic) transition, southern Rocky Mountains. Can. J. Earth Sci., 16: 1673-1690.

Hanor J. S., 1994. Origin of saline fluids in sedimentary basins. In Parnell J. (Ed.): Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geol. Soc. Lond. Spec. Publ. No. 78: pp. 151-174.

Harland W. B., 1971. Tectonic transpression in Caledonian Spitsbergen. Geol. Mag., 108 (1): 27-42.

Harms J. C., Southard J. B. and Walker R. G., 1982. Structure and sequences in clastic rocks. SEPM Short Course: No. 9.

225

Hawkesworth C. J., Gallagher K., Hergt J. M. and McDermott F., 1994. Destructive plate margin magmatism: geochemistry and melt generation. Lithos, 33: 169-188.

Hempton M. R. and Neher K., 1986. Experimental fracture, strain and subsidence patterns over en echelon strike-slip faults: implications for the structural evolution of pull-apart basins. J. Struct. Geol., 8 (6): 597-605.

Henly R. W., Truesdell A. H. and Barton P. B. J., 1984. Fluid-mineral equilibria in hydrothermal systems. Rev. in Econ. GeoL, 1: 267.

Hinman M., 1995. Structure and kinematics of the HYC-Cooley zone at McArthur River. AGSO. Record, 95 (5).

Hinman M., Wall V. and Heinrich C., 1994. The interplay between sedimentation, deformation and hydrothermal activity at the McArthur Pb-Zn (-Cu) deposit. Geol. Soc. Aust. Abs., 37: 176-177.

Hobbs B. E., Means W. D. and Williams P. F., 1976. An outline of structural geology. John Wiley & Sons: New York.

Hoyanangi K. and Nishimura M., 1994. Slope-shelf-nearshore depositional sequences with transgressive conglomerate in a Miocene backarc and arc-junction setting, central Japan. Sed. Geol., 93: 247-260.

Jackson M. J., 1982. A sedimentological study of the Wollogorang Formation in the southern McArthur Basin, Northern Territory, Australia. James Cook University, M.Sc. Dissertation (unpublished).

Jackson M. J., Muir M.D. and Plumb K. A., 1987. Geology of the southern McArthur Basin, Northern Territory. BMR Bull., 220.

Jaeger J. C. and Cook N. G. W., 1979. Fundamentals of rock mechanics (3rd Edn.). Chapman and Hall: London.

Jamison W. R., 1987. Geometric analysis of fold development in overthrust termues. J. Struct. Geol., 9 (2): 207-219.

Knipe R. J., 1989. Deformation mechanisms- recognition from natural tectonites. J. Struct. Geol., 11 (112): 127-146.

Knipe R. J. and McCaig A.M., 1994. Microstructural and microchemical consequences of fluid flow in deforming rocks. In Parnell J. (Ed.): Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geol. Soc. Lond. Spec. Publ. No. 78. pp. 99-111.

Kralik M., 1982. Rb-Sr age determinations on Precambrian carbonate rocks of the Carpentarian McArthur Basin, Northern Territory, Australia. Precambrian Res., 18: 157-170.

Krantz R. L. and Scholz C. H., 1977. Critical dilatant volume of rocks at the onset of tertiary creep. J. Geophys. Res., 82: 4893-4897.

Kroner A., 1984. Evolution, growth and stabilization of the Precambrian lithosphere. In Pollack H. N. and Murthy U. R. (Eds.): Structure and evolution of the continental lithosphere. Physics and Chemistry of the Earth: 15. pp. 69-106.

Kumar N. and Sanders J. E., 1976. Characteristics of shoreface storm deposits: modern and ancient examples. J. Sed. Petrol., 46 (1): 145-162.

226

Law R. D., 1986. Relationships between strain and crystallographic fabrics in the Roche Maurice quartzites of Plougastel, western Brittany. J. Struct. Geol., 8 (5): 493-515.

Leaman D. E., 1995. Architecture of the McArthur Basin, northern Australia. AMIRA/ARC project P.384, Final Report: 1-24.

Lloyd G. E. and Knipe R. J., 1992. Deformation mechanisms accommodating faulting of quartzite under upper crustal conditions. J. Struct. Geol., 14 (2): 127-143.

Ly C. K., 1982. Sedimentology of nearshore marine bar sequences from a Paleozoic depositional regressive shoreline deposit of the central coast of Ghana, West Africa. J. Sed. Petrol., 52 (1): 199-208.

Mandl G. and Shippam G. K., 1981. Mechanical model of thrust sheet gliding and imbrication. In McClay K. R. and Price N.J. (Eds.): Thrust and nappe tectonics. GeoL Soc. Lond. Spec. Pub!. 9. pp. 79-98.

Mantovani M.S. M., Marques L S., Sousa M. A D., CivettaL., Atalla Land Innocenti F., 1985. Trace element and strontium isotope constraints on the origin and evolution of Parana continental flood basalts of Santa Catarina State (southern Brazil). J. Petrol., 26 (1): 187-209.

Marsh J. S., 1987. Basalt geochemistry and tectonic discrimination within continental flood basalt provinces. J. Vole an. Geotherm. Res., 32: 35-39.

Martell S. J., Pollard D. D. and Segall P., 1988. Development of simple strike-slip fault zones, Mount Abbot quadrangle, Sierra Nevada, California. Bull. Geol. Soc. Am., 100: 1451-1465.

Martini I. P., Tongiorgi M., Oggiano G. and Cocozza T., 1991. Ordovician alluvial fan to marine shelf transition in sw Sardinia, western Mediterranean Sea: tectonically ("Sardic phase") influenced clastic sedimentation. Sed. Geol., 72: 97-115.

Martins-Neto M. A., 1994. Braidplain sedimentation in a Proterozoic rift basin: the Silo Joao da Chapada Formation, southeastern Brazil. Sed. Geol., 89: 219-239.

McCallum M. E., 1985. Experimental evidence for fluidization processes in breccia pipe formation. Econ. Geol., 80: 1523-1543.

McCormick D. S. and Grotzinger J. P., 1993. Distinction of marine from alluvial facies in the Paleoproterozoic (1.9 Ga) Burnside Formation, Kilohigok Basin, N.W.T., Canada. J. Sed. Petrol., 63 (3): 398-419.

McDougall I., Dunn P. R., Compston W., Webb A. W., Richards J. R. and Bofinger V.M., 1965. Isotopic age determinations on Precambrian: rocks of the Carpentaria region, Northern Territory, Australia. J. Geol. Soc. Aust., 12: 67-90.

McKenzie D. and Bickle M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29: 625-679.

McKenzie D. and Weiss N., 1975. Speculations on the thermal and tectonic history of the Earth. Geophys. J. Roy. Astr. Soc., 42: 131-174.

McKibben M. A., Andes J. P. J. and Williams A E., 1988a. Active ore formation at a brine interface in metamorphosed deltaic sediments: the Salton Sea geothermal system, California. Econ. Geol., 83: 511-523.

227

Mckibben M.A. and Williams A. E., 1989. Metal Speciation and solubility in saline hydrothermal fluids: an empirical approach based on geothermal brine data. Econ. Geol., 81: 1996-2007.

McKibben M. A., Williams A. E. and Okubo S., 1988b. Metamorphosed Plio­Pleistocene evaporites and the origin of hypersaline brines in the Salton Sea geothermal system, California: fluid inclusion evidence. Geochim. Cosmochim. Acta, 52: 1047-1056.

McNaughton N. J., Pollard P. J., Stacey J., Groves D. I. and Taylor R. G., 1993. An extreme high-heat producing Sn-W granite from the Bushveld Complex: evidence for a long-lived hydrothermal system. Geol. Soc. Aust. (abs), 34:46-47.

McPherson J. G., Shanmugam G. and Moiola R. J., 1987. Fan-deltas and braid deltas: varieties of coarse-grained deltas. Geol. Soc. Am. Bull., 99: 331-340.

McPhie J., Doyle M. and Allen R., 1993. Volcanic Textures. CODES Key Centre: Hobart.

Menzies M. A., Rogers N., Tindle A. and Hawkesworth C. J., 1987. Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere­lithosphere interaction. In Menzies M.A. and Hawkes worth C. J. (Eds.): Mantle Metasomatism. Academic Press: London. pp. 313-361.

Memagh T. P., Heinrich C. A., Leckie J. F., Carville D.P., Gilbert D. J., Valenta R. K. and Wyborn L. A. 1., 1994. Chemistry of low-temperature hydrothermal gold, platinum, and palladium (± uranium) mineralisation at Coronation Hill, Northern Territory, Australia. Econ. Geol., 89: 1053-1073.

Meschede M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chern. Geol., 56: 207-218.

Miall A. D., 1977. A review of the braided-river depositional environment. Earth-Sci. Rev., 13: 1-62.

Miall A. D., 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. In Miall A. D. (Ed.): Fluvial Sedimentology. Can. Soc. Pet. Geol. Mem. 5. pp. 597-604.

Morley C. K., 1986. A classification of thrust fronts. Bull. Am. Ass. Petrol. Geol., 70 (1): 12-25.

Mount J. F. and Kidder D., 1993. Combined flow origin of edgewise conglomerates: Sellick Hill Formation (Lower Cambrian), South Australia. Sedimentology, 40: 315-329.

Mustard P. S., 1991. Normal faulting and alluvial-fan deposition, basal Windermere Tectonic Assemblage, Yukon, Canada. Geol. Soc. Am. Bull., 103: 1346-1364.

Myers J. S., Shaw R. D. and Tyler I. M., 1994. Proterozoic tectonic evolution of Australia. Geol. Soc. Aust. (abs), 37: 312.

Nakayama N. and Masuda F., 1989. Ocean current-controlled sedimentary facies of the Pleistocene Ichijiku Formation, Kazusa Group, Boso Peninsula, Japan. In Taira A. and Masuda F. (Eds.): Sedimentary facies in the active plate margin. TERRAPUB: Tokyo. pp. 275-293.

228

Naylor M.A., Mandl G. and Sijpesteijn C. H. K., 1986. Fault geometries in basement­induced wrench faulting under different initial stress states. J. Struct. Geol., 8 (7): 737-752.

Norrish K. and Hutton J. T., 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta, 33: 431-453.

Nottvedt A. and Kreisa R. D., 1987. Model for the combined-flow origin of hummocky cross-stratification. Geology, 15: 357-361.

PageR. W., 1981. Depositional ages of the stratiform base metal deposits at Mount Isa and McArthur River, Australia, based on U-Pb zircon dating of concordant tuff horizons. Econ. Geol., 76: 648-658.

· Paterson M. S. and Kekulawala K. R. S. S., 1979. The role of water in quartz deformation. Bull. Mineral., 102: 92-98.

Paull R. K. and Paull R. A., 1994. Shallow marine sedimentary facies in the earliest Triassic (Griesbachian) Cordilleran miogeocline, U.S.A. Sed. Geol., 93: 181-191.

Pearce J. A. and Norry M. J., 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 69: 33-47.

Petit J.P., 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. J. Struct. Geol., 9 (5/6): 597-608.

Phillips W. J., 1972. Hydraulic fracturing and mineralization. J. Geol. Soc. Lond., 128: 337-359.

Pietsch B. A., Plumb K. A., PageR. W., Haines P. W., Rawlings D. J. and Sweet I. P., 1994. A revised stratigraphic framework for the McArthur Basin, Northern Territory. In HaUenstein C. P. (Ed): Australian mining looks north - the challenges and choices. 1994 AusiMM Annual Conference Tecnical Program Proceedings. AusiMM: Parkville. pp 135-138.

Pietsch B. A., Wyche S., Rawlings D. J., Creaser P. M. and Findhamrner T. L. R., 1991a. McArthur River Region, Northern Territory- 1:100 000 geological map series. NTGS explanatory notes, 6065-6165.

Pietsch B. A., Rawlings D. J., Creaser P. M., Kruse P. D., Ahmad M., Ferenczi P. A. and Findhamrner T. L. R., 1991b. Bauhinia Downs, Northern Territory- 1:250 000 geological map series. NTGS explanatory notes, SE 53-3.

Plumb K. A., 1979. Structure and tectonic style of the Precambrian shields and platforms of northern Australia. Tectonophysics, 58: 291-325.

Plumb K. A., 1994. Structural evolution of the McArthur Basin, NT. In HaUenstein C. P. (Ed): Australian mining looks north - the challenges and choices. 1994 AusiMM Annual Conference Tecnical Program Proceedings. AusiMM:Parkville. pp 139-145.

Plumb K. A., Ahmad M. and Wygralak A. S., 1990. Mid-Proterozoic basins of the North Australian Craton - regional geology and mineralisation. In Hughes F. E. (Ed.): Geology of the mineral deposits of Australia and Papua New Guinea Volume 1. Australasian Institute of Mining and Metallurgy: Monograph 14. pp. 881-902.

229

Plumb K. A., Derrick G. M., Needham R. S. and Shaw R. D., 1981. The Proterozoic of northern Australia. In Hunter D. R. (Ed.): Precambrian of the Southern Hemisphere. Developments in Precambrian geology 2. Elsevier: Amsterdam. pp. 205-307.

Plumb K. A., Derrick G. M. and Wilson I. H., 1980. Precambrian geology of the McArthur River Mount Isa region, northern Australia. In Henderson R. A. and Stephenson P. J. (Eds.): The geology and geophysics of northeastern Australia, 4. Geological Society of Australia, Queensland Division: Brisbane. pp. 71-88.

Plumb K. A. and Wellman P., 1987. McArthur Basin, Northern Territory: mapping of deep troughs using gravity and magnetic anomalies. BMR J. Aust. Geol. Geophys., 10: 243-251.

Pollard D. D., Saltzer S.D. and Rubin A.M., 1993. Stress inversion methods: are they based on faulty assumptions. J. Struct. Geol., 15 (8): 1045-1054.

Powell T. G., Jackson M. J., Sweet I. P., Crick I. H., Boreham C. J. and SummonsR.E., 1987. Petroleum geology and geochemistry, Middle Proterozoic McArthur Basin. BMR Record, 1987/48 (unpublished).

Rainbird R. H., 1993. The sedimentary record of mantle plume uplift preceding eruption of the Neoproterozoic Natkusiak flood basalt. J. Geol., 101: 305-318.

Ramsey J. G. and Huber M. I., 1987. The techniques of modem structural geology. Acedernic Press Inc. Ltd.: London.

Rawlings D. J., 1993. Mafic peperite from the Gold Creek Volcanics in the Middle Proterozoic McArthur Basin, Northern Territory. Aust. J. Earth. Sci., 40: 109-113.

Rawlings D. J., 1994. Characterisation and correlation of volcanism in the McArthur Basin and transitional domain; NT. In Hallenstein C. P. (Ed): Australian mining looks north - the challenges and choices. 1994 AusiMM Annual Conference Tecnical Program Proceedings. AusiMM:Parkville. pp 157-160.

Rawlings D. J., Madigan T. L., Pietsch B. A. and Haines P. W., 1993. Tawallah Range, Northern Territory- 1:100 000 geological map series. NTGS explanatory notes, 6066.

Reches Z., 1987. Determination of the tectonic stress tensor from slip along faults that obey the Coulomb yield condition. Tectonics, 6: 849-861.

Reinson G. E., 1984. Barrier island and associated strand-plain systems. In Walker R. G. (Ed.): Facies Models. Geoscience Canada: Ontario. pp. 119-140.

Reneau S., Dietrich W. E., Donahue D. I., Jull A. J. T. and Rubin M., 1990. Late Quaternary history of colluvial deposition and erosion in hollows, central California Coastal Ranges. Geol. Soc. Am. Bull., 102: 969-982.

Richard P. and Krantz R. W., 1991. Experiments on fault reactivation in strike-slip mode. Tectonophysics, 188: 117-131.

Robinson P., Higgins N. G. and Jenner G. A., 1986. Determination of rare-earth elements, yttrium and scandium in rocks by an ion exchange - XRF technique. Chem. Geol., 55: 121-137.

Roedder E., 1984. Fluid Inclusions. Mineral. Soc. Am. Rev. Mineralogy, 12: 644 p.

230

Roedder E. and Bodnar R. J., 1980. Geologic pressure determinations from fluid inclusion studies. Ann. Rev. Earth Planet. Sci., 8: 263-301.

Roex A. P. L., Dick H. J. B., Erlank A. J., Reid A.M., Fray F. A. and HartS. R., 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between Bouvet triple junction and 11 degrees east. J. Petrol., 24 (3): 267-318.

Rollinson H., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical: Essex.

Rust B. R., 1972. Structure and process in a braided river. Sedimentology, 18: 221-245.

Rust B. R., 1978. Depositional models for braided alluvium. In Miall A. D. (Ed.): Fluvial Sedimentology. Can. Soc. Pet. Geol. Mem. 5. pp. 605-625.

Rust B. R. and Gibling M. R., 1990. Braidplain evolution in the Pennsylvanian South Bar Formation, Sydney Basin, Nova Scotia, Canada. J. Sed. Petrol., 60 (1): 59-72.

Rust B. R. and Koster E. H., 1984. Coarse alluvial deposits. In Walker R. G. (Ed.): Facies Models. Geoscience Canada: Ontario. pp. 53-70.

Rutland R. W. R., 1976. Orogenic evolution of Australia. Earth Sci. Rev., 12: 161-196.

Rutland R. W. R., Etheridge M. A. and Solomon M., 1990. The stratigraphic and tectonic setting of the ore deposits of Australia. In Hughes F. E. (Ed.): Geology of the mineral deposits of Australia and Papua New Guinea. AusiMM: Melbourne. pp. 15-26.

Sanderson D. J. and Marchini W. R. D., 1984. Transpression. J. Struct. Geol., 6 (5): 449-458.

Scott D. L., Etheridge M.A. and Rosendahl B. R., 1992. Oblique-slip deformation in extensional terrains: a case study of the Lakes Tanganyika and Malawi Rift Zones. Tectonics,ll (5): 998-1009.

Scott D. L., Betts P. G., Rogers J. R., Bradshaw B. E., Jackson M. J., McConachie B. A. and Southgate P. N., (in press). Stratal growth and basin phase geometries in the Proterozoic of North Australia: preliminary investigations. Submitted to Geol. Soc. Aus. (abs.), 38.

Segall P. and Pollard D. D., 1980. Mechanics of discontinuous faults. J. Geophys. Res., 85: 4337-4350.

Sepkoski J. J. J., 1982. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. In Einsele G. and Seilacher A. (Eds.): Cyclic and event stratification. Spinger-Verlag: New York. pp. 371-385.

Sibson R. H., 1985. A note on fault reactivation. J. Struct. Geol., 7 (6): 1985.

Sibson R. H., 1986. Brecciation processes in fault zones: inferences from earthquake ·rupturing. Pageoph, 124 (1/2): 159-175.

Sibson R. H., 1989. Structure and mechanics of fault zones in relation to fault hosted mineralisation. Aust. Min. Foundation: Dept. Geol. Sci. Uni. California.

231

Sibson R. H., 1994. Crustal stress, faulting and fluid flow. In Parnell J. (Ed.): Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins. Geol. Soc. Spec. Pub. No. 78. pp. 69-84.

Siders M. A. and Elliot D. H., 1985. Major and trace element geochemistry of the Kirkpatrick Basalt, Mesa Range, Antarctica. Earth Planet. Sci. Lett., 72: 54-64.

Singh A. and Bhardwaj B. D., 1991. Fluvial facies model of the Ganga River sediments, India. Sed. Geol., 72: 135-146.

Smith J. W., 1964. 1:250 000 geological series explanatory notes. Bauhinia Downs, N. T. Bureau of Mineral Resources: Australia.

Smith N.D., 1970. The braided stream depositional environment: comparison of the Platte River with some Silurian clastic rocks, north-central Appalachians. Geol. Soc. Am. Bull., 81: 2993-3014.

Solomon M. and Groves D. I., 1994. The Geology and Origin of Australia's Mineral Deposits. Clarendon Press: Oxford.

Solomon M. and Heinrich C. A., 1992. Are high-heat-producing granites essential to the origin of giant lead-zinc deposits at Mount Isa and McArthur River, Australia? Explor. Mining Geol., 1 (1): 85-91.

Spera F. J., 1987. Dynamics of translithospheric migration of metasomatic fluid and alkaline magma. In Menzies M. A. and Hawkesworth C. J. (Eds.): Mantle Metasomatism. Academic Press: London. pp. 1-20.

Spry A., 1969. Metamorphic Textures. Pergamon Press: Oxford.

Stel H., 1981. Crystal growth in -cataclasites: diagnostic microstructures and implications. Tectonophysics, 78: 585-600.

Stolz A. J. and Davies G. R., 1988. Chemical and isotopic evidence from spinel lherzolite xenoliths for episodic metasomatism of the upper mantle beneath southeast Australia. J. Petrol., Special Lithosphere Issue: 303-330.

Stolz A. J., 1992. Compositional and Textural Alteration of Volcanic Rocks. CODES Key Centre MSc. Econ. Geol. Course Work Manual10. pp. 7-22.

Suppe J., 1983. Geometry and kinematics of fault-bend folding. Am. J. Sci., 283: 684-721.

Swanson M. T., 1988. Pseudotachylyte-bearing strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. J. Struct. Geol., 10 (8): 813-828.

Sylvester A. G., 1988. Strike-slip faults. Bull. Geol. Soc. Am., 100: 1666-1703.

Sylvester A. G. and Smith R. R., 1976. Tectonic transpression and basement-controlled deformation in San Andreas Fault Zone, Salton Trough, California. Bull. Am. Ass. Petrol. Geol., 60 (12): 2081-2102.

Tchalenko J. S., 1970. Similarities between shear zones of different magnitudes. Bull. Geol. Soc. Am., 81: 1625-1640.

Thatcher W. and Hill D.P., 1991. Fault orientations in extensional and conjugate strike­slip environments and their implications. Geology, 19: 1116-1120.

232

Thompson RN., Morrison M. A., Dickin A. P. and Hendry G. L., 1983. Continental flood basalts... arachnids rule OK? In Hawkesworth C. J. and Norry J. (Eds.): Continental basalts and mantle xenoliths. Shiva: Nantwhich. pp. 158-185.

Thompson RN., Morrison M. A., Hendry G. L. and Parry S. J., 1984. An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Phi/. Trans. Roy. Soc. Land., 310: 549-590.

Toth J. and Corbet T., 1987. Post-Palaeocene evolution of regional groundwater flow systems and their relation to petroleum accumulations, Taber Area, southern Alberta, Canada. In Goff J. C. and Williams B. P. J. (Eds.): Fluid flow in sedimentary basins and aquifers. Geol. Soc. Spec. Publ. 34. pp. 45-77.

Uhlir D. M., Akers A. and Vondra C. F., 1988. Tidal inlet sequence, Sundance Formation (Upper Jurassic), north-central Wyoming. Sedimentology, 35: 739-752.

Vagnes E. and Amundsen H. E. F., 1993. Late Cenozoic uplift and vo1canism on Spitsbergen: Caused by mantle convection? Geology, 21: 251-254.

Vernon R. H., 1976. Metamorphic Processes: Reactions and Microstructure Development. Alien and Unwin: London.

Vogt P., 1991. Bermuda and Appalachian-Labrador rises: Common non-hotspot processes? Geology, 19: 41-44.

Walker R. G., 1981. Clastic sedimentary facies and depositional models: short course notes. Australian Sedimentologists Group of the Geol. Soc. Aust.: Dept. Earth Sci. Monash Uni.

Walker R G., 1984. Shelf and shallow marine sands. In Walker R. G. (Bd.): Facies Models. Geoscience Canada: Ontario. pp. 141-170.

Walker R. G. and Cant D. J., 1984. Sandy fluvial systems. In Walker R. G. (Ed.): Facies Models. Geoscience Canada: Ontario. pp. 71-89.

Walker R. G. and Plint A. G., 1992. Wave- and storm-dominated shallow marine systems. In Walker R G. and James N. P. (Eds.): Facies Models: response to sea level change. Geological Association of Canada: Ontario. pp. 219-238.

Wallace RE., 1951. Geometry of shearing stress and relation to faulting. J. Geol., 59: 118-130.

Warren J. K., 1991. Sulfate dominated sea-marginal and platform evaporitive settings: sabkhas and salinas, mudflats and salterns. In Melvin J. L. (Bd.): Evaporites, petroleum and mineral resources. Developments in Sedimentology 50. Elsevier: Amsterdam. Chapter 2.

White R. and McKenzie D., 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res., 94 (B6): 7685-7729..

Wilcox RE., Harding T. P. and Seely D. R, 1973. Basic wrench tectonics. Bull. Am. Ass. Petrol. Geol., 57 (1): 74-96.

Wilkerson M. S., 1992. Differential transport and continuity of thrust sheets. J. Struct. Geo/., 14 (6): 749-751.

Will T. M. and Powell R., 1991. A robust approach to the calculation of paleostress fields from fault plane data. J. Struct. Geol., 13 (7): 813-821.

233�

Wilson M., 1989. Igneous Petrogenesis: A global tectonic approach. Unwin Hyman: London.

Winchester J. A. and Floyd P. A., 1976. Geochemical magma type discrimination; application to altered and metamorphosed basin igneous rocks. Earth Planet. Sci. Lett., 28: 459-469.

Winchester J. A. and Floyd P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20: 325-343.

Wisonant R. C., 1987. Paleocurrent and petrographic analysis of imbricate intraclasts in shallow-marine carbonates, Upper Cambrian, southwestern Virginia. J. Sed. Petrol., 57 (6): 983-994.

Wong T. F., 1990. Mechanical compaction and the brittle-ductile transition in porous sandstones. In Knipe R. J. and Rutter E. H. (Eds.): Deformation mechanisms, rheology and tectonics. Geol. Soc. Lond. Spec. Publ. No. 54. pp. 111-122.

Wood D. A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet. Sci. Lett., 50: 11-30.

Woodcock N. H. and Fischer M., 1986. Strike-slip duplexes. J. Struct. Geol., 8 (7): 725­735.

Woodhead J., Eggins S. and Gamble J., 1993. High field strength and transition element systematics in island arc and back-arc basin basalts: evidence fro multi-phase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett., 114: 491-504.

Wright J. V., 1993. The geology of north Mallapunyah Dome, Northern Territory. University of Tasmania, BSc hons. thesis (unpublished).

Wyborn L. A. 1., 1992. Proterozoic and late Archaean magmatism, tectonics, and mineralisation: a granitologist's perspective. In:. Tectonic and structural controls on ore deposits. CODES Key Centre M.Econ.Geol. course work manual 6. pp. 283-354.

Wyborn L. A. 1., Page R. W. and Parker A. J., 1987. Geochemical and geochronological signatures in Australian Proterozoic igneous rocks. In Pharaoh T. C., Beckinsale R. D. and Rickard D. (Eds.): Geochemistry and mineralisation of Proterozoic volcanic suites. Geol. Soc. Spec. Publ. 33. pp. 377-394.

Yagishita K., 1994. Planar cross-bedding associated with rip currents of Upper Cretaceous formations, northeast Japan. Sed. Geol., 93: 155-163.

Yin Z.-M. and Ranalli G., 1993. Determination of tectonic stress field from fault slip data: towards a probabilistic model. 1. Geophys. Res., 98 (B7): 12165-12176.

Zaw� K., Huston D. L., Large R. R., Mernagh T. and Hoffmann C. F., 1994. Microthermometry and geochemistry of fluid inclusions from the Tennant Creek gold-copper deposits: implications for ore deposition and exploration. Mineral. Deposita, 29: 288-300.

234

Appendix 1

la Sample catalogue

Ib Salnple locations in the study region

le Sample locations outside of the study region

Id Location of samples collected for fluid inclusion analysis.

Appendix 1a Catalogue of representative Tawallah Group samples collected during this study.

Field No. Fm. Area Section/sample location (AMG) m Sedimentary facI8s or rock type Preparations 94-67 Ply Tawallah Range 5755E 82199N - 5791 E 82181N 5 Trough cross·bedded gravelly sandstone R, TS 94-68 Ply Tawallah Range 5755E 82199N - 5791E 82181N 110 Trough cross-bedded sandstone R, TS 94-69 Ply Tawallah Range 5755E 82199N - 5791E 82181N 230 Trough cross-bedded gravelly sandstone R,TS 94-72 Ply Tawallah Range 5755E 82199N - 5791E 82181N 2150 Ripple laminated association R,TS

93-15 Pie Tawallah Range 5695E 82135N Coherent basalt R,TS 93-16 Pie Tawallah Range 5695E 82135N Coherent basalt R, TS 93-17 Pie Tawallah Range 5695E 82135N Coherent basalt R,PS 94-06 Pie Batten Range 5810E 81834N Coherent basalt R, TS 94-923 Pte Namalangi 8190E 80610N Coherent basalt R, PO 94-924 Pte Namalangi 8190E 80610N Coherent basalt R,PS,PO 94-926 Pie Namalangi 8190E 80610N Coherent basalt R,PS,PO

94-73 PII Tawallah Range 5791E 82181N - 5800E 82169N 12 Trough cross-bedded sandstone R,TS 94-74 PII Tawallah Range 5791E 82181N - 5800E 82169N 84 Trough cross-bedded sandstone R,TS 94-75 Ptl Tawallah Range 5791E 82181N - 5800E 82169N 85 Ripple laminated association R, TS 94-76 Ptl Tawallah Range 5791E 82181N - 5800E 82169N 127 Trough cross-bedded sandstone R, TS 94-77 Ptl Tawallah Range 5791E 82181N - 5800E 82169N 169 Trough cross-bedded sandstone R, TS 94-78 PtI Tawallah Range 5791E 82181N - 5800E 82169N 172 Basal trough cross-bedded sandstone R, TS 94-79 Ptl Tawallah Range 5791E 82181N-5800E 82169N 172 Trough cross-bedded sandstone R,TS 94-80 Ptl Tawallah Range 5791E 82181N -5800E 82169N 172.5 Ripple laminated association R, TS 94-05 Ptl Batten Range 5805E 81835N - 5796E 81839N 0 Basal breccia R,TS 94-04 PtI Batten Range 5805E 81835N - 5796E 81839N 16 Planar~beddedsandstone R,TS 94-03 PII Batten Range 5805E 81B35N - 5796E 81839N 112 Trough cross-bedded sandstone R,TS 94-02 PII Batten Range 5805E 81835N - 5796E 81839N 545 Ripple laminated association R,TS 94-01 Ptl Batten Range 5805E 81835N - 5796E 81839N 545 Ripple laminated association R,TS 92-01 Ptl Batten Range 5815E 81895N Fault brecc'a R, FI

92-03 PtI Batten Range 5819E 81892N Fault breccia R, FI 92-09 Ptl Batten Range 5800E 81884N Fault breccia R, FI

93-801 PII Batten Range 5835E 81891N Fault breccia R, FI 93-802 PII Batten Range 5835E 81891N Fault breccia R, FI

93-803 PII Batten Range 5835E 81891N Fault breccia R, FI 93-804 PII Batten Range 5833E 81893N Fault breccia R, FI

93-805 PII Batten Range 5833E 81893N Fault breccia R, FI 93-806 PII Batten Range 5828E 81894N Fault breccia R,FI 93-807 PtI Batten Range 5828E 81894N Fault breccia R, FI 93-808 Ptl Batten Range 5824E 81893N Fault breccia R, FI 93-809 Ptl Batten Range 5B24E 81893N Fault breccla R, FI 93-810 PII Batten Range 5816E 81888N Fault breccia R, FI 93-811 PII Batten Range 5816E 81888N Fault breccia R, FI 93-812 PII Batten Range 5816E 81888N Fault breccia R, FI 93-813 PII Batten Range 5816E 81888N Fault breccia R, FI 93-814 Ptl Batten Range 5816E 81886N Fault breccia R, FI 93-815 Ptl Batten Range 5825E 81887N Fault breccla R, Fl 93-816 PII Batten Range 5825E 81887N Fault breccia R, FI 93-817 PtI Batten Range 5831E 81887N Fault breccia R, FI 93-818 PtI Batten Range 5831E 81888N Fault breccia R, FI 93-819 PII Batten Range 5834E 81887N Fault breccia R, FI 93-820 PII Batten Range 5834E 81887N Fault breccia R, FI

94-95 PlIr Batten Range 5817E 81876N-5814E 81876N 5 FlaHaminated sandstone R, TS 94-96 Ptlr Batten Range 5817E 81876N-5814E 81876N 11 Planar cross-laminated R, TS 94-97 Ptlr Batten Range 5817E 81876N-5814E 81876N 29 SlItstone R, TS 94-98 Ptlr Batten Range 5817E 81876N-5814E 81876N 51 Mud-chip intraclast R, TS

94-07 Plq Batten Range 5821E 81876N - 5817E 81876N 16 Lower carbonate (ovoid concretions) R,TS 94-08 Plq Batten Range 5821E 81876N - 5817E 81876N 31 HCS sandstone R,TS 94-09 Plq Batten Range 5821E 81876N - 5817E 81876N 31 Siltstone R,TS 94-10 Ptq Batten Range 5821E 81876N - 5817E 81876N 31 HCS sandstone R, TS 94-17 Ptq Scrutton Range 5614E 82133N - 5606E 82128N 6 HCS sandstone R, TS 94-66 Ptq Tawallah Range 5815E 82167N - 5824E 82162N 103 Upper carbonate A, TS

94-83 Pin Tawallah Range 5780E 82090N - 5783E 82071 N 6 Planar cross~bedded gravelly sandstone R,TS 94-84 Pin Tawallah Range 5780E 82090N - 5783E 82071 N 11 Planar cross-bedded gravelly sandstone R,TS 94-85 Pin Tawallah Range 5780E 82090N - 5783E 82071 N 23.5 Basal conglomerate R,TS 94-86 In Tawallah Range 5780E 82090N - 5783E 82071 N 23.5 Planar cross-bedded gravelly sandstone R,TS 94-87 Pin Tawallah Range 5780E 82090N - 5783E 82071 N 23.5 Planar cross-bedded gravelly sandstone R,TS

Appendix 1a Catalogue of representative Tawallah Group samples collected during this study.

Field No. Fm. Area Section/sample location (AMG) m Sedimentary facies or rock type Preparations 94-88 PIn Tawallah Range 5780E 82090N - 5783E 82071 N 23.5 Planar cross-bedded gravelly sandstone R,TS 94-89 PIn Tawallah Range 5780E 82090N - 5783E 82071 N 49 Planar cross-bedded sandstone R, TS 94-51 ptn Scrutton Range 5638E 82090N - 5633E 82086N 1.5 Upper planar cross-bedded sandstone R,TS 94-52 Ptn Scrutton Range 5638E 82090N - 5633E 82086N 1.5 Upper planar cross-bedded sandstone R,TS 94-53 Ptn Scrutton Range 5638E 82090N - 5633E 82086N 55 Upper ripple/aminated sandstone R,TS 94-15 PIn Batten Range 5813E 81909N - 5812E 81916N 130 Planar cross-bedded sandstone R,TS 94-14 PIn Batten Range 5813E 81909N - 5812E 81916N 166 Upper ripple laminated sandstone R, TS 94-13 PIn Batten Range 5813E 81909N - 5812E 81916N 187 Upper planar cross-bedded sandstone R,TS 94-12 Pin Batten Range 5813E 81909N - 5812E 81916N 187 Upper planar cross-bedded sandstone R, TS 94-110a Pin Batten Range 5784E 81960N Palaeosol horizon R, TS 94-110b PIn Batten Range 5784E 81960N Palaeosol horizon R,TS

92-M01 Pie Mallapunyah 5895E 81215N Coherent dolerite R,TS 92-M01 PIe Mallapunyah 5895E 81215N Coherent dolerite R,TS 92-M02 PIe Mallapunyah 5895E 81215N Coherent dolerite R,TS 92-M02 PIe Mallapunyah 5895E 81215N Coherent dolerite R, TS 92-M02 PIe Mallapunyah 5895E 81215N Coherent dolerite R, TS 93-69 PIe Serutton Range 5264E 82093N Coherent dolerite R,PO 93-71 PIe Serutton Range 5264E 82093N Coherent dolerite R, PS, PO 93-72 PIe Serutton Range 5264E 82093N Coherent dolerite R,PO 93-73 PIe Serutton Range 5264E 82093N Do omite/dolomitic siltstone R,TS,PS,PD 93-74 PIe Serutton Range 5264E 82093N Dolomite/dolomitic siltstone R, TS, PO 93-78 PIe Serutton Range 5264E 82093N Coherent dolerite R, PO 93-79 Pte Serutton Range 5264E 82093N Coherent dolerite R, PO 93-80 PIe Seruttan Range 5264E 82093N Coherent dolerite R, PS, PO 93-81 PIe Scrutton Range 5632E 82086N Coherent dolerite R,PO 93-82 PIe Scrutton Range 5632E 82086N Coherent dolerite R,PD 93-88A PIe Serutton Range 5632E 82086N Coherent dolerite R, PS, PO 93-886 PIe Scrutton Range 5632E 82086N Coherent dolerite R,PD 94-540 PIe Serutton Range 5632E 82086N Dolomite/dolomitie siltstone R, TS 94-54b PIe Scrutton Range 5632E 82086N Dolomite/dolomitic siltstane R, TS 94-58a Pte Seruttan Range 5632E 82086N Dolomite/dolomitie siltstone R, TS 94-58b Pte Scrutton Range 5632E 82086N Dolomlte/dolomitic siltstone R, TS 94-99 PIe Kiana 5246E 81320N 174.9 Coherent dolerite R,PO 94-100 PIe Kiana 5246E 81320N 169.1 Coherent dolerite R, PS, PO 94-101 PIe Kiana 5246E 81320N 166.5 Coherent dolerite R 94-104 PIe Kiana 5246E 81320N 143.9 In situ dalerite breeeia R

94-27a Plo Scrutton Range 5621E 82083N - 5618E 82081N 9.5 Carbonate association R,TS 94-27b Plo Scrutton Range 5621E 82083N - 5618E 82081N 9.5 Carbonate association R, TS 94-28 Plo Scrutton Range 5621E 82083N - 5618E 82081N 9.5 Carbonate association R, TS 94-29 Plo Scrutton Range 5621E 82083N -5618E 82081N 14.5 Sandstone association R,PS 94-30 Pto Serutton Range 5621E 82083N - 5618E 82081N 14.5 Sandstone association R, PS 94-32 Plo Scrutton Range 5621E 82083N -5618E 82081N 138 Sandstone association R,TS 94-105 Plo Masterton Horst 6206E 81756N Carbonate association R,TS 94-106 Plo Masterton Horst 6206E 81756N Carbonate association R,TS

92-M03 PIg Mallapunyah 5886E 81218N Coherent dolerite R,TS 92-M04 PIg Mallapunyah 5886E 81218N Coherent dorerite R, TS 93-90 PIg Seruttan Range 5617E 82077N Volcanic Breeeia R, TS, PS 93-99 PIg Scruttan Range 5617E 82077N Volcanic Breccia R, TS 93-107 PIg Scrutton Range 5617E 82077N Volcanic Breccia R, PS 93-108 PIg Scrutton Range 5617E 82077N Coherent dolerite R,TS 93-109 PIg Serutlan Range 5617E 82077N Volcanic Breeela R,TS 93-122 PIg Scrulton Range 5617E 82077N Volcanic Breccia R, PS 94-33a PIg Scrutton Range 5637E 82067N - 5632E 62065N 15 Sandstone R,TS 94-33b PIg Scrutton Range 5637E 82067N - 5632E 82065N 15 Sandstone R,TS 94-34 PIg Scrutton Range 5637E 82067N - 5632E 82065N 32 Coherent dolerite R,TS 94-35 PIg Scrutton Range 5637E 82067N - 5632E 82065N 32 Coherent dolerite R,PO 94-36 PIg Scrutton Range 5637E 82067N - 5632E 82065N 32 Coherent dorerite R,PO 94-37 PIg Scrutton Range 5637E 82067N - 5632E 82065N 32 Coherent dolerite R, PS, PO 94-38 PIg Serutton Range 5637E 82067N - 5632E 82065N 88 Coherent dolerite R, PO 94-39 Ptg Scrutlon Range 5637E 82067N - 5632E 82065N 88 Coherent dolerite R, PO 94-40 Ptg Serutton Range 5637E 82067N - 5632E 82065N 193 Coherent dolerite R, PO 94-41 Ptg Serutton Range 5637E 82067N - 5632E 82065N 193 Coherent dolerite R,PO 94-42 PIg Scrutton Range 5637E 82067N - 5632E 82065N 193 Coherent dolente R, PS, PO 94-43 PIg Scrutton Range 5637E 82067N - 5632E 82065N 224 Coherent dolerite R,PO 94-44 PIg Scrutton Range 5637E 82067N - 5632E 82065N 224 Coherent dorerite R, PO 94-45 PIg Scrutton Range 5637E 82067N - 5632E 82065N 253 Sandstone R, TS 94-49 PIg Scruttan Range 5637E 82067N - 5632E 82065N 228 Coherent dolerite (vesicular) R, TS 94-50 PIg Scrutton Range 5637E 82067N - 5632E 82065N 228 Coherent dolerite (vesicular) R, TS

Appendix 1a Catalogue of representative Tawallah Group samples collected during this study.

Field No. Fm. Area Section/sample location (AMG) m Sedimentary facias or rock type Preparations 94-20 Ptm Seruttan Range 561BE B2075N 1B.5 Planar cross-bedded 5ubfacies I R,TS 94-21 Ptm Serutten Range 561 BE B2075N 1B.5 Planar cross-bedded subfacies I R,TS 94-22 Ptm Seruttan Range 5618E 82075N 18.5 Planar cross-bedded subfacies I R,TS 94-23 Ptm Seruttan Range 5618E 82075N 26 Planar cross-bedded subfacies I R,TS

93-111 Ptt Seruttan Range 5626E 82058N Porphyritic rhyolite R,PD 93-112 Ptt Scrutton Range 5626E B2058N Porphyritic rhyolite R,TS,PD 93-113 Ptt Seruttan Range 5626E 82058N Porphyritic rhyolite R,PD 93-114 Ptt Seruttan Range 5628E 82053N Porphyritic rhyolite R,PD 93-115 Ptt Seruttan Range 5628E 82053N Porphyritic rhyolite R, PD 93-121 Ptt Serutlan Range 5628E 82053N Porphyritic rhyolite R,2TS,PS

94-24 Pu Serunan Range 5618E 82071N 5 Conglomerate R,TS 94-25 Pu Scrutton Range 5618E 82071N 7 Planar cross~bedded pebbly sandstone R,TS 9<1--26 Pu Seruttan Range 5618E 82071N 10 Planar cross-bedded pebbly sandstone R,TS

92-17a Pms Batten Range 5807E 81935N Upper Sandstone TS 92-17b Pms Batten Range 5807E 81935N Upper Sandstone TS 92-17c Pms Batten Range 5807E 81935N Upper Sandstone TS 92-17d Pms Batten Range 5807E 81935N Upper Sandstone TS 92-17e Pms Batten Range 5807E 81935N Upper Sandstone TS 92-171 Pms Batten Range 5807E 81935N Upper Sandstone TS 92-17g Pms Batten Range 5B07E 81935N I Upper Sandstone TS

••

8230

8225

8220

8215

8210

8205

8200"

8195

8190

8185

8180

555

o

·gjz?·';~.32

93-90 ;0 93·122

·s.f!~4 ~~1~.26

·s.f!M~18t.23

93-1111093-113

LEGEND

"- ,:�

::> :1 Undivided McArthur GIOUp'�

ft Cl Tatoola' sandtoner:r

i::> :t'

•• ,undivided',Mc,4nhur Group:

,Masterton: 'Sandstone

Fig. 3:3fel NyananluFormalion •" 94-9510 9<1-98

"­ Tanumbirin~Rhyoljte

::>, ",~ J;ig.;-3:'l,v .... C,'j '. !l4'07to:S4-IO o Watramilna'Sandston,e

l%: G9ldCrlle!<\Volcanics Cl

Wollogorang.Formation :t :Salthih)ent C~ek Vplqanics • « ..J Wununman1yala SandstoM " ..J

-Aquarium'l'ormation« ;; Sly Creeli Sandstone

« SalgalVol!"'nics>-­

_ Yiyintyi Sandstone,

o Scrutlon Volcanics

........,....., Reverse Fault� GN

"~N-- Stri!«i-Sllp J:a.ll

GRID CON)IEIlGENCEh Oblique-Snp Fault

• 0,2'> GRIDIMAGNETIC • ANGLES.O

\ StrikeIDip Olraction ($.) o 1 2 3 4 5k1n

~I :'1r .. 8225

,,8220

"8215

·'8210

"8205

8200

8195

8190

8185

"8180

555 560 565 570 575 580 585

Appendix 1b Sample (Appendix 1a) and sedimentary section (Chapter 3) locations in the study region.

135'00' 136'30' 138°00'

16'00'

17'00'

MALLAPUNYAHDOME • 92·MD1� ·92·MD2� ·92·MD3� • 92-MD4

D Post-Proterozoic cover sequences i~~~/I Tawallah Group exposures

Early Proterozoic exposures; MurphyExtent 01 McArtl1ur, Nathan and ~ ~~ n. [] Inlter in SE, Serunon Volcanics in -~~ .,Raper Groups~ Tawallah Ranges ~

""_ ~.j;JrMURPHY ~. . .~ . _. _.~\i' -..

- lOO km INLlER' :~. ...."., , ...,.1",,,: ..,j~ Y: ,"O:::::::====::::J ~

Appendix 1c Sample locations outside of the study region

~ Alluvium - Strike-slip fault

=> •• Reverse fault a. e (') o Mallapunyah Formation => .c t:: I I I Normal fault o'5 Masterton Sandstone ::;;

~ Oblique-slip fault

gI :,w"":"I ... 19\ Strike and dip of strata -..... (9 .c ctl

0 0.5 1.0 km ~ I Rosie Creek Sandstone I I o Sly Creek Sandstone

I

APPENDIX 1d Location of hydraulic breccia samples collected for fluid inclusion analysis.

Appendix 2

2a Inverse palaeostress analysis of fault-slip data (Batten Range)

2b Inverse palaeostress analysis offauIt-slip data (Scrutton Range)

2c Inverse palaeostress analysis of fault-slip data (Scrutton Range)

Appendix 2a

Batten Range: Lower Tawallah Group: E-W Compression 79 81 N 20 W 0 1 46 41 S 21 E 0 12 23 34 E 72 E R 23 24 63 W 46 W 0 2 67 84 S 5 W 0 13 44 27 E 40 E S 24 61 68 N 3 E 0 3 120 20 S 89 E R 14 71 32 S 0 E S 25 60 89 N 10 W 0 4 116 38 E 90 E R 15 180 74 W 18 S S 26 71 47 S 15 E 0 5 20 58 E 90 E R 16 67 46 S 8 W S 27 41 89 W 50 W 0 6 23 79 w 80 W N 17 102 20 S 11 W S 28 44 49 W 53 W 0 7 108 39 N 70 W N 18 133 44 N 32 W S 29 56 24 N 42 W 0 8 66 11 N 65 W N 19 121 31 N 14 W S 30 71 77 N 17 E 0 9 10 56 E 70 W R 20 163 84 W 18 E S 31 38 52 W 20 W 0 10 11 86 E 90 E R 21 62 45 N 11 W 0 11 34 56 E 71 E R 22

MINIMISATION PERCENT 80 SELECTED PARAMETERS, SrGMA 1 TRE=lOO PLUN= 3 LEAST SQUARE REGRESSION OF THE 24 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 21. 39169 ERROR IN R .38E+OO

NO STRESS VALUES USED AND PRINCIPAL AXES

3 3 .1 3 3

33 -

--­3­

1 3 3 3 1.

* 1 3

1 111+.

3 1 +++ 1+

11. 3 1

1.. 2

2 2

2 2 .2

2 ... . 2 2

2 2

Bat ten Range: Basal Tawallah Group - NW-SE Compression 143 77 E 45 E D 1 38 52 W 20 W D 18 23 34 E 72 E R 35 141 71 E 0 E D 2 62 45 N 11 W D 19 50 88 S 23 E S 36

70 20 S 38 E D 3 112 71 N 12 W D 20 52 83 S 3 W S 37 145 20 W 0 E D 4 46 41 S 21 E D 21 44 27 E 40 E S 38

79 81 N 20 W D 5 67 84 S 5 W D 22 71 32 S 0 E S 39 24 63 W 46 W D 6 120 20 S 89 E R 23 180 74 W 18 S S 40

119 22 S 5 W D 7 164 21 E 90 E R 24 54 70 S 12 E S 41 101 27 S 0 E D 8 176 38 E 90 E R 25 42 45 E 5 W S 42

61 68 N 3 E D 9 20 58 E 90 E R 26 37 74 E 25 E S 43 162 67 W 12 E D 10 23 79 W 80 W N 27 55 72 S 23 E S 44 150 87 W 23 E D 11 18 45 W 50 W N 28 40 66 E 15 W S 45

60 89 N 10 W D 12 108 39 N 70 W N 29 67 46 S 8 W S 46 71 47 S 15 E D 13 66 11 N 65 W N 30 102 20 S 11 W S 47 41 89 W 50 W D 14 10 56 E 70 W R 31 133 44 N 32 W S 48 44 49 W 53 W D 15 11 86 E 90 E R 32 121 31 N 14 W S 49 56 24 N 42 W D 16 34 56 E 71 E R 33 3 61 W 0 E S 50 71 77 N 17 E D 17 61 68 N 70 E R 34 163 84 W 18 E S 51

MINIMISATION PERCENT 40 SELECTED PARAMETERS, SIGMA 1 TRE=l75 PLUN= 1 LEAST SQUARE REGRESSION OF THE 20 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 21. 96397 ERROR IN R .32E+00

NO STRESS VALUES USED AND PRINCIPAL AXES STRESS RATIO R = .61 SIGMA(l)= .46252 TREND 357.0 (ERR 21.4) PLUNGE 3.0 (ERR 16.51 SIGMA(2)= .07495 TREND 261. 6 (ERR 47.01 PLUNGE 61. 5 (ERR 9.9l SIGMA(3l= -.53748 TREND 88.6 (ERR 18.1) PLUNGE 28.3 (ERR 10.2)

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME 1 .0 .1 7 36 20 43 10 50 41 24 2 .1 .2 10 11 42 7 3 .2 .3 12 44 1 4 .3 .4 14 3 37 5 .4 .5 16 28 2 6 .5 .6 18 8 4 7 .6 .7 19 45 8 .7 .8 20 34 9 .8 .9 20 10 .9 1.0 20 11 1.0 1.2 21 30 12 1.2 1.4 23 46 13 13 1.4 1. 6 24 23 14 1.6 1.8 25 40 15 1.8 2.0 31 14 35 49 39 27 38 16 2.0 2.2 34 15 5 6 17 2.2 2.4 38 21 33 31 26 18 2.4 2.6 43 16 19 32 47 12 19 2.6 2.8 47 18 9 51 29 20 2.8 3.0 50 22 17 48 21 3.0 3.2 51 25

SCHMIDT NET OF NEAREST EXACT SOLN

..... +. +++ 1

+1 1

1

1

3 3

2 3 3 3 3

2 2 3 2 .2 • ---3 ... 2

3 2 3

3 2

2

1 1

1 1 1

....... .. 1 ....

Batten Range: Basal Tawallah Group: NE-SW Compression 143 77 E 45 E D 1 157 63 E 90 E R 51 141 71 E 0 E D 2 164 21 E 90 E R 52

28 66 E 37 E D 3 176 38 E 90 E R 53 45 69 S 41 W D 4 20 58 E 90 E R 54 70 20 S 38 E D 5 157 22 E 60 W R 55 14 69 E 21 W D 6 23 79 W 80 W N 56

147 21 E 50 W D 7 18 45 W 50 W N 57 145 20 W 0 E D 8 136 13 E 61 W R 58 161 71 E 5 W D 9 108 39 N 70 W N 59

79 81 N 20 W D 10 66 11 N 65 W N 60 24 63 W 46 W D 11 10 56 E 70 W R 61

119 22 S 5 W D 12 134 40 N 60 E R 62 101 27 S 0 E D 13 11 86 E 90 E R 63. 170 51 W 45 E D 14 34 56 E 71 E R 64

13 63 W 30 W D 15 61 68 N 70 E R 65 49 86 N 5 E D 16 23 34 E 72 E R 66

157 74 E 10 W D 17 50 88 S 23 E S 67 61 68 N 3 E D 18 52 83 S 3 w S 68

164 81 E 0 E D 19 44 27 E 40 E S 69 166 62 E 5 W D 20 71 32 S 0 E S 70 175 62 W 25 E D 21 180 74 W 18 S S 71 162 67 W 12 E D 22 54 70 S 12 E S 72 150 87 W 23 E D 23 42 45 E 5 W S 73

60 89 N 10 W D 24 37 74 E 25 E S 74 166 74 E 14 E D 25 125 78 N 32 W S 75

71 47 S 15 E D 26 55 72 S 23 E S 76 41 89 W 50 W D 27 93 74 S 5 E S 77 44 49 W 53 W D 28 40 66 E 15 W S 78

171 62 E 13 W D 29 80 68 S 12 E S 79 56 24 N 42 W D 30 67 46 S 8 W S 80 46 79 S 12 E D 31 102 20 S 11 W S 81

158 82 E 16 E D 32 116 61 N 10 W S 82 56 78 S 11 E D 33 88 67 S 3 E s 83 25 55 W 16 E D 34 133 44 N 32 W S 84 15 82 E 38 E D 35 161 45 W 45 W S 85

156 82 E 15 W D 36 120 89 N 5 W S 86 167 73 E 4 W D 37 129 68 S 24 W S 87 156 73 E 10 W D 38 108 88 N 28 W S 88 161 64 E 13 w D 39 121 31 N 14 W S 89

41 70 E 37 E D 40 121 54 S 30 w S 90 71 77 N 17 E D 41 3 61 W 0 E S 91

159 73 E 14 W D 42 112 59 S 12 W S 92 38 52 W 20 W D 43 101 81 N 3 E S 93

161 63 E 10 W D 44 114 63 N 15 E S 94 168 74 E 14 W D 45 127 59 N 5 E S 95

62 45 N 11 W D 46 115 71 N 4 E S 96 112 71 N 12 W D 47 113 42 N 13 E S 97

46 41 S 21 E D 48 123 24 S 0 E S 98 67 84 S 5 W D 49 131 36 s 10 E S 99

120 20 S 89 E R 50 136 39 W 21 W S 100 168 35 W 40 W S 101 163 84 W 18 E S 102

MINIMISATION PERCENT 50 SELECTED PARAMETERS, SIGMA 1 TRE=225 PLUN=15 LEAST SQUARE REGRESSION OF THE 51 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 21.67805 ERROR IN R .39E+OO

NO STRESS VALUES USED AND PRINCIPAL AXES\

SIGMA(I)= .45043 TREND 241.1 (ERR 13.2) PLUNGE 12.7 (ERR 15.7) SIGMA(2)= .09915 TREND 115.1 (ERR 43.9) PLUNGE 69.0 (ERR 17.4) SIGMA(3)= -.54957 TREND 334.9 (ERR 11.7) PLUNGE 16.4 (ERR 15.2)

STRESS RATIO R = .65

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 16 100 87 83 45 62 19 31 95 82 92 58 21 79 29 42 33 2 .1 .2 22 88 7 32 34 37 17 3 .2 .3 31 97 98 75 38 9 39 86 77 90 4 .3 .4 37 55 20 14 44 99 96 5 .4 .5 39 6 25 6 .5 .6 45 93 85 36 94 35 4 7 .6 .7 49 16 15 101 3 8 .7 .8 50 40 9 .8 .9 51 51

10 .9 1.0 51 11 1.0 1.2 59 81 89 52 22 48 59 11 43 12 1.2 1.4 61 53 27 13 1.4 1.6 69 84 24 63 56 64 18 66 70 14 1.6 1.8 74 54 69 41 23 80 15 1.8 2.0 78 60 61 46 50 16 2.0 2.2 84 28 26 49 57 1 5 17 2.2 2.4 84 18 2.4 2.6 86 13 76 19 2.6 2.8 93 73 68 10 72 12 74 30 20 2.8 3.0 100 65 102 91 71 67 8 47 21 3.0 3.2 102 78 2

SCHMIDT NET OF NEAREST EXACT SOLN

3 .. 33 3 3 3

.3.3-333 3 3---3 3

3 3­

3 3 3 3

1 11 1..

1 2 1..

1

2 2 2 2

22 2* 2 22 22 2 ... 22

1 2 222.2 2 2 2

1 1 1 2

11 +1 11 1 +++1111

11+

1

Batten Range: Wununmantyala sandstone/Masterton Sandstone: NW-SE Compression 60 42 S 5 W D 1 149 63 E 5 E D 13 141 80 W 8 E D 25

140 80 W 5 W D 2 146 70 E 23 E D 14 69 40 S 80 E R 26 133 49 S 10 E D 3 175 86 E 90 E R 15 74 61 S 75 E R 27

55 74 S 48 W D 4 139 64 W 10 E S 16 75 35 S 90 E R 28 170 89 E 20 W S 5 90 75 S 12 E D 17 135 73 E "11 W D 29

30 80 E 5 S S 6 175 80 W 80 E R 18 141 34 E 5 W D 30 125 67 S 12 W D 7 161 78 W 30 W D 19 146 43 E 0 E D 31

79 72 N 25 E D 8 75 27 E 90 E R 20 140 71 E 40 E D 32 79 69 N 45 W D 9 121 80 N 12 E D 21 135 69 E 16 E D 33

117 75 S 15 E D 10 123 70 S 30 W D 22 150 70 W 32 W D 34 72 46 E 90 E R 11 71 68 S 90 E R 23 153 61 E 11 E D 35 79 80 E 90 E R 12 141 82 W 10 W D 24 144 80 E 65 E N 36

MINIMISATION PERCENT 88 SELECTED PARAMETERS, SIGMA 1 TRE=167 PLUN=19 LEAST SQUARE REGRESSION OF THE 31CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 21. 94 ERROR IN R .45E+OO

NO STRESS vALUES USED AND PRINCIPAL AXES STRESS RATIO R = .37

SIGMA(l)= .54270 TREND 167.4 (ERR 4.6) PLUNGE 18.7 (ERR 4.51 SIGMA(2)= -.08541 TREND 337.8 (ERR 45.21 PLUNGE 71. 0 (ERR 4.91 SIGMA(3)= -.45730 TREND 76.4 (ERR 7.5) PLUNGE 3.0 (ERR 13.5)

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 7 9 25 28 5 33 14 21 2 .1 .2 14 20 8 10 12 11 6 19 3 .2 .3 17 23 2 34 4 .3 .4 21 30 32 27 24 5 .4 .5 27 3 26 31 35 13 7 6 .5 .6 28 29 7 .6 .7 28 8 .7 .8 30 17 36 9 .8 .9 31 22

10 .9 1.0 31 11 1.0 1.2 31 12 1.2 1.4 31 13 1.4 1.6 31 14 1.6 1.8 32 15 15 1.8 2.0 32 16 2.0 2.2 33 18 17 2.2 2.4 34 1 18 2.4 2.6 34. 19 2.6 2.8 34 20 2.8 3.0 35 16 21 3.0 3.2 36 4

SCHMIDT NET OF NEAREST EXACT SOLN

3

3 3 3 3 3 ­

... 2 2 .22 2 3 -3

222 22 3 .. 2 2 2 3

33 3 *2 3.

33 33

3 3 2

1 1

+ 11 1 1 1 +++11

1 111 1+

1

Ba t ten Range: Wununmantyala Sandstone/Masterton Sandstone: NE-SW Compression 60 42 S 5 W D 1 153 73 E 10 W D 49

130 12 S 90 E R 2 121 80 N 12 E D 50 175 80 E 10 w D 3 123 70 S 30 w D 51 140 80 w 5 w D 4 71 68 S 90 E R 52

60 80 N 0 E S 5 61 62 S 14 w S 53 48 57 S 48 w D 6 133 69 S 19 N s 54

110 33 S 90 E R 7 159 75 E 0 E D 55 133 49 S 10 E D 8 135 89 E 0 E S 56

55 74 S 48 w D 9 153 73 w 0 E D 57 170 89 E 20 w S 10 125 79 S 0 E S 58 169 80 E 0 E D 11 141 82 W 10 W D 59

79 87 N 12 E S 12 141 80 W 8 E D 60 30 80 E 5 S S 13 69 40 S 80 E R 61

125 67 S 12 w D 14 127 79 S 12 w S 62 79 72 N 25 E D 15 74 61 S 75 E R 63

171 82 E 10 W D 16 175 26 E 40 W D 64 107 66 N 0 E S 17 145 14 E 90 E R 65

33 20 E 0 E D 18 144 28 E 90 E R 66 127 72 S 64 W R 19 133 31 N 90 E R 67

79 69 N 45 w D 20 151 63 E 70 E R 68 117 75 S 15 E D 21 47 71 S 31 W D 69 155 52 E 90 E R 22 175 84 E 11 W D 70

72 46 E 90 E R 23 144 40 E 90 E R 71 79 80 E 90 E R 24 158 67 E 20 w D 72

166 78 E 40 N D 25 129 71 N 7 E S 73 149 63 E 5 E D 26 166 38 E 12 w D 74 146 70 E 23 E D 27 161 41 E 57 w D 75 175 86 E 90 E R 28 174 78 E 10 W D 76 167 79 W 9 E D 29 140 52 w 60 w R 77

95 70 S 10 W S 30 157 63 E 17 w D 78 155 66 E 60 w R 31 151 12 E 69 w R 79

70 80 N 16 w S 32 79 64 N 0 E S 80 139 64 w 10 E S 33 153 78 E 5 E D 81

0 69 E 31 N D 34 75 35 S 90 E R 82 165 77 E 12 w D 35 164 81 E 0 E D 83 172 80 E 10 W D 36 135 73 E 11 W D 84 168 75 E 15 w D 37 141 34 E 5 W D 85 157 85 E 7 w D 38 146 43 E 0 E D 86 164 73 E 13 w D 39 140 71 E 40 E D 87

90 75 S 12 E D 40 135 69 E 16 E D 88 40 74 E 6 w D 41 148 58 E 90 E R 89

175 80 w 80 E R 42 157 42 E 90 E R 90 171 54 w 60 E R 43 150 70 w 32 w D 91

41 72 E 8 w D 44 171 75 w 20 w D 92 161 78 W 30 w D 45 161 80 w 5 E D 93 156 82 w 0 E D 46 172 64 E 15 w D 94 153 69 E 22 w D 47 153 61 E 11 E D 95

75 27 E 90 E R 48 144 80 E 65 E N 96

MINIMISATION PERCENT 62 SELECTED PARAMETERS, SIGMA 1 TRE=230 PLUN= 2 LEAST SQUARE REGRESSION OF THE 59cLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 22.66202 ERROR IN R .48E+00

NO STRESS VALUES USED AND PRINCIPAL AXES

SIGMA{l}= .60708 TREND 230.9 (ERR 13.2) PLUNGE 2.0 (ERR 12.8) SIGMA(2)= -.21417 TREND 86.1 (ERR 83.71 PLUNGE 87.5 (ERR 31.5) SIGMA(3)= -.39292 TREND 321. 0 (ERR 13.1) PLUNGE 1.4 (ERR 51.2)

STRESS RATIO R = .18

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 14 36 75 76 80 38 3 16 37 64 69 30 66 71 6 2 .1 .2 27 41 65 35 44 70 79 56 31 18 67 11 29 32 3 .2 .3 36 94 39 83 5 12 19 34 2 89 4 .3 .4 39 93 43 17 5 .4 .5 46 72 25 62 90 46 77 22 6 .5 .6 51 55 47 78 58 49 7 .6 .7 54 53 81 74 8 .7 .8 57 92 73 7 9 .8 .9 60 54 68 57

10 .9 1.0 60 11 1.0 1.2 62 45 42 12 1.2 1.4 64 95 26 13 1.4 1.6 69 86 60 85 24 28 14 1.6 1.8 80 52 27 82 8 91 33 48 23 9 59 4 15 1.8 2.0 83 84 63 61 16 2.0 2.2 83 17 2.2 2.4 89 88 96 1 87 20 21 18 2.4 2.6 90 14 19 2.6 2.8 93 15 10 40 20 2.8 3.0 94 51 21 3.0 3.2 96 50 13

SCHMIDT NET OF NEAREST EXACT SOLN

.. -333 333 .. 33333 33 1 1 1

3 3 3 1. 3 3

3 11 1 .1

3 2 1..

2 2 3 2

2� 22 22.22

2 22 2* .. 2 222. 2

2 2 2 23 2

2 2

11 .1 1 .1

.1+ 3 3 +++11�

+1 1 1 3 3 33.� 1.� 1 1 3 33 33 .

.. 1 1 3 333. 333.

3 ...

Appendix 2b

Scrutton Range: Basal Tawal1ah Group: NE-SW Compression (1)� 122 64 w 90 E R 1 51 71 E 5 E S 8�

9 36 w 0 E D 2 145 50 E 0 E S 9� 161 64 W 0 E D 3 130 68 E 7 W S 10� i75 75 E 0 E D 4 142 60 w 0 E S 11� 137 64 W 0 E D 5 122 30 w 60 E S 12�

72 71 E 5 E D 6 59 41 E 50 E S 13� 11 61 W 0 E S 7�

MINIMISATION PERCENT 60 SELECTED PARAMETERS, SIGMA 1 TRE=240 PLUN=10 LEAST SQUARE REGRESSION OF THE 7 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 18.72711 ERROR IN R .13E+OO

NO STRESS VALUES USED AND PRINCIPAL AXES

SIGMA(l)= .34148 TREND 70.8 (ERR 30.4) PLUNGE 26.5 (ERR 87.2) SIGMA(2)= .31703 TREND 267.2 (ERR 61.0) PLUNGE 62.6 (ERR 87.1) SIGMA(3)= -.65852 TREND 164.2 (ERR 18.7) PLUNGE 6.7 (ERR 17.7)

STRESS RATIO R = .98�

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 4 3 10 4 9� 2 .1 .2 4� 3 .2 .3 6 2 11� 4 .3 .4 7 12� 5 .4 .5 7� 6 .5 .6 7� 7 .6 .7 7� 8 .7 .8 7� 9 .8 .9 7�

10 .9 1.0 7� 11 1.0 1.2 8 13� 12 1.2 1.4 8� 13 1.4 1.6 9 6� 14 1.6 1.8 9� 15 1.8 2.0 9� 16 2.0 2.2 10 1� 17 2.2 2.4 11 8� 18 2.4 2.6 11� 19 2.6 2.8 11� 20 2.8 3.0 12 5� 21 3.0 3.2 13 7�

SCHMIDT NET OF NEAREST EXACT SOLN

.......� ..... . 3�

1+ +++

+ 1�

2�

2�

-3 3�

Scrutton Range: Basal Tawallah Group: NE-SW Compression (21 133 42 W 70 W R 1 145 38 W 70 W R 19 161 64 W 0 E D 37 122 64 W 90 E R 2 145 25 W 90 E R 20 175 75 E 0 E D 38 165 64 W 90 E R 3 172 37 W 70 E R 21 137 64 W 0 E D 39 164 46 W 90 E R 4 160 37 W 80 E R 22 72 71 E 5 E D 40 161 37 W 70 W R 5 173 27 W 80 E R 23 4 13 W 45 S D 41 158 32 W 70 E R 6 11 29 W 90 E R 24 164 89 W 0 E D 42 152 52 W 90 E R 7 14 44 W 75 S R 25 11 61 W 0 E S 43 170 21 W 80 E R 8 171 57 W 80 E R 26 82 71 E 5 E S 44 135 42 W 70 W R 9 9 36 W 0 E D 27 73 65 E 10 W S 45 136 39 W 70 W R 10 40 64 E 0 E D 28 51 71 E 5 E s 46 135 34 W 80 W R 11 28 65 E 0 E D 29 145 50 E 0 E S 47 137 22 W 90 E R 12 56 81 E 0 E D 30 100 87 S 0 E S 48 173 56 W 80 W R 13 31 64 E 5 E D 31 130 68 E 7 W S 49 173 41 W 90 E R 14 21 67 W 7 N D 32 142 60 W 0 E S 50 156 15 w 80 W R 15 17 64 W 10 W D 33 86 64 S 10 W S 51 149 22 W 70 W R 16 171 83 W 0 E D 34 122 30 W 60 E S 52 149 48 W 90 E R 17 8 84 W 0 E D 35 59 41 E 50 E S 53 144 34 W 80 W R 18 65 89 E 5 W D 36 97 89 N 5 W S 54

65 47 E 15 W S 55

MINIMISATION PERCENT 78 SELECTED PARAMETERS, SIGMA 1 TRE= 65 PLUN=10 LEAST SQUARE REGRESSION OF THE 42 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 17.04976 ERROR IN R .16E+00

NO STRESS VALUES USED AND PRINCIPAL AXES STRESS RATIO R = .00 SIGMA(1l= .66655 TREND 67.4 (ERR 14.51 PLUNGE 2.7 (ERR 10.9) SIGMA(2l= -.33310 TREND 336.9 (ERR ?) PLUNGE 11.2 {ERR ?l SIGMA(3l= -.33345 TREND 170.6 (ERR ?) PLUNGE 78.4 (ERR ?l

GAMME NBRE rNDICE DES VALEURS DANS CETTE GAMME 1 .0 .1 8 55 48 21 8 19 51 30 35 2 .1 .2 21 18 22 44 36 23 10 15 54 7 4 45 9 16 3 .2 .3 30 1 17 20 42 33 28 26 31 34 4 .3 .4 37 11 41 3 6 14 29 12 5 .4 .5 39 5 32 6 .5 .6 40 25 7 .6 .7 42 24 13 8 .7 .8 43 38 9 .8 .9 44 49

10 .9 1.0 45 27 11 1.0 1.2 47 50 2 12 1.2 1.4 48 47 13 1.4 1.6 49 37 14 1.6 1.8 49 15 1.8 2.0 50 52 16 2.0 2.2 50 17 2.2 2.4 51 39 18 2.4 2.6 53 53 43 19 2.6 2.8 53 20 2.8 3.0 53 21 3.0 3.2 55 40 46

SCHMIDT NET OF NEAREST EXACT SOLN

2 .. 2 2 2 ... 2 2. 2

2 ..• 2 2 .. 2 2 2

2� 2�

3 11. 2

2 11 11

3 1 1 1.+ 1+++ 1 +.

3 1. 2 3 11

1 3� 3�

3� 1.•

11 3� 3­

.1�

.. 1� 3 ..� 3

3� .11 2� 1.� 1�

1 1 3� 1�

1.� 22

2 3 2 2 ..

2 2 2 2 .. 2 22 ..

22 . . .... .. 2 2

Scrutton Range: Middle and Upper Tawa11ah Group: NW-SE Compression 111 51 E 80 N N 1 114 40 W 45 W D 15 151 61 E 0 E S 29

14 88 W 50 W N 2 139 40 W 40 E D 16 114 22 W 10 E S 30 14 35 W 50 N R 3 165 33 E 5 W D 17 39 45 W 5 E S 31 34 83 W 60 E R 4 44 87 E 10 E S 18 5 62 W 0 E S 32

144 35 W 90 E N 5 42 47 W 20 W S 19 135 55 W 0 E S 33 136 57 W 80 W N 6 13 53 W 5 W S 20 163 34 W 90 E N 34 144 34 W 80 W N 7 11 84 E 5 E S 21 151 50 W 75 W N 35 157 46 W 90 E N 8 20 86 E 0 E S 22 162 77 W 60 W N 36 149 19 W 80 W N 9 14 81 E 15 E S 23 133 41 W 10 W D 37

76 61 W 0 E D 10 40 89 E 5 W S 24 160 39 W 20 W D 38 123 43 W 10 W D 11 45 38 E 30 E S 25 28 55 E 5 W S 39

72 80 W 30 E D 12 25 69 E 5 E S 26 11 77 E 0 E S 40 78 61 W 5 W D 13 25 74 E 30 E S 27 0 64 E 10 S S 41 99 74 N 0 E D 14 150 55 E 7 E S 28 66 81 E 0 E S 42

MINIMISATION PERCENT 75 SELECTED PARAMETERS, SIGMA 1 TRE=160 PLUN=16 LEAST SQUARE REGRESSION OF THE 31 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 20.89404 ERROR IN R .34E"00

NO STRESS VALUES USED AND PRINCIPAL AXES

SIGMA(l)= .35306 TREND 161.5 (ERR 13.6) PLUNGE 12.8 (ERR 80.1) SIGMA(2)= .29389 TREND .6 (ERR 155.1) PLUNGE 76.4 (ERR 75.7) SIGMA(3)= -.64694 TREND 252.5 (ERR 9.0) PLUNGE 4.3 (ERR 22.1)

STRESS RATIO R = .94

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 11� 12 19 24 35 9 34 22 14 13 21 1 2 .1 .2 16 8 26 23 7 15 3 .2 .3 21� 10 42 40 25 18 4 .3 .4 23 5 27 5 .4 .5 25� 39 31 6 .5 .6 28� 36 6 11 7 .6 .7 29 2 8 .7 .8 31� 20 37 9 .8 .9 32� 32

10 .9 1.0 32 11 1.0 1.2 34 41 38 12 1.2 1.4 35 4 13 1.4 1.6 35 14 1.6 1.8 38 17 3 16 15 1.8 2.0 38 16 2.0 2.2 40 29 28 17 2.2 2.4 42 33 30

SCHMIDT NET OF NEAREST EXACT SOLN

.......� .. . 1 ..

1 2

11 1� 1�

1� 2 3

2 .3 1 2

2� 2� 22�

1 1 3. 22 3

2 2� 1.

'2 2 2

3 3 2 2 1� .3 3 2 1� .3- 2 .---3�

.-33 1�

3 3� 1

1 211

1 2

11 1. +

+++ +

. . 1 ... . .. . 1 ..

Scrutton Range: Middle and Upper Tawa11ah Group: NE-SW Compression 102 60 S 60 w R 1 26 89 w 0 E 0 55

31 61 w 70 w R 2 165 33 E 5 w 0 56 141 34 w 70 w R 3 64 64 w 50 W 0 57 144 8 w 70 E R 4 72 55 E 0 E 0 58 162 5 w 90 E R 5 44 87 E 10 E S 59 144 44 w 90 E R 6 42 47 w 20 W S 60

1 31 E 90 N R 7 13 53 w 5 w S 61 171 51 E 80 N N 8 79 74 E 5 w S 62

14 88 w 50 w N 9 109 89 E 0 E S 63 1 30 w 70 N R 10 11 84 E 5 E S 64

115 21 w 90 E R 11 20 86 E 0 E S 65 160 17 w 90 E R 12 14 81 E 15 E S 66 129 26 w 70 w R 13 40 89 E 5 w S 67 159 41 w 50 W R 14 45 38 E 30 E S 68

14 35 w 50 N R 15 25 69 E 5 E s 69 158 37 w 50 w R 16 122 20 w 5 w S 70 161 40 w 70 w R 17 25 74 E 30 E S 71

5 51 w 90 N R 18 150 55 E 7 E S 72 131 35 w 80 w R 19 151 61 E 0 E S 73

34 83 W 60 E R 20 114 22 w 10 E S 74 154 49 W 50 w R 21 161 67 w 50 w S 75 155 25 w 90 E R 22 39 45 w 5 E s 76 158 85 w 90 E R 23 5 62 w 0 E S 77 151 22 w 90 E R 24 135 55 w 0 E S 78

98 15 S 50 w R 25 151 50 w 85 w R 79 109 16 w 60 w R 26 147 37 w 80 w R 80 144 35 w 90 E N 27 156 61 w 90 E R 81 136 57 w 80 w N 28 151 47 w 90 E R 82 144 34 w 80 w N 29 166 60 w 60 w R 83 157 46 w 90 E N 30 163 34 w 90 E N 84 149 19 w 80 w N 31 149 37 w 80 E R 85

66 56 E 5 w 0 32 149 26 w 80 w R 86 66 55 E 5 E 0 33 156 31 w 80 E R 87 60 61 E 0 E 0 34 139 25 w 90 E R 88 56 86 w 0 E 0 35 157 22 w 90 E R 89 76 61 w 0 E 0 36 136 22 w 90 E R 90

123 43 w 10 w 0 37 119 29 w 90 E R 91 72 80 w 30 E 0 38 160 35 w 80 w R 92 67 15 E 50 E 0 39 1 43 w 90 E R 93 40 89 w 5 w 0 40 151 50 w 75 w N 94 42 89 E 5 E 0 41 162 77 w 60 w N 95 20 62 W 10 E 0 42 171 57 W 70 W R 96 78 61 w 5 W 0 43 146 40 w 80 w R 97

176 84 E 0 E 0 44 169 28 w 80 w R 98 74 44 E 5 w 0 45 133 41 w 10 W 0 99 99 74 N 0 E 0 46 160 39 w 20 w 0 100

6 82 W 0 E 0 47 29 76 E 10 W 0 101 42 67 E 0 E 0 48 40 61 E 15 E 0 102 45 78 E 30 w 0 49 28 55 E 5 w S 103

114 40 w 45 w D 50 11 77 E 0 E S 104 44 88 E 10 E 0 51 0 64 E 10 S S 105 51 86 E 5 w 0 52 66 81 E 0 E S 106 42 58 w 5 E 0 53

139 40 w 40 E 0 54

MINIMISATION PERCENT 57 SELECTED PARAMETERS, SIGMA 1 TRE=255 PLUN= 5 LEAST SQUARE REGRESSION OF THE 60 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 22.33187 ERROR IN R .20E+00

NO STRESS VALUES USED AND PRINCIPAL AXES

SIGMA(l)= .65053 TREND 253.9 (ERR 17.3) PLUNGE 4.8 (ERR 2.51 SIGMA(2)= -.30105 TREND 163.9 (ERR 17.0) PLUNGE .9 (ERR 30.2) SIGMA(3)= -.34947 TREND 63.1 (ERR 30.9) PLUNGE 85.1 (ERR 4.3)

STRESS RATIO R = .05

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 11 102 40 52 25 12 33 3 86 63 44 92 2 .1 .2 21 89 35 34 55 80 22 41 97 48 5 3 .2 .3 32 79 24 81 32 62 13 51 58 98 82 17 4 .3 .4 37 26 101 87 7 93 5 .4 .5 45 6 45 19 88 85 21 90 18 6 .5 .6 55 23 47 96 53 57 49 16 83 75 14 7 .6 .7 60 1 10 4 2 39 8 .7 .8 63 91 11 70 9 .8 .9 64 42

10 .9 1.0 66 78 74 11 1.0 1.2 69 72 38 73 12 1.2 1.4 71 15 54 13 1.4 1.6 72 56 14 1.6 1.8 72 15 1.8 2.0 74 20 100 16 2.0 2.2 76 105 77 17 2.2 2.4 78 61 99 18 2.4 2.6 82 76 9 37 103 19 2.6 2.8 85 28 95 27 20 2.8 3.0 95 71 104 43 59 36 69 29 60 30 66 21 3.0 3.2 106 50 68 31 46 64 65 94 8 84 106 67

SCHMIDT NET OF NEAREST EXACT SOLN

.. 2 .... .. . 22 .

.. • 2� 2�

•• 2� .2�

5. . 1 1. .

1. .1 1 1

3 33 1

33 3 1 111 ---33 11 1 1 3"'3­.11 333

.. 1 +1 1

.+++111� .+11 1� . . 11� .. 1

1 1� 1 1�

11 1�

2. 2.

22 2 2 ..

2 .222222 ..... 2 22 2 2 .... 2 .

..•.. 2.22 .•.•..

Appendix 2c

Tawallah Range: Basal Tawal1ah� Group: NW-SE Compression 72 80 E 80 E N 1 112 34 W 20 W S 12 151 38 E 0 E 0 23

5 25 W 90 N R 2 103 62 E 7 E 0 13 116 75 E 0 E 0 24 22 68 E 80 E N 3 127 89 E 0 E 0 14 128 57 w 0 E 0 25

156 48 W 55 W R 4 72 86 E 5 W 0 15 129 64 E 7 E 0 26 22 85 W 5 E S 5 88 47 E 20 W 0 16 137 73 E 0 E 0 27 36 72 E 0 E S 6 75 84 E 15 W 0 17 72 73 E 7 E 0 28

103 72 S 5 E S 7 101 67 W 5 W 0 18 130 72 E 0 E D 29 128 89 E 0 E S 8 78 82 W 10 W 0 19 129 81 E 0 E D 30 125 89 W 0 E S 9 84 68 W 5 W .D 20 135 82 S 5 E D 31 131 69 W 0 E S 10 125 77 E 0 E D 21 144 25 E 0 E 0 32

15 43 W 0 E S 11 94 37 E 0 E D 22

MINIMISATION PERCENT 45 SELECTED PARAMETERS, SIGMA 1 TRE=300 PLUN=15 LEAST SQUARE REGRESSION OF THE 14CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 14.86136 ERROR IN R .19E+00

NO STRESS VALUES USED AND PRINCIPAL AXES

SIGMA(l)= .39044 TREND 302.9 (ERR 8.8) PLUNGE 9.5 (ERR 23.2) SIGMA(2)= .21912 TREND 127.5 (ERR 19.9) PLUNGE BO.5 (ERR 23.2) SIGMA(3)= -.60956 TREND 33.0 (ERR B.9) PLUNGE .7 (ERR 1.9)

STRESS RATIO R = .83

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 5 20 28 15 19 9 2 .1 .2 8 5 22 11 3 .2 .3 10 17 18 4 .3 .4 13 8 16 13 5 .4 .5 14 31 6 .5 .6 14 7 .6 .7 14 8 .7 .8 14 9 .8 .9 14

10 .9 1.0 14 11 1.0 1.2 16 24 10 12 1.2 1.4 16 13 1.4 1.6 17 3 14 1.6 1.8 22 1 4� 25 26 21 15 1.8 2.0 23 2 16 2.0 2.2 25 29 32 17 2.2 2.4 29 30 12� 23 27 18 2.4 2.6 30 7 19 2.6 2.B 32 6 14

SCHMIDT NET OF NEAREST EXACT SOLN

---3

3

1� .1 +�

+++ 1 1� +� 1�

2�

1

2 2 '2

2 2 2

1

1.

.. 3

3 ..� . 3.�

Tawal1ah Range: Basal Tawa11ah Group: NE-SW Compression(l) 158 33 E 90 E R 1 105 82 W 7 W S 64 121 25 E 80 W R 2 45 78 W 0 E S 65 149 42 W 90 E R 3 95 86 N 5 E S 66

72 80 E 80 E N 4 61 84 W 30 E S 67 5 25 W 90 N R 5 66 69 W 20 E S 68

22 68 E 80 E N 6 48 89 E 5 E S 69 142 83 W 90 E R 7 43 72 E 5 W S 70 122 30 W 90 E R 8 44 66 E 0 E S 71 140 17 W 90 E R 9 74 76 W 0 E S 72 156 48 w 55 W R 10 50 71 E 10 E S 73 138 48 W 70 E R 11 112 34 W 20 W S 74 162 50 W 60 E R 12 0 89 W 0 N D 75 145 55 W 65 E R 13 73 62 E 7 E D 76 147 58 W 60 E R 14 127 89 E 0 E D 77 134 34 W 90 E R 15 42 86 E 5 W D 78 144 72 W 80 E R 16 58 47 E 20 W D 79 144 53 W 90 E R 17 45 84 E 15 W D 80 140 49 W 70 E R 18 71 67 W 5 W D 81 128 22 w 70 E R 19 7 75 E 0 S D 82 122 33 W 80 W R 20 48 82 w 10 W D 83 145 50 W 75 E R 21 54 68 W 5 W D 84 129 56 W 70 E R 22 125 77 E 0 E D 85 141 46 W 90 E R 23 64 37 E 0 E D 86 142 36 W 85 W R 24 20 59 W 10 W D 87 145 38 W 90 E R 25 151 38 E 0 E D 88 134 43 W 80 W R 26 116 75 E 0 E D 89 138 46 W 70 E R 27 148 74 E 5 W D 90 143 55 W 80 W R 28 128 57 W 0 E D 91 125 80 W 90 E R 29 14 76 E 5 W D 92 149 29 W 70 W R 30 129 64 E 7 E D 93 129 32 W 75 W R 31 145 74 E 5 W D 94

22 85 W 5 E S 32 151 67 E 10 W D 95 36 72 E 0 E S 33 22 77 E 0 E D 96 42 63 E 10 E S 34 153 74 E 5 W D 97 74 89 E 20 W S 35 137 73 E 0 E D 98

111 78 E 5 E S 36 146 87 E 0 E D 99 73 89 E 7 W S 37 142 84 E 5 W D 100

105 84 S 40 W S 38 144 83 E 5 E D 101 111 75 W 10 W S 39 139 80 E 5 E D 102 114 89 E 5 W S 40 14 58 E 7 S D 103 103 72 S 5 E S 41 33 72 E 10 W D 104

95 75 S 7 W S 42 42 73 E 7 E D 105 101 86 S 0 E S 43 174 70 E 25 W D 106

91 71 S 15 W S 44 31 41 W 5 E D 107 128 89 E 0 E S 45 14 89 E 10 W D 108

66 88 E 5 W S 46 175 76 E 7 W D 109 55 89 E 0 E S 47 18 74 E 5 W D 110

110 89 E 30 W S 48 19 65 E 5 W D 111 46 74 E 0 E S 49 146 82 E 15 E D 112 75 84 E 5 W S 50 166 77 E 5 W D 113

121 89 W 50 W S 51 175 68 E 0 E D 114 125 89 W 0 E S 52 130 72 E 0 E D 115

48 68 E 5 W S 53 129 81 E 0 E D 116 72 73 E 5 W S 54 105 82 S 5 E D 117 81 72 E 0 E S 55 150 80 E 0 E D 11B 80 63 E 15 W S 56 144 25 E 0 E D 119 73 62 E 7 W S 57 165 89 E 5 E D 120

131 69 W 0 E S 58 153 76 E 0 E D 121 78 45 E 5 W S 59 7 73 E 0 E D 122 74 78 E 15 W S 60 23 77 E 5 E D 123 42 64 E 7 E S 61 8 73 E 5 S D 124 87 76 S 7 E S 62 22 73 E 0 E D 125 15 43 W 0 E S 63 23 75 W 45 W D 126

MINIMISATION PERCENT 75 SELECTED PARAMETERS, SIGMA 1 TRE=215 PLUN= 5 LEAST SQUARE REGRESSION OF THE 94 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 16.99675 ERROR IN R .75E-01 NO STRESS VALUES USED AND PRINCIPAL AXES STRESS RATIO R = .,00 SIGMA(l)= .66605 TREND 218.6 (ERR 8.41 PLUNGE 6.3 (ERR ?) SIGMA(2)= -.33210 TREND 356.9 (ERR ?) PLUNGE 81.6 (ERR ?) SIGMA(3)= -.33395 TREND 128.0 (ERR ?) PLUNGE 5.6 (ERR ?) GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 26 107 60 13 37 70 125 113 82 14 72 109 20 96 46 122 34 108 61 53 120 110 92 18 65 87 104

2 .1 .2 44 51 15 101 47 71 21 50 100 8 111 11 49 124 123 27 118 75 66

3 .2 .3 67 99 69 36 9 12 35 114 29 54 38 56 48 106 97 103 121 40 31 44 23 68 57 26

4 .3 .4 77 2 25 22 112 73 90 24 43 19 17 5 .4 .5 85 55 42 16 64 102 95 94 3 6 .5 .6 89 59 62 28 67 7 .6 .7 92 126 1 39 8 .7 .8 94 30 7 9 .8 .9 97 41 98 74

10 .9 1.0 98 5 11 1.0 1.2 100 88 52 12 1.2 1.4 102 10 119 13 1.4 1.6 106 116 115 45 91 14 1.6 1.8 110 4 58 93 6 15 1.8 2.0 111 77 16 2.0 2.2 112 85 17 2.2 2.4 112 18 2.4 2.6 114 117 89 19 2.6 2.8 117 76 86 63 20 2.8 3.0 121 32 105 81 80 21 3.0 3.2 126 33 83 84 79 78

SCHMIDT NET OF NEAREST EXACT SOLN

.2 .....

2� .. 1 2� 1 1.

11. 2 1

.3 1 1 .. 333 1..

33 2 333 2

.. 2 2 33 2 1. 33

333 2 3 2 2

33 3 2

3� 2 2.22 2 322 ... 2 2 2 2 2.22 2�

2 22 2*22� 222 33�

2� 2 2 33 22�

.. 2 332� 2 2 32 2�

2 1 3 3� 2 33�

2 33 1 1 33 11 2 33 ­11 1 2 ---.2

11 -3. 11+ 1 2

.. +++1111 2 2 11+11

.. 112 2 2 11

1

Tawal1ah Range: Basal Tawal1ah Group: NE-SW Compression(2) 72 80 E 80 E N 1 125 77 E 0 E D 10

5 25 W 90 N R 2 151 38 E 0 E D 11 22 68 E 80 E N 3 116 75 E 0 E D 12

156 48 W 55 W R 4 128 57 W 0 E D 13 36 72 E 0 E S 5 129 64 E 7 E D 14

103 72 S 5 E S 6 137 73 E 0 E D 15 131 69 W 0 E S 7 130 72 E 0 E D 16 112 34 W 20 W S 8 129 81 E 0 E D 17 127 89 E 0 E D 9 144 25 E 0 E D 18

MINIMISATION PERCENT 80 SELECTED PARAMETERS, SIGMA 1 TRE=200 PLUN= 5 LEAST SQUARE REGRESSION OF THE 14CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 14.52969 ERROR IN R .15E+00

NO STRESS VALUES USED AND PRINCIPAL AXES

SIGMA(1)= .36538 TREND 192.9 (ERR 20.11 PLUNGE 29.5 (ERR 46.21 SIGMA(2)= .26924 TREND 44.4 (ERR 34.4) PLUNGE 56.5 (ERR 47.0) SIGMA(J) = -.63462 TREND 291.4 (ERR 5.6) PLUNGE 14.6 (ERR 11.2)

STRESS RATIO R = .90

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME

1 .0 .1 7 13 12 15 16 10 9 17 2 .1 .2 11 3 5 a 14 3 .2 .3 11 4 .3 .4 13 18 11 5 .4 .5 13 6 .5 .6 14 6 7 .6 .7 14 8 .7 .8 14 9 .8 .9 14

10 .9 1.0 14 11 1.0 1.2 14 12 1.2 1.4 14 13 1.4 1.6 14 14 1.6 1.8 15 1 15 1.8 2.0 15 16 2.0 2.2 15 17 2.2 2.4 15 18 2.4 2.6 15 19 2.6 2.8 15 20 2.8 3.0 17 4 7 21 3.0 3.2 18 2

+ +++ "[+

•�

E E

z E zz

Tawallah Range: Wununmantyala Sandstone/Masterton Sandstone: NW-SE Compression 61 84 E 80 W N 1 91 71 E 3 E D 19 12 84 W 5 W S 37

158 75 E 80 E R 2 84 81 E 10 W D 20 130 80 W 10 E S 38 39 60 E 80 E R 3 75 85 E 7 E D 21 127 75 W 5 E S 39 90 72 S 55 E R 4 3 10 W 0 N D 22 135 22 W 10 W S 40 43 69 E 70 W R 5 77 67 E 7 E D 23 95 72 S 5 E S 41 50 53 E 80 E N 6 82 79 W 7 W D 24 178 74 E 0 E S 42 43 55 W 50 E N 7 85 55 W 20 W D 25 15 65 W 65 W R 43 40 61 E 70 E R 8 124 66 E 5 E D 26 104 67 E 5 E D 44 25 78 E 89 E N 9 80 77 E 5 E D 27 115 35 W 0 E D 45

176 77 E 89 N N 10 90 81 N 10 E D 28 75 89 E 5 W D 46 20 65 E 45 E N 11 134 77 E 5 W S 29 69 80 W 0 E D 47

146 80 E 60 W R 12 152 74 W 5 W S 30 65 76 E 5 W D 48 165 89 E 89 E N 13 145 76 W 17 E S 31 116 43 S 5 W D 49 175 18 E 89 E R 14 0 67 E 45 N S 32 81 62 W 0 E D 50

58 87 W 15 E D 15 5 83 W 3 S S 33 15 79 E 50 E D 51 114 75 W 45 W D 16 178 89 w 0 E S 34 133 71 W 0 E S 52

86 89 W 5 W D 17 177 89 E 10 N S 35 4 74 E 0 E S 53 80 86 W 11 W D 18 144 89 W 7 E S 36 167 89 E 10 E S 54

19 89 W 10 W S 55

MINIMISATION PERCENT 67 SELECTED PARAMETERS, SIGMA 1 TRE=120 PLUN= 8 LEAST SQUARE REGRESSION OF THE 36 CLOSEST STRIATIONS AVERAGE ERROR IN DEGREES 19.56421 ERROR IN R .42E+00

NO STRESS VALUES USED AND PRINCIPAL AXES STRESS RATIO R = .37 SIGMA(1)= .54223 TREND 123.2 (ERR 12.1) PLUNGE 1.0 (ERR 2.5) SIGMA(2)= -.08445 TREND 14.2 (ERR 9.9) PLUNGE 78.2 (ERR 31. 2) SIGMA(3)= -.45777 TREND 219.4 (ERR 12.6) PLUNGE 11.7 (ERR 31.2)

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME 1 .0 .1 11 17 19 36 55 21 54 27 18 24 34 46 2 .1 .2 17 30 38 31 29 44 40 3 .2 .3 20 20 33 23 4 .3 .4 27 49 35 47 28 52 39 50 5 .4 .5 31 37 42 25 15 6 .5 .6 34 8 48 43 7 .6 .7 36 53 3 8 .7 .8 36 9 .8 .9 36

10 .9 1.0 36 11 1.0 1.2 38 14 2 12 1.2 1.4 43 51 16 1 4 32 13 1.4 1.6 46 22 7 5 14 1.6 1.8 47 13 15 1.8 2.0 50 10 12 45 16 2.0 2.2 50 17 2.2 2.4 52 6 11 18 2.4 2.6 53 41 19 2.6 2.8 54 9 20 2.8 3.0 55 26

SCHMIDT NET OF NEAREST EXACT SOLN

3 3

1 1 1

1 1� . 111�

.. 11 111

2 2

2� .2 2 ... 22 2

2� 2.22 222 '22

2

1 1

11 11+

3 1+++ 3 1 .+

33 1 .. .. 3 33- 3 3

.33 --- 3 3 .. 3-3 3

3 ... 3

Tawa11ah Range: wununmantya1a Sandstone/Masterton Sandstone: NE-SW Compression 61 84 E 80 W N 1 24 84 W 45 W S 62

136 41 W 89 E R 2 5 83 W 3 S S 63 158 75 E 80 E R 3 178 89 W 0 E S 64 116 56 E 80 E R 4 177 89 E 10 N S 65

39 60 E 80 E R 5 51 73 E 5 E S 66 118 74 W 65 E R 6 49 64 E 10 W S 67

90 72 S 55 E R 7 144 89 W 7 E S 68 43 69 E 70 W R 8 44 73 E 5 E S 69 50 53 E 80 E N 9 81 74 W 5 E S 70 43 55 W 50 E N 10 64 87 W 3 E S 71 40 61 E 70 E R 11 12 84 W 5 W S 72 25 78 E 89 E N 12 31 84 W 0 E S 73

176 77 E 89 N N 13 130 80 W 10 E S 74 20 65 E 45 E N 14 27 86 E 5 W S 75

136 27 W 89 E R 15 80 89 E 0 E S 76 146 80 E 60 W R 16 80 89 E 0 E S 77 154 23 E 89 E R 17 40 90 W 7 W S 78 120 21 E 89 E R 18 62 83 E 5 E S 79 135 22 W 65 E R 19 42 70 W 0 E S 80 124 25 W 89 E R 20 127 75 W 5 E S 81 136 52 E 80 W R 21 65 81 E 22 W S 82 165 89 E 89 E N 22 66 85 W 5 W s 83 131 44 W 89 E R 23 52 76 E 10 E S 84 175 18 E 89 E R 24 55 68 E 5 E s 85

20 77 W 15 W D 25 27 68 E 11 W S 86 28 87 W 15 E D 26 55 65 W 0 E S 87

114 75 W 45 W D 27 135 22 W 10 W s 88 56 89 W 5 W D 28 95 72 S 5 E S 89 50 86 W 11 W D 29 30 78 E 10 W S 90

170 88 W 0 E D 30 60 89 W 10 W S 91 61 71 E 3 E D 31 178 74 E 0 E S 92

164 89 E 10 E D 32 81 82 E 5 W S 93 54 81 E 10 W D 33 45 26 E 5 E s 94

150 76 E 0 E D 34 15 65 W 65 W R 95 177 76 E 5 S D 35 74 67 E 5 E D 96 167 81 W 5 E D 36 14 89 E 0 E D 97 152 79 E 0 E D 37 6 89 E 10 N D 98

35 85 E 7 E D 38 15 64 E 5 E D 99 3 10 W 0 N D 39 115 35 W 0 E D 100

149 89 W 8 W D 40 35 89 E 5 W D 101 145 89 W 0 E D 41 27 61 E 30 E D 102

47 67 E 7 E D 42 39 80 W 0 E D 103 141 68 W 0 E D 43 35 76 E 5 W D 104

52 79 W 7 W D 44 131 82 W 0 E D 105 35 55 W 20 W D 45 173 64 W 5 E D 106

160 89 E 15 E D 46 86 43 S 5 W D 107 i24 66 E 5 E D 47 51 62 W 0 E D 108

50 77 E 5 E D 48 21 64 E 5 E D 109 133 74 E 5 E D 49 15 79 E 50 E D 110

60 81 W 10 E D 50 171 87 W 0 E D 111 165 67 W 7 E D 51 25 67 E 10 E D 112 132 76 E 0 E D 52 42 85 W 5 W S 113 127 81 E 0 E D 53 27 64 E 45 W S 114

95 78 S 10 W S 54 28 76 W 0 E S 115 134 77 E 5 W S 55 133 71 W 0 E S 116

30 89 W 5 W S 56 45 57 W 5 E S 117 49 64 E 19 E S 57 51 73 W 7 E S 118

152 74 W 5 W S 58 68 71 E 0 E S 119 145 76 W 17 E S 59 4 74 E 0 E S 120

38 49 E 7 E S 60 167 89 E 10 E S 121 0 67 E 45 N S 61 19 89 W 10 W S 122

MINIMISATION PERCENT 55 SELECTED PARAMETERS, SIGMA 1 TRE=200 PLUN= B LEAST� SQUARE REGRESSION OF THE 67 CLOSEST STRIATIONS� AVERAGE ERROR IN DEGREES 17.56022 ERROR IN R .12E+00�

NO STRESS VALUES USED AND PRINCIPAL AXES� SIGMA(l)= .66192 TREND 204.2 (ERR 2.9) PLUNGE 5.1 (ERR 4.6)� SIGMA(2)= -.32384 TREND 105.6 (ERR 23.4) PLUNGE 59.0 (ERR 50.0)� SIGMA(3)= -.33808 TREND 297.2 (ERR 7.1) PLUNGE 30.5 (ERR 50.2)�

STRESS RATIO R = .01

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME 1 .0 .1 15 113 80 78 90 102 117 83 97 56 .91 19 86 32 118 99 2 .1 .2 38 37 67 30 35 36 111 109 73 82 71 62 75 87 18 20 115 70

46 112 34 76 77 41 3 .2 .3 48 98 106 4 6 51 93 53 69 25 79 4 .3 .4 55 40 60 66 23 94 15 85 5 .4 .5 61 84 119 2 52 114 21 6 .5 .6 63 54 49 7 .6 .7 65 57 105 8 .7 .8 67 43 17 9 .8 .9 67

10 .9 1.0 70 110 16 89 11 1.0 1.2 74 8 95 24 47 12 1.2 1.4 74 13 1.4 1.6 79 7 22 5 100 3 14 1.6 1.8 83 13 11 9 88 15 1.8 2.0 84 1 16 2.0 2.2 84 17 2.2 2.4 91 81 12 116 107 14 10 27 18 2.4 2.6 94 61 96 74 19 2.6 2.8 99 58 26 31 42 45 20 2.8 3.0 107 48 55 38 65 59 39 50 122 21 3.0 3.2 122 108 29 44 64 121 68 103 104 63 92 101 33 120 28 72

SCHMIDT NET OF NEAREST EXACT SOLN

1 1 Ill.� 1 1 ...�

1 11..� 2 11 1 ..�

1 1�

2 1..� 2 1�

2�

•. 333� 3 33�

3--- 2� -333� 2�

3 2� 2 333�

333� 2�

3 22� 2 2 22 22*2 22 2 2 2�

2 22� 2 3�

33 22� 2�

2 3 3 2� 23�

2 2 2 3� 22 3 3�

2 2 3333.�

1 2�

.. 11� 2.

111 +111 1� .. 1 +++1�

.. +111�

Appendix 3�

3a Fluid inclusion microthermometry data

3b Fluid inclusion decrepitate microprobe analyses

--

Sample No. Fault tyoe 8reeeia type Inel 000. UV ratio Te Tm-H20 Th NaCI ea.wt% Enthapl\ Chloride

93-801-1 Tawallah Fault Fracture 5 0.1 230.1 0 17854 0

93-801-1 Tawallah Fault Fracture 5 299.4

93-801-1 Tawallah Fault Fracture 10 388.6

93-801-1 Tawallah Fault Fracture 10 302.9

93-801-1 Tawallah Fault Fracture 10 297.6

93-801-1 Tawallah Fault Fracture 5 236.7

93-801-1 Tawallah Fault Fracture 30 403.9

93-801-1 Tawallah Fault Fracture 5 240.1

93-801-1 Tawallah Fault Fracture 5 215.6

93-801-1 TawaJlah Fault Fracture 5 -0.1 239.9 0.2 18717 0.03

93-801-1 Tawallah Fault Fracture 30 346.7

93-801-1 Tawallah Fault Fracture 10 -0.2 328.7 0.3

93-801-2 Tawallah Fault Fracture 30 -8.2 192.8 11.9 14542 2.31

93-801-2 Tawallah Fault Fracture 10 -7.6 198.3 11.2 14977 2.16

93-801-2 Tawallah Fault Fracture 20 236.7

93-801-2 Tawallah Fault Fracture 10 212.1 .­93-801-2 Tawallah Fault Fracture 5 -32.2 215.1

93·801-2 Tawallah Fault Fracture 5 251.3

93-801-2 Tawallah Fault Fracture 5 207

93-801-2 Tawallah Fault Fracture I 5 167.7

93-801-2 Tawallah Fault Fracture I 5 164.6

93-801-2 Tawallah Fault Fracture I 5 -43.1 -0.1 159.5 0.2 18717 0.03

93-801-2 Tawallah Fault Fracture I 5 245.5

93-801-2 Tawallah Fault Fracture I 5 -48.8 -4.2 241.7 6.7 18568 1.23

93-801-2 Tawallah Fault Fracture I 5 188.6

93-801-3 Tawallah Fault Fracture I 5 -1.1 298.6 1.8 23649 0.31

93-801-3 Tawallah Fault Fracture I 10 256.6

93-801-3 Tawallah Fault Fracture I 10 145.1

93-801-3 Tawallah Fault Fracture I 5 -2.1 303.2 3.4

93-801-3 Tawallah Fault Fracture I 5 -0.5 129.2 0.8 9824 0.14

93-801-3 Tawallah Fault Fracture I 5 -33.2 44.1-93-801-4 Tawallah Fault Fracture 10 -27.2 -9.1 275.1 13 21297 2.56• 93-801-4 Tawallah Fault Fracture I 5 -28.1 -8.6 194.2 12.4 14734 2.42

93-801-4 TawaUah Fault Fracture I 10 -25.6 -10.1 132.7 14.1 9925 2.81

~_1-4 Tawallah Fault Fracture n 20 372.9

93-801-4 Tawallah Fault Fracture 5 159.9 ._' 93-801-4 Tawallah Fault Fracture 5 119.7

93-801-4 Tawallah Fault Fracture 5 334.3

93-801-5 Tawallah Fault Fracture 10 294.3

93-801-5 Tawallah Fault Fracture 10 -6.2 273.8 9.5 21275 1.8

93-801-5 Tawallah Fault Fracture 5 281.6

93-801-5 Tawallah Fault Fracture 5 -4.8 123.6 7.5 9169 1.39

93-801-5 Tawallah Fault Fracture 30 -8.1 105.2 11.8 7876 2.29 -93-801-5 Tawallah Fault Fracture 20 336.4

93-801-5 Tawallah Fault Fracture 5 -5.4 194.9 8.4 14817 1.57

93-801-5 Tawallah Fault Fracture 5 -3.2 196.8 5.2 14857 0.94

93-801-5 Tawallah Fault Fracture 5 -6.7 194.1 10.1 14777 1.92

93-801-5 Tav:allah Fault I Fracture 5 174.6

93-802-1 Tawallah Fault Fracture 10 263.2

93-802-1 Tawallah Fault Fracture I 30 -62.3 -3.6 86.2 5.8 6380 1.05

93-802-1 Tawallah Fault Fracture 11 10 -57.4 -21.2 125.2 23.2 9368 5.17-_._-­93-802-1 Tawallah Fault Fracture 11 30 -64.1 -3.5 71.4 5.6 6004 1.02

93-802-1 Tawallah Fault Fracture 11 5 71.4

93-802-1 Tawallah Fault Fracture II 20 178.1_.

93-802-1 TawaUah Fault Fracture 11 10 344.4

93-802-1 Tawallah Fault Fracture I 10 -19.2 121.2 21.8 8460 4.77

93-802-2 Tawallah Fault Fracture I 10 1-35.2 -6.3 172.3 9.6 13011 1.82

Appendix 3a Fluid inclusion microthermometry data (1)

Sample No. Fault type 8reccia type Incl. pop. UV ratio Te Tm-H20 Th NaCI eq.wt"1o Enthaply Chloride

93-802-2 Tawallah Fault Fracture 10 -6.2 227.2 9.5 17385 1.8

93-802-2 Tawallah Fault Fracture 5 -2.6 176.2 4.2 12883 0.75

93-802-2 Tawallah Fault Fracture 5 -41.2 -6.3 175.8 9.6 13211 1.82

93-802-2 Tawallah Fault Fracture 5 -8.2 338.8 11.9

93-802-2 Tawallah Fault Fracture 10 252.7

93-802-2 Tawallah Fault Fracture 10 -40.6 -2.1 226.4 3.4 17366 0.6

93-802-2 Tawallah Fault Fracture 5 -36.8 234.2

93-802-2 Tawallah Fault Fracture 5 -31.6 -7.6 144.2 11.2 10904 2.16

93-802-2 Tawallah Fault Fracture 5 -37.5 -7.6 190.1 11.2 14383 2.16

93-802-2 Tawallah Fault Fracture 5 -33.1 -7.6 151.7 11.2 11285 2.16

93-802-2 Tawallah Fault Fracture 10 253.2

93-802-2 Tawallah Fault Fracture 10 230.1

93-802-3 Tawallah Fault Fracture 10 343.8

93-802-3 Tawallah Fault Fracture 10 229.8

93-802-3 Tawallah Fault Fracture 1 5 168.3

93-802-3 Tawallah Fault Fracture 5 215.4

93-802-3 Tawallah Fault Fracture 10 -5.4 323.1 8.4

93-802-3 Tawallah Fault Fracture 10 -42.5 -5.3 321.1 8.2

93-802-3 Tawallah Fault Fracture 5 234.4

93-802-3 Tawallah Fault Fracture 5 195.4

93-802-3 Tawallah Fault Fracture 10 194.2 -

93-802-3 Tawallah Fault Fracture 5 -7.2 177.4 10.7 13411 2.05

93-802-3 Tawallah Fault Fracture 10 -33.7 -3.7 321.4 I 5.9 .....

93-802-3 Tawallah Fault Fracture 5 -38.6 -4.2 277.7 6.7 21642 1.23

93-802-3 TawaJlah Fault Fracture 5 179.3

93-802-3 Tawallah Fault Fracture 5 -4.3 239.2 6.8 21642 1.25

93-802-3 Tawallah Fault Fracture 5 232.6

93-802-4 Tawallah Fault Fracture 5 -38.2 -5.1 185.4 8 14025 1.49

93-802-4 Tawallah Fault Fracture 10 244.2

93-802-4 Tawallah Fault Fracture 5 -31.3 -5.6 _179.9 8.7 13632 1.63

93-802-4 Tawallah Fault Fracture 10 185.8

93-802-4 Tawallah Fault Fracture 5 180.2

93-802-4 Tawallah Fault Fracture 5 -22.6 187.8

93·802·4 Tawallah Fault Fracture 5 -25.2 -5 199.7 7.8 15216 1.45

93-B02-4 Tawallah Fault Fracture U 10 -42.6 -11.2 15.2

93-802-4 Tawallah Fault Fracture 5 -22.3 -9.6 157.3 13.5 11843 2.67

93-802-4 Tawallah Fault Fracture 30 -28.3 -5.1 243.6 8 18918 1.49

93-802-4 Tawallah Fault Fracture 50 -27.2 -5.3 249.2 8.2 19344 1.53

93-802-5 Tawallah Fault Fracture 5 -38 -7.3 226.7 10.9 16778 2.09

93-802-5 Tawallah Fault Fracture 5 -41.9 -5.2 232.4 8.1 17659 1.51

93-802-5 Tawallah Fault Fracture 5 -37.6 182.9

93-802-5 Tawallah Fault Fracture 5 -31.8 -2.8 176.6 4.5 13276 0.81

93-802-5 Tawallah Fault Fracture 5 -29.8 235.8 ..._.­93-802-5 Tawallah Fault Fracture 5 223.7

93-802-5 Tawallah Fault Fracture 5 250

93-803-1 Tawallah Fault Fracture 5 -42.3 -14.9 145.2 18.5 10779 3.88

93-803-1 Tawallah Fault Fracture 5 -47.3 -14.7 132.8 18.4 9856 3.86

93-803-1 Tawallah Fault Fracture 11 5 113

93-803-1 Tawallah Fault Fracture 11 20 -28.7

93-803-1 Tawallah Fault Fracture 11 5 -35.2 -2.7 138.6 4.4 10559 0.79

93-803-1 Tawallah Fault Fracture I1 30 -37.3 -9.6 127.6 13.5 9570 2.67

93-803-1 Tawallah Fault Fracture 1I 5 184.9

93-803-1 Tawallah Fault Fracture 11 5 -12.2 179.9 16.2 13477 3.31

93-803-1 Tawallah Fault Fracture 11 10 124.2

93-803-1 TawaJlah Fault Fracture 11 10 133.9

93-803-2 Tawallah Fault Fraclure n 5 -2.5 150.3 4.1 11329 0.73

93-803-2 Tawallah Fault Fracture 11 5 145

Appendix 3a Fluid inclusion microthermometry data (2)

--

Sample No. Fault type 8reccia type lncl. pop. UV ratio Te Tm-H20 Th NaCI eq.wt% Enthaply Chloride

93-803-2 Tawallah Fault Fracture II 5 132.2

93-803-2 Tawallah Fault Fracture JI 10 149.3

93-803-2 Tawallah Fault Fracture IJ 40 288.5

93-803-2 Tawallah Fault Fracture IJ 5 294.6

93-B04-1 NNW-dexlrev Open I1 5 -37.4 -12.3 197.6 16.2 14832 3.31

93-804-1 NNW-dexlrev Open 11 10 -27.3 -10.1 186.7 14.1 13910 2.81

93-804-1 NNW-dexlrev Open 11 30 -22.9 -8.2 184.3 11.9 13953 2.31-93-804-1 NNW-dexlrev Open JI 5 -22.8 -7.9 177.4 11.6 13378 2.25

93-805-1 NNW-dexlrev Open 5 184.1

93-805-1 NNW-dexlrev Open 5 -27.7 -0.2 189.8 0.3 14536 0.05

93-805-1 NNW-dexlrev Open 5 -28.8 -0.5 247 0.8 19153 0.14

93-805-1 NNW-dexlrev Open 5 -1.2 198 2 15302 0.35-93-805-1 NNW-dexlrev Open 5 153.2

93-805-1 NNW-dexlrev Open 5 212.1 ,

93-805-1 NNW-dexlrev Open 10 -34.6 -11 171.7 ~

15 12755 3.02

93-B05-1 NNW-dexlrev Open 5 -27.8 -0.8 187.3 1.3 14495 0.23

93-B05-1 NNW-dexlrev Open 5 161.4

93-B05-1 NNW-dexlrev Open D 30 325.8

93-B05-1 NNW·dexlrev Open n 20 112.6

93-805-1 NNW-dexlrev Open 11 5 -38.2 -19.2 126.4 21.8 9256 4.77

93-B05-1 NNW-dexlrev Open 40 -35.3 -17.7 96.8 20.7 7122 4.47

93-B05-1 NNW-dexlrev Open 5 -43.2 -18.6 174.5 21.4 13007 4.66 ~

93-B05-2 NNW-dexlrev Open 5 -30.7 -0.2 191.5 0.3 14536 0.05

93-B05-2 NNW·dexlrev Open 5 -54.9 30.7

93-B05-2 NNW-dexlrev Open 5 0 180.2 0' 13732 0 93-B05-2 NNW-dexlrev Open 5 -0.1 172.1 0.2 12938 0.03

93-B05-2 NNW-dexlrev Open 5 128.1

93-B06-1 NNW-dex Open 5 290.4

93-B06·1 NNW-dex Open 30 -33.4 -5.1 211.7 8 16021 1.49

93-B06-1 NNW-dex Open 5 -33.6 245.3

93-B06-1 NNW-dex Open 20 -2.5 397.2 4.1

93-B06-1 NNW-dex __qpen 20 383.6

93-B06-1 NNW-dex Open 5 -27.8 -9.1 357.6 13

93-B06-1 NNW-dex Open n 10 -32.1 -2.9 208.8 4.7 15267 0.84

93-B06-1 NNW-dex Open 10 -24.7 -8.1 253.8 11.8 19374 2.29

93-B06-1 NNW-dex Open 5 205.8

93-B06-2 NNW-dex Open 5 0 257.9 0 20490 0

93-806-2 NNW-dex Open_ 5 0 199.2 0 15348 ..2­93-B06-2 NNW-dex Open 5 200.6

93-806-2 NNW-dex Open 5 -29.8 -0.3 195.6 0.5 14941 0.09

93-B06-2 NNW-dex Open 10 243.7

93-B06-2 NNW-dex Open 10 -41.6 -0.3 283.2 0.5 22820 0_09

93-806-2 NNW-dex Open 5 197.3

93-B06-2 NNW-dex O~en 30 310

93-B07-1 NNW·dex Open 10 -1.2 201.4 2 15302 0.35

93-B07-1 NNW-dex Open 30 -29.6 -7.2 10.7 -~--._..

93-B07-1 NNW-dex Open 10 143.5

93-807-1 NNW-dex Open 5 -33.2 -11.3 120.6 15.3 8972 3.09

93-B07-1 NNW-dex Open U 10 -33.1 -8.3 115.7 12.1 8617 2.36

93-B07-1 NNW-dex Open 10 0 270.8 0 21405 0

93-B07-1 NNW-dex Open 10 -35.3 -4.2 137.5 6.7 9228 1.23

93-807-1 NNW-dex Open 5 -40.6 -11 .2 110.9 15.2 7474 3.07

93-B07-1 NNW-dex Open 20 -42.8 -8.2 168.2 11.9 12623 2.31

93-B07-1 NNW-dex Open 10 -39.1 -7.1 200.6 10.6 15173 2.03-93-B07-1 NNW-dex Open 10 -27.2 122.2

93-B07-1 NNW-dex Open 10 108.3 .. 93-B07-2 NNW-dex Open 10 -35.4 -3.2 118.7 5.2 8650 0.94

Appendix 3a Fluid inclusion microthermometry data (3)

Sample No. Fault type Breccia type Incl. pop. lJV ratio Te Tm-H20 Th NaCI eq.wt"lo EnthapJy Chloride

93-B07-2 NNW-dex Open 11 10 -38.6 -3.2 115.8 5.2 .. 8270 0.94

93-B07-2 NNW-dex Open 1I 30 -33.6 -11.2 189.9 15.2 14295 3.07 ~

93-807-2

93-807-2

NNW-dex--­ _. NNW-dex

Open

Open

B

I

50

40 -32.5 -10.2

171.3

127.9 14.2 9525 2.83

93-B07-2 NNW-dex Open 30 -31.7 121.3

93-B07-2 NNW-dex Opoo 5 -33.4 -13.1 109.9 17 8198 3.5

93-B07-2 NNW-dex Open 10 128.9

93-B07-2 NNW-dex Open 20 -30.1 -12.1 141.6 16.1 10446 3.28

93-807-2 NNW-dex Open 10 -34.3 -18.2 108.6 21.1 7946 4.58

93-B07-2 NNW-dex Open 10 -37.1 -0.3 277.5 0.5 21871 0.09

93-807-2 NNW-dex Open 10 -28.2 -0.5 241.3 0.8 18717 0.14

93-807-2 NNW-dex Open 10 138.7

93-B07-2 NNW-dex Open 10 -27.9 -1.2 134.4 2 10189 0.35

93-B07-3 NNW-dex Open 5 -37.1 -15.2 131.5 18.B 9656 3.96

93-807-3 NNW-dex Open 10 -32.8 -16.4 165 19.7 122B4 4.2

93-807-3 NNW-dex --­ Open 20 -38.1 -18.1 133.6 21 9805 4.55

93-B07-3 NNW-dex Open 5 -8.5 145.6 12.3 10882 2.4

93-B07-3 NNW-dex Open 10 -34.7 -10.1 158.3 14.1 11843 2.81

93-B07-3 NNW-dex Open 5 -26.5 -9.6 143.1 13.5 10703 2.67

93-B08-1 NW-sin Open 10 0 341.2 0

93-B08-1 NW-sin Open 5 -20.9 -0.1 229.4 0.2 17429 0.03

93-808-1 NW-sin Open 5 178.3

93-808-1 NW-sin Open 5 122.4 ...._-­93-808-1 NW-sin Open 5 133.2

93-808-1 NW-sin Open 10 -26.4 -2.1 314.4 3.4

93-B08-1 NW-sin ___~ Open 5 -27.2 -0.1 280.1 0.2 22342 0.03

93-B08-1 NW-sin Open 5 299.4 ~

93-808-1 NW-sin Open 5 188.5

93-808-1 NW-sin Open 5 186.3

93-808-1 NW-sin Open 5 312.3

93-808-2 NW-sin Open 5 -2.6 112.4 4.2 8472 0.75

93-808-2 NW-sin Open 5 -29.8 -5.3 125.8 8.2 9398 1.53

93-808-2 NW-sin Open 5 409.1

93-B08-2 NW-sin Open 40 -23.2 -0.5 214.7 0.8 16587 0.14

93-B08-2 NW-sin Open 10 -0.6 275.9 1 21871 0.17

93-808-2 NW-sin Open 5 177.6

93-808-2 NW-sin Open 20 -0.1 175.B 0.2 13334 0.03

93-B08-3 NW-sin Open .".. 5 -30.1 146.3

93-B08-3 NW-sin Open 1 10 327 .-'

93-BOB-3 NW-sin Open 1 5 159.9

93-B08-3 NW-sin Open I 5 -27.3 -0.7 208.8 1.2 16171 0.21

93-B08-3 NW-sin Open I 5 -0.5 147.3 0.8 11370 0.14

93-B08-3 NW-sin Open I I 10 380.8

93-B08-3 NW-sin Open I I

5 ---­ -25.3 -8.1 133.1 11.B 9847 2.29

93-B08-3 NW-sin Open 5 139.7

93-80B-3 NW-sin Open 5 1586

93-B08-3 NW-sin Open 5 -32.7 -8.1 115.3 11.8 8625 2.29

93-808-3 NW-sin Open 5 110.3

93-808-3 NW-sin Open 5 -35.3 -2.3 130.1 3.8 9806 0.68

93-BOB-3 NW-sin Open 5 216.9

93-808-3 NW-sin Open 10 393.2

93-809-1 NW-sin Open 5 174.7 -93-809-1 NW-sin Open 20 -­ -33.4 -6.8 201.4 10.2 15173 1.94

93-809-1 NW-sin Open 10 -34.2 -4.1 263.9 6.5 20500 1.19

93-809-1 NW-sin Open 5 -10.1 159.2 14.1 12000 2.81

93-B09-1 NW-sin Open 5 172.7

93-B09-1 NW-sin Open H 10 -39.6 -14.1 lOB 17.9 7991 3.73

Appendix 3a Fluid inclusion microthermometry data (4)

---

Sample No. Fault type 8reccia type Inc!. pop. LN ratio Te Tm-H20 Th NaCI eq.wt% Enthapl~ Chloride

93-B09-1 NW-sin Open 30 -40.9 -12.1 133.4 16.1 9895 3.28f------. '.

93-809-1 NW-sin Open 5 -38.4 -13.2 131.4 17.1 9695 3.53 _..­93-809-1 NW-sin Open 5 -36.2 -4.4 111.9 7 8270 1.29

93-809-2 NW-sin Open 5 112.4

93-B09-2 NW-sin Open 5 116.1

93-B09-2 NW-sin Open 5 -40.1 -2.3 121.1 3.8 9032 0.68

93-809-2 NW-sin Open 5 -7.2 240.1 10.7 18422 2.05

93-809-2 NW-sin Open 10 -37.7 -11.1 131.7 15.1 9724 3.04

93-809-2 NW-sin Open 30 112.4

93-809-2 NW-sin Open 20 -27.6 -7.7 121.6 11.3 9007 2.18

93-809-2 NW-sin Open 20 -31.3 -3.6 158.8 5.8 12103 1.05

93-809-2 NW-sin Open 5 -25.1 -9.2 117.6 13.1 8817 2.58

93-B09-2 NW-sin Open 10 -31.6 -5.6 161.7 8.7 12075 1.63

93-B09-2 NW-sin Open 5 103.4

93-B09-2 NW-sin Open 30 115.7

93-809-2 NW-sin Open 5 127.2

93-809-2 NW-sin Open 10 -33.7 -8.1 130.2 11.8 9747 2.29

93-809-2 NW-sin Open 10 218.3 . -,"

93-810-1 NE-dex/norm Open 5 0 134.3 0 10209 0

93-810-1 NE-dex/norm Open 5 -28.8 -0.3 167.7 0.5 12748 0.09

93-810-1 NE-dex/norm Open I 10 138.7

93-Bl0-1 NE-dex/norm Open I 5 -33.7 0 146.6 0 ..- 10982 0

93·810-1 NE-dex/norm Open I 5 165.8 .-..... . .. .'

93-810-1 NE-dex/norm Open I 5 211.8

93-810-1 NE-dex/norm Open I 5 -32.2 -0.5 135.2 0.8 10209 0.14

93-810-1 NE-deXlnorm Open 11 5 -34.7 -17.3 118.3 20.4 8711 4.39

93-810-1 NE-dex/norm Open 11 20 -37.2 -12.2 I 118.1 16.2 8772 3.31

93-810-1 NE-dex/norm Open 11 10 -41.8 -17.7 116.5 20.7 8611 4.47

93-B10-1 NE-dex/norm OlJen r 5 -18.2 133.9 21.1 9829 4.58

93-810-1 NE-dex/norm GRen 10 -32.6 -17.6 132.7 20.7 9829 4.47

93-810-2 NE-dex/norm Open 5 146.5

93-810-2 NE-dex/norm Open 10 155.3 ..... 93-810-2 NE-dex/norm Open 10 -30.1 -10 158.3 13.9 11799 2.76

93-810-2 NE-dex/norm Open 30 200.1

93-810-2 NE-dex/norm Open 30 -32.6 -9.6 123.9 13.5 8193 2.67

93-Bl0-2 NE-dex/norm Open 30 -38.6 -11.2 101.8 15.2 7474 3.07

93-810-3 NE-dex/norm Open I 5 0 127.2 0 9641 0

93-810-3 NE-dex/norm Open I 5 136.7

93-810-3 NE-dex/norm Open I 5 -31.8 -0.6 148.1 1 11345 0.17

93-810-3 NE-dex/norm Own J 5 -22.7 -0.2 155.9 0.3 11759 0.05

93-810-3 NE-dex/norm Open 5 ... 0 160.8 0 12150 0

93-810-3 NE-dex/norm Open 5 -23.4 0 138.6 0 10595 0

93-B10-3 NE-dex/norm Open 5 -21.8 -0.2 165.3 0.3 12543 0.05

93-812-1 NE-dex/norm Open 5 -0.9 216.8 1.5 16532 0.26

93-812-1 NE-dex/norm Open 5 -37.5 -2.1 211.1 3.4 16119 0.6

93-812-1 NE-dex/norm Open 5 -34.6 -2.2 188.2 3.6 14295 0.64

93-812-1 NE-dex/norm Open 10 . -2.6 143.1 4.2 10376 0.75

93-812-1 NE-dex/norm Open .. 10

"--194.8

93-812-1 NE-dex/norm Open 5 -36.3 -8.5 130.5 12.3 9747 2.4

93-812-1 NE-dex/norm Open 5 -33.6 -1.1 188.2 1.8 14333 0.31

93-B12-1 NE-dex/norm Open 5 -1.9 198.3 3.1 15102 0.55 .. 93-B12-1 NE-dex/norm Open 5 140.7

-...-. ..

93-812-1 NE-dex/norm Open I 5 -39.2 -0.1 161.3 0.2 12150 0.03

93-B12-1 NE-dex/norm Open I 5 -38.5 -0.1 157.1 0.2 12150 0.03

93-812-1 NE-dex/norm Open I 5 237.9

93-812-1 NE-dex/norm Open r 10 -27.3 -1.6 188.3 2.6 14295 0.46

93-B12-1 NE-dex/norm Ooen I 5 244.1

Appendix 3a Fluid inclusion microthermometry data (5)

Sample No. Fault type 8reccia type Inc!. pop. UV ratio Te Tm-H20 Th NaCI eq.wt% Enthaply Chloride

93-812-1 NE-dexlnorm Open I 5 253.2

93-812-1 NE-dexlnorm Open I 5 -31.8 -2.3 187.5 3.8 13870 0.68

93-812-1 NE-dexlnorm Open I 5 197.5

93-812-1 NE-dexlnorm Open I 10 -2.1 208.5 34 15909 0.6

93-812-1 NE-dexlnorm Open 1 5 245.9 .­93-812-1 _..NE-dexlnorm Open 1 5 321.2

93-812-1 NE-dexlnorm Open 1 5 216.5

93-812-1 NE-dexlnorm Open I 5 212.1

93-812-1 NE-dexlnorm Open 5 209.8 ....._.

93-812-1 NE-dexlnorm Open 5 285.9

93-812-1 NE-dexlnorm Open 5 -33.2 -2.2 209.5 3.6 16079 0.64

93-812-1 NE-dexlnorm Open 5 207.5

93-812-1 NE-dexlnorm Open 5 -27.9 -1.9 299.1 3.1 24138 0.55

93-812-1 NE-dexlnorm Open 5 287.3

93-812-1 NE-dexlnorm Open 5 189.8

93-812-1 NE-dexlnorm Open 5 ...._. 224

93-812-1 NE-dexlnorm Open 5 178.4

93-812-1 NE-dexlnorm Open 5 -35.6 -0.9 118.2 1.5 8876 0.26

93-812-1 NE-dexlnorm Open 5 -0.7 209.6 1.2 16171 0.21

93-813-1 NE-dexlnorm Open 5 248.5

93-813-1 NE-dexlnorm Open 5 -33.2 -0.1 2584 0.2 20240 0.03

93-813-1 NE-dexlnorm Open 5 -28.2 -0.8 139.2 1.3 10573 0.23

93-813-1 NE-dexlnorm Open 5 143.6

93-813-1 NE-dexlnorm Open 5 -27.6 -3.2 5.2 I

93-813-1 NE-dexlnorm Open 5 127.6

93-813-1 NE-deXlnorm Open 5 J.23.7

93-813-1 NE-dexlnorm Open 5 I 129.1

93-813-1 NE-dexlnorm Open 5 -37.2 -7.2 182.6 10.7 13800 2.05

93-813-1 NE-dexlnorm Open 5 120.6

93-813-1 NE-dexfnorm Open 5 117

93-813-1 NE-dexfnorm Open 5 -30.6 -1.2 149.7 2 11345 0.35 I -'.~-~

93-813-1 NE-dexfnorm Open 5 125.2

93-813-1 NE-dexlnorm Open 5 1524

93-813-1 NE-dexlnorm 5 187.8Op_e.~_

93-813-1 NE-d'exlnorm Open 5 140.2

93-813-2 NE-dexfnorm Open 11 5 -12.1 115.6 16.1 8582 3.28

93-813-2 NE-dexfnorm Open 11 40 -39.5 -11.2 122.8 15.2 9172 3.07

93-813-2 NE-dexfnorm Open 11 30 -34.2 -8.2 108.2 11.9 8071 2.31

93-814-1 NW-sin Open I 5 -22.6 -0.5 137.1 0.8 10309 0.14 .. 93-814-1 NW-sin Open I 5 -35.1 -1.2 142.3 2 105731 0.35

93-814-1 NW-sin Open I 5 -21.2 0 154.7 0 11759 0

93-814-1 NW-sin Open 1 5 -244 -0.1 139.8 0.2 10595 0.03.A,_,_

93-814-1 NW-sin Open 1 -.. 5 -0.1 150.3 0.2 11370 0.03

93-814-1 NW-sin Open 1 5 -33.6 0 134.2 0 10209 0

93-814-2 NW-sin Open I 5 122.6

93-814-2 NW-sin Open I 5 -28.9 185.2

93-814-2 NW-sin Open I 5 -1.2 170.3 2 12906 0.35

93-814-2 NW-sin Open I 5 -27.7 -1.1 171.6 1.8 12906 0.31

93-814-2 NW-sin Open I 5 -1.2 209.5 2 161'19 0.35 .. 93-814-2 NW-sin Open I 5 159.5

93-814-2 NW-sin Open I 5 -20.5 -1.9 161.4 ... 3.1 12123 0.55

93-814-2 NW-sin Open I 5 -21.2 -1.4 133.8 2.3 10006 0.4

93-814-3 NW-sin Open 1 5 173.9

93-814-3 NW-sin Open 1 5 167.2

93-814-3 NW-sin _.. Open J 5 -27.2 -9.2 156.3 13.1 11648 2.58

93-814-3 NW-sin Open I 5 126.2

93-814-3 NW-sin Open 1 5 -5.2 93.8 8.1 6952 1.51

Appendix 3a Fluid inclusion microthermometry data (6)

Sample Ne. Fault type 8reccia typE Inc!. pop UV ratio Te Tm-H2C Th NaGI eq.wt° .Enthapl Chlorid

93-814-3 NW-sin Open 5 145.9

93-814-3 NW-sin Open 5 111.8

93-814-3 NW-sin Open 5 -36.4 -1.9 123.6 3.1 8861 0.55

93-814-3 NW-sin Open 5 -52.6 -1.3 2.1

93-815-1 NNW-dex Fracture 5 231.3

93-815-1 NNW-dex Fracture 10 -32.8 -9.2 109.3 13.1 8241 2.58

93-815-1 NNW-dex Fracture 5 172.3

93-815-1 NNW-dex Fracture 10 -38.9 -18.2 161.1 21.1 11847 4.58

93-815-1 NNW-dex Fracture 40 186.7

93-815-1 NNW-dex Fracture 30 -10.1 192.3 14.1 14542 2.81

93-815-1 NNW-dex Fracture 30 -37.3 -16.2 132.6 19.6 9829 4.17

93-815-1 NNW-dex Fracture 30 -42.5 -13.1 156.7 17 11576 3.5

93-815-1 NNW-dex Fracture 10 142.7

93-815-1 NNW-dex Fracture 10 202.6

93-815-2 NNW-dex Fracture 10 127.7

93-815-2 NNW-dex Fracture 10 -14.6 122.7 18.3 8109 3.83

93-815-2 NNW-dex Fracture [ 50 92.3

93-815-2 NNW-dex Fracture 11 5 -31 -14.5 167.2 18.2 12484 3.81

93-815-2 NNW-dex Fracture 11 20 -28.3 -15.2 137.1 18.8 10230 3.96

93-815-2 NNW-dex Fracture 20 -29.7 163.4 .• 93-815-2 NNW-dex Fracture 20 133.7

93-815-2 NNW-dex Fracture 20 125.6 - -­93-815-2 NNW-dex Fracture 30 -36.9 -15.3 182.3 18.9 13621 3.99

93-815-2 - NNW-dex Fracture 5 -36.2 -15.6 270.6 19.1 20518 4.04

93-815-2 NNW-dex Fracture 5 165.6 -­93-815-2 NNV\I-dex Fracture 30 123.3

93-815-2 . NNW-dex Fracture 5 131.2

93-815-2 NNW-dex Fracture 10 -11.6 134.7 15.6 10100 3.16

93-815-3 NNW-dex Fracture 5 -30.2 -1.4 295.9 2.3 22518 4.39

93-815-3 NNW-dex Fracture 5 -28.1 -0.7 147.2 1.2 10922 3.6

93-815-3 NNW-dex Fracture 5 128.2

93-815-3 NNW-dex Fracture 5 186.5

93-815-3 NNW-dex Fracture 5 205.3

93-815-3 NNW-dex Fracture 5 167.4

93-815-3 NNW-dex Fracture 10 167.2 .­93-815-3 NNW-dex Fracture 5 -25.6 -5.1 151.2 8 11305 1.49

93-815-3 NNW-dex Fracture 10 220.7

93-815-3 NNW-dex Fracture 5 231.4

93-816-1 NNW-dex Fracture 5 -39.6 129.6

93-816-1 NNW-dex Fracture 5 113.5 "-_.'"­ -­93-816-1 NNW-dex Fracture 5 166.8

93-816-1 NNW-dex Fracture 20 -48.6 -5.8 114.1 8.9 8640 1.67

93-816-1 NNW-dex Fracture 30 -38.1 -8.1 119.2 11.8 9000 2.29

93-816-1 NNW-dex Fracture 5 -35.6 -6.2 108.5 9.5 8053 1.8

93-816-2 NNW-dex Fracture 5 175.9

93-816-2 NNW-dex Fracture 5 177.1

93-816-2 NNW-dex Fracture 5 127.3

93-816-2 NNW-dex Fracture 10 154.9

93-816-2 NNW-dex Fracture 5 143.6

93-816-2 NNW-dex Fracture 60 -25.6 -12.3 114.5 16.2 8600 3.31

93-816-2 NNW-dex Fracture JI 30 117.6 -­93-816-2 NNW-dex Fracture 11 10 101.8

93-816-2 NNW-dex Fracture 11 10 -31.6 -10.1 88.1 14.1

93-816-2 NNW-dex Fracture 11 20 -32.6 0 128.6 0 9641 0

93-816-2 NNW·dex Fracture 11 5 -20.7 -5.4 131.5 8.4 9778 1.57

93-816-2 NNW-dex Fracture 11 5 -24.9 -13.2 107.1 17.1 7925 3.53

93-816-2 NNW-dex Fracture 11 10 -28.6 -12.6 120.3 16.5 8946 3.38

Appendix 3a Fluid inclusion microthermometry data (7)

Sample No.1 Fa~e Breccia type ,Inc!. pop. UV ratio Te Tm-H20 Th NaC! eq.wt% Enthapl~ Chloride

93-B16-2 NNW-dax Fracture 11 10 124.4 -93-B16-2 NNW-dex Fracture I 5 -23.3 0 120.6 0 9058 0

93-B116-2 NNW-dex Fracluru I J 5 127.8 -­93-816-2 NNW-dex Fracture 1_._~---=-~5 -34.4 -14.6 101.2 18.3 7440 3.83 ~ ~-

93-816-2 NNW-dex Fracture I 5 147.8 - -93-816-2 NNW-dex Fracture I 5 163.7 -93-816-2 NNW-dex Fracture----­ I 5 -33.2 -0.5 128.4 0.8 9824 0.14 -~

93-816-2 NNW-dex Fracture I 5 145.9

93-816-2 NNW-dex Fracture I-­ 5 133.6 -~

93-816-2 NNW-dex Fracture I 5 -29.9 -1.2 134.7 2 10189 0.35

93-816-2 NNW-dex Fracture I 5 , -10.1 121.3 14.1 8983 2.81

93-816-3 NNW-dex Fracture 11 5 I -13.9 125.3 17.7 9320 3.68

93-B16-3 NNW-dex Fracture 11 5.­118.6 -­

93-B16-3 NNW-dex Fracture n 5 -31.2 -13.1 122.2 17 8946 3.~

93-816-3 - NNW-dex Fracture 11 5 -33.6 -18.5 125.4 21.3 9223 4.63

93-816-3 NNW-dex Fracture 11 5 -36.6 -16.9 128.2 20.1 .. 9456 4.3

93-816-3 NNW-dex Fracture 11 .. 5 -39.1 -11.1 127.6 15.1 9548 3.04

93-816-3 1

NNW-dex Fracture U 5 -27.8 -16.3 147.3 19.7 10950 4.2

93-B16-3 NNW·dex Fracture 11 5 -33.1 -12.2 117.6 16.2 8798 3.31

93-816-3 NNW-dex Fracture I i

5 ,-­ 167.1 -­93-816-3 NNW-dex Fracture 5 -29.8 137.1 --­93-817·1 NE-dex Fracture I 10 -35.4 -10.1 121.6 14.1 8973 2.81

93-817-1 NE-dex Fracture 10 209.6

93-B17-1 NE-dex Fracture 10 -31.7 -12.2 148.2 16.2 11056 3.31

93-817-1 I NE-dex Fracture 10 -29.5 -9.8 154.2 13.7 11613 2.72

93-817-1 NE-dex Fracture 10 -25.6 -10.5 167.1 14.5 12574 2.9

93-817-1 NE-dex Fracture "­ 20 183.7 -~ --­

93-817-1

93-817-1

NE-dex

NE-dex

Fracture -'

Fracture

20

10

-33.6

-33.6

-16.7

-18

167.2--r--' 117

20

21

12451

8317

4.28 -4.55

93-817-1 NE-dex Fracture 11 30 -31.7 -17 178.5 20.2 13107 4.33

93-B17-1 NE-dex Fracture 11 5 186.5

93-B17-1 NE-dex Fracture U 5 -17.1 167.3 20.3 12451 4.36

93-B17-1 NE-dex Fracture 11 10 -12.9 216.6 16.8 16192 3.46

93-B17-1 NE-dex Fracture 5 -33.2 206.2

93-817-1 NE-dex Fracture 40 174.1 -I-­ -­

93-817-1 NE-dex -.fracture 20 -27.2 -13.3 136.5 17.2 10070 3.55

93-817-1

93-817-1

NE-dex

NE-dex

Fracture

Fracture

20

20

-32.9 -12.8

-

156.1

146.7

16.7 I 11576

T 3.43 .­

-93-617-1 NE-dex Fracture 5 141.6 I 93-817-1 NE-dex Fracture 10 156.1 I 93-817-1 NE-dex Fracture 30 148.1

93-817-1 NE-dex Fracture 10 -16.8 141.9 20.1 10376 4.3 ""

93-817-2 ---­ NE-dex Fracture 11 10 -38.1 -13.2 155.6 17.1 11576 3.53

93-817-2

93-817-2

NE-dex

NE-dex

Fracture---­Fracture

11

11

--~

10

-33.2

-29.3

323.6

254.3 - c-=-_ - ~-

-- ­93-817-2 NE-dex Fracture 11 10 307.8

--< -­ -­ -93-817-3 NE-dex Fracture 11 5 -32.6 -5.6 112.6 8.7 8440 1.63 93-B17-3 NE-dex Fracture 11 5 -32.5 -11.1 147.6 15.1 11054 3.04 93-817-3 NE-dex Fracture 11 10 -45.2 -12.6 98.2 16.5 7277 3.38-93-817-3 NE-dex Fracture 11 5 -35.3 -12.6 112.3 16.5 8398 3.38 93-817-3

93-817-3

NE-dex

NE-dex l Fracture

Fracture

JI

11 I

20

5

-48.6

--8.7 253.7

113.6

12.5 19374

-

2.44 -

93-817-3 NE-dex Fracture n 30 -9.6 292.7 13.5 22812 2.67 93-B17-3 NE-dex Fracture 11 _ 5 206.4 93-817-3 NE-dex

-­ Fracture 11 5 -10.5 108.5 14.5 8049 2.9

II93-819-1 Tawallah Fault Fracture 11 5 257.2

93-819-1 Tawallah Fault Fracture 11 10 126.7

Appendix 3a Fluid inclusion microthermomelry data (8)

Sample No. Fault type Breccia t~pe_ Incl. pop. LN ratio Te Tm-'H20 Th t'o!~Ql eq.wt~ ~thaply Chloride -

93-B19-1

93·B19-1 -­ -

Tawallah 'Fault

Tawallah Fault I

Fracture._I-

Fractur~

11 - - 5

20

-29.8

-35~2]

-9.6

-12.8_

256.2

122.3 -

13.5

16.7---­19592

9146

2.67 .­3.43

93-B19-1 Ta-wallah Fault Fracture 5 I 131.6

93-819-1 Tawallah Fault Fracture 5 -27.6 -11.1 200.6 15.1 15074 3.04 '.­

93-B19-1 Tawallah Fault Fracture 10 -33.6 -2.1 109.2 3.4 8280 0.6

93-B19-1 Tawallah Fault Fracture 20 -34.2 -10.1 109.6 14.1 8223 2.81

93-819-1 Tawallah Fault Fracture 20 - 261.2 -93-820-1 Tawallah Fault Fracture - 5 -34.2.-......_.•.­ 0 i 192.~ 0 14736 0

93-B20-1 Tawallah Fault Fracture.. I - 5 -36.4 .­

-0.8 -~ 1.3 14695 0.23

93-B20-1 Tawallah Fault Fracture-_._._­ I 5 254.2 -­-~-

93-820-1 Tawallah Fault Fracture I 5 -38.4 -2.1 188.2 3.4 14295 0.6

93-B20-1 Tawallah Faul,t Fracture I 5 -42.1 -0.5 297.6 0.8 23995 0.14

93-820-1 Tawallah Fault Fracture I 5 157.6

93-B20-1 Tawallah Fault .. Fracture I 5 160.2

93-820-1 Tawallah Fault Fracture I 5 -34.2 ·2.6 188.2 4.2 14266 0.75

93-820-1 Tawallah Fault Fracture I 5 -33.7 -5.6 297.2 8.7 23554 1.63

93-820-2 Tawallah Fault Fracture I 5 - -33.2 -0.5 254.1 0.8 20040 0.14

93-B20-2 Tawallah Fault Fracture I 5 241.3

93-820-2 Tawallah Fault Fracture I 5 -27.3 -5.2 254.7 6.1 19773 1.51

93-B20-2 Tawallah Fault Fracture I 5 156.2

93-B20-2 Tawallah Fault Fracture I 5 208.1 -93-B20-2 Tawallah Fault Fracture I 5 -23.6 -2.3 189.6 3.8 14495 0.68

93-B20-2 Tawallah 'Fault Fracture I 5 -40.2 -2.3 267.6 3.8 20595 0.68

93-B20-2 Tawallah Fault Fracture I 5 -37.2 -1.2 192 2 14695 0.35

93-B20-2 Tawallah Faul,t Fracture I 5 -28.2 -0.2 241.2 0.3 .. 18717 0.05

93-B20-2 _Tawallah' Faul\ Fracture I 5 . 252.7 --­93-820-2 Tawallah Fault Fracture I 5 -25.7 -0.2 208.6 0.3 115958 0.05

93-B20-2 Tawallah Fault Fracture I 5 -22.3 -8.1 141.2 11.8 10503 2.29

93-B20-2 Tawallah Fault Fracture I 5 123.6 -­92-01-1 NNW-dex _. Open 11 50_~ -16.3

92-01-1 NNW-dex Open --"

11 10 -5.3 f-­ ~. -~

92-01-1 NNW-dex Open 11 20 -20.5 104.2

92-01-1 NNW-dex Open '. n 10 -24.3 55.8

92-01-1 NNW-dex Open 11 10 -12.7

92-01-1 NNW-dex Open 11 20 -17.2 .­92-01-1---. NNW-d'ex Open JI 10 -17.6

92-01·1 NNW-dex Open 11 10 -18.7

92-01-2 NNW-dex Open 11 5 -22.6 -8.6 130.3 12.4 9747 2.42

92-01-2 NNW-dex Open 11 10 -36.9 -10.6 121.4 14.6 8973 2.93

92-01-2 NNW-dex Open 11 10 -0.5 0.8 12906 I 3.88

92-01-2 NNW-dex _Open 11 20 -25.7 -14.9 162.2 18.5 10779 4.~

92-01-2 NNW-dex Open 11 10 -27.1 -15.5 146.4 19 10740 1.84

92-01-2 NNW-dex Open 11 20 -1.7 148.4 2.8 11345 0.49

92-01-2 NNW-dex ._f-.Open. 11 10 -6.4 142.2 9.7

92-03-1 NE-dex/norm Fracture 11 - 5 -27.6 -16.8 145.1 I 20.1 110750 4.3

92-03-1 NE-dexlnorm Fracture ... 11 5 -24.81--­

-16.2 134.7 19.6 10002 4.17

92-03-1 NE-dex/norm Fracture 11 - 5 -27.4 -15.6 133.6 19. ; 9856 4.04-92-03-1 NE-dex/norm Fracture 11 20 -26.2 -15 155.5 18.6 11530 3.91

92-03-1 NE-dex/norm Fracture 11 5 184.5

92-03-1 NE-dex/norm Fracture II 10 -0.6 296 1 23795 0.17 92-03-1 NE-dexlnorm Fracture 11 5 -29.4 -17.4 134.2 20.5 9977 4.41­92-03-2 NE-dex/norm Fracture I 5 -29.8 146.6 -92-03-2

92-03-2

NE-dex/norm

NE-dexlnorm

Fracture

Fracture

I I -. 5

1 Q. _ -21.2 -0.7 140.4

223.2

1.2 10595 0.21

1 I__ .~

92-03-2 NE-dexlnorm Fracture ,I 5 -27 -10.2 171.6 14.2 12756 2.83 92-03-2 NE-dex/norm ~c:ture I 5 228.8 -­92-03-2 NE-dex/norm Fracture I 10 154.5

Appendix 3a Fluid inclusion microthermometry data (9)

---

--

- -

--

--

---

Sample No. Fault type LN ratio Te Tm-H20 Th NaCI eq.wt% Enthaply Chloride B",,;, ~ '00" pop. 92-03-2 NE-dexlnorm Fracture I 5 -25.4 -8 153.4 11.7 11485 2.27

92-03-2 NE-dex/norm Fracture I 5 -25.4 -10.5 135.2 14.5 10101 2.9 . - ---­

92-03-2 NE-dex/norm Fractu!e f 'I 5 -25.4 119.21--' .

92-03-2 NE-dex/norm Fracture I 5 -27.9 -15.1 129.4 18.7 I 9656 3.94

92-03-3 NE-dex/norm Fracture I 10 -16.4 -0.5 201.8 0.8 15348 0.14.. 92-03-3 NE-dex/norm Fracture I 10 __ -15.7 -0.3 198.2 0.5 15348 0.09 _ .._--­92-03-3 NE-dex/norm Fracture I 10 -3.2 203.8 5.2 15367 0.94

1-----~ ­

92-03-3 NE-dexl~acture I 10 -12.8 -1.9 205.7 3.1 15709 .-0.55

92-03-3 I NE-dex/norm I Fracture I 5 141.1---'-- . - ­

92-03-3 NE-dexlnorm Fracture I 10 -23.3 -5.9 205.2 9.1 15591 1.71

92-03-3 NE-dexlnorm Fracture I 5 -23.4 -12 16

92-03-3 NE-dex/norm Fracture I 5 139.9 ..­92-03-3 NE-dex/norm Fracture I 5 149.3 -92-03-3 NE-dex/norm Fracture I 5 98.1 I 92-03-3 NE-dex/norm Fracture I 5 158.~ _. 92-03-4 NE-dex/norm ~act~~ 10 -38 , -9.6 158 13.5 11843 2.6X.­92-03-4 NE-dex/norm Fracture I 5 I -0.3 203 0.5 15548 0.09

92-03-4 NE-dex/norm Fracture I 15 -29.2 -0.1 239.5 0.2 18717 0.03.... -­92-03-4 NE-dex/norm Fracture I 5 -42.1 -1.1 152.4 1.8 11545 0.31

92-03-4 NE-dex/norm Fracture I 5 -39.8 -10.7 154.3 14.7 11613 2.95

92-03-4 NE·dexlnorm Fracture I 5 -32.5 -8.7 150.4 12.5 11262 2.44

92-03-4 NE-dex/norm Fracture I 5 -0.9 169.3 1.5 12543 0.26

92-03-4 NE-dex/norm Fracture I 20 -0.1 310.1 0.2 -"

92-03-4 NE-dexlnorm Fracture I 5 162.8-- .:-- .-_..~.- - 1---­

92-03-5 NE-dex/norm Fracture 10 -327 -16.4 133.9 19.7 9856 1 4.2

92-03-5 NE-dex/norm Fracture 10 -12.2 133.5 16.2 9895 3.31

92-03-5 NE-dex/norm Fracture 20 -35.4 -7.5 108.1 11 .1 8076 2.14

92-03-5 NE-dex/norm Fracture 5 -37.9 -14.5 126.3 18.2 9282 3.81

92-03-5 NE-dex/norm Fracture 10 -35.8 -11.2 145.9 15.2 10854 3.07

92-03-5 NE-d ex/norm Fracture 20 215.3

92-03-5 NE-dex/norm Fracture 20 -42.2 -15.6 163.8 19.1 12106 4.04-92-03-5 NE-dex/norm Fracture 5 -39.2 -9.8 217.6 13.7 16062 2.72 92-03-5 NE-dex/norm Fracture 30 ·38.8 -8.9 142.9 12.7 10278 2.49 92-03-5 NE-dex/norm Fracture 10 129.8

92-03-6 NE-dexlnorm Fracture 5 -44.2 -15 153 18.6 11354 3.91

92-03-6 NE-dex/norm Fracture 20 -39.3 -18.4 180.1 21.2 13386 4.6 92-03-6 NE-dex/norm Fracture 5 93 - -92-03-6 NE-dexlnorm Fracture 5 -42.1 -9.6 155.1 13.5 ~

92-03-6 NE-dex/norm Fracture 5 136.4 ==1 .--­92-03-6 NE·dex/norm Fracture 20 267.8----I-- ------. 92-03-6 NE-dex/norm Fracture 10 -36.5 -8.3 156.2 12.1 11643 2.36

92-03-6 NE-dex/norm Fracture 5 177.7

92-03-6 NE-dex/norm \ Fracture 5 263 -92-03-6 NE-dex/norm Fracture 5 -52.6 -18.4 124.2 21.2 9233 4.6 92-03-6 NE-dexlnorm Fracture 5 -48.8 -17.2 144.3 20.4 10750 4.39_-92-03-6 NE-dex/norm Fracture 10 173.4- ~ -92-03-6 NE-dex/norm Fracture 11 20 . 104.4�

92-03-7 NE-dex/norm Fracture 11 30 -46.2 -14.3 202.2 18 15154 3.~------- -- .. 92-03-7 ~E-de~~ Fracture 11 30 -43.6 404.6 --~-- ­92-03-7 NE-dex/norm Fracture 11 5 194.6 92-03-7 NE-dex/norm Fracture 11 30 -0.1 294.2 0.2 23795 0.03.­92-03-7 NE-dex/norm Fracture 11 20 -11.2 414.2 15.2 92-03-7 NE-dex/norm Fracture 11 30 92-03-7 NE-dex/norm Fracture 11 5 120.4 .. 92-03-8 : NE-dexlnorm Fracture 11 5 -27.6 -12.8 16.7

.~_

O'

92-03-8 NE-dex/norm Fracture 11 i+ -22 -11.7 i 15.7 92-03-8 NE-dex~racture 11 I -0.1 206.5 0.2 15758 0.03

Appendix 3a Fluid inclusion microthermometry data (10)

---- ---

- -

--

------

Sample No Fault type Breccia type Incl. pop. UV ratio Te Tm-H20 Th NaCleq.wt% Enthapl ChloridE

92-03-8 NE-dex/norm Fracture---_ .. 11 30 -22.3 -10.8 129.7 14.8 9725 2.97

92-03-8 NE-dex/norm Fracture • 11 '­20 -23.1 -14.5 135.1 18.2 10030 3.81

92-03-8

92-03-8

92-03-8

NE-dexlnorm

NE-dex/norm

NE-dex/nom1

Fracture

Fracture---'­Fracture

11

11

11

10

5 30 -­ -

-34.7

-9

-21.1

-16.8

-3

-12.6

117.5

100.7

134.8

20.1 8711 4.3----­ "~-' .---­4.9 I 7~ 0.88 16.5 i 10070 3.38

92-03-8 NE-dex/norm Fracture U 30 -20.2 -11.7 140.2 15.7 10477 3.19

92-03-8 NE-dex/norm Fracture 1'1 10 -34.7 -11.61--_._­ 133.4 15.6 992±- _3.16_

92-03-8 NE·dex/norm Fracture 1I 10 -22.9 197.8 -­92-03-8 NE-dex/norm Fracture 1'1 10 227.2 -- -~

92-03-8 NE-dexlnorm Fracture 11 10 -21.1 -10 167.7 14 12574 2.79

92-03-8 NE-dex/norm Fracture 11 5 -20.7 -12.3 132.7 16.2 9924 3.31

92-03-8 NE-dex/norm Fracture 11 10 -17.2 250.5 - -­92-03-8 NE-dex/norm Fracture 11 20 -18.5 -11.9 134.8 15.9 10101 3.24

92-03-8 NE-dexJnorm Fracture 1I 5 -20 -15 136.6 18.6 10030 3.91 .. 92-03-8 NE-dex/norm Fracture 30 -23.3 -15.6 126.8 19.1 9282 4.04

92-03-8 NE-dex/norm Fracture 20 -21 -12.1 ---­ 124.5-­ 16.1 9348 3.28

92-03-8 NE-dex/norm Fracture 30 , -29.1 -16.4 19.7�

92-03-8 NE-dex/norm Fracture 10 -20 -16.6 135.5 19.9 10030 4.25�

92-03-9 NE-dex/norm Fracture 5 -27.7 -8.1 167.8 11.8 12621 2.29� I----­,92-03-9 NE-dex/norm Fracture 10 -10 159.1 14 12025 2.79 I 92-03-9 NE·dex/norm Fracture 5 -32.8 171.6

92-03-9 NE-dex/norm I Fracture 10 -30.2 203.7 .. -92-03-9 NE-dex/norm Fracture 10 -31.5 -8 160.4 11.7 12052 2.27

92-03-9 NE-dex/norm Fracture 20 -31.6 -7.9 148.6 11.6 _ 11104...- 2.25

92-03-9 NE-dex/norm Fracture 5 -21.8 ·8 1,64.3 11.7 12437 2.27

92-03-9 NE-dex/norm Fracture 5 -38.2 -12.9 154.8 16.8 11612 3.46

92-03-9 NE-dex/norm Fracture ill 5 -26.7

92-03-9 NE-dexlnorm Fracture 11 5 -35.3 -9.7 133 13.6 9947 2.69

92-03-9 NE-dexJnorm Fracture 11 5 -27.1 -6.5 173.3 9.8 13023 1.86 -

92-03-9 NE-dex/norm Fracture 11 5 173.9

92-03-9 NE-dex/norm Fracture 10 -9.5 I 13.4

92-03-9 NE-dex/norm Fracture 10 183.3

92-03-9 NE-dex/norm Fracture 5 -25.6 -8.5 167.3 12.3 12608 2.4

92-03-9 NE-dex/norm Fracture 40 194.2

92-03-9 NE-dex/norm Fracture 20 -31 -10.9 193.2 14.9 14497 3

92-03-9 .. NE-dex/norm Fracture 20 -27.5 -7.1 132.5 10.6 9964 2.03---. -­92-03-9 NE-dex/norm Fracture 5 -22.8 -8.8 139.4 12.6 10503 2.47

92-03-9 NE·dex/norm Fracture 5 -25.2 173,4--- .. .­92-03-9 NE·dex/norm Fracture 5 -25.7 -8.5 175.1 12.3 13178 2.4

92-09-1 NNW-dex Open 10 -21.9 -0.5 343 0.8

92-09-1 NNW-dex Open 5 -23.2 -0.5 396.3 0.8

92-09-1 NNW-dex Open 5 -6.3 , 9.6

92-09-1 NNW-dex Open I 5 .- -0.3 249.4 0.5 19595 0.09--_.­92-09-1 NNW-dex Open I 5 -0.6 160.1 1 12150 Q:1L- --I- --­92-09-1 NNW-dex Open I 10 -0.5 0.8I - --- ­92-09-1 NNW-dex I 5 -0.5 337.3 0.8_.9.P_~_~ .__~_o:

.~--

92-09-2. NNW-dex _ Open L.__ -1.1 117.8 1.8 8861 0.31-~-

92-09-2 NNW-dex -.2Pen __ 1 5 ~

-1.2 167.7 2 12714 0.35

92-09-2 NNW-dex Open I 5 -28.1 -0.1 123.6 0.2 9258 0.03

92-09-2 NNW-dex Open 1 5 -0.1 387.5 0.2 92-09-2 NNW-dex Open I 10 -28.8 -0.6 184.4 1 14133 0.17

92-09-2 NNW-dex Open I 5 -26.8 -0.1 155.2 0.2 11759 0.03 92-09-2 NNW-dex Open 1 ~ -24.2 -0.2 255.8 0.3 20040 0.05

92-09-2 NNW-dex Open I 10 302.1 - I- -­92-09-3 NNW-dex Open 1 5 -21.3 -1.1 140.7 1.8 10189 0.31

92-09-3 NNW-dex ! 5 1 225 .9ope~=F_I- ._._-- 1-----­1--5--­92-09-3 NNW-dex Open I -24.3 -3.2 1179.9 5.2 13670 0.94

Appendix 3a Fluid inclusion microthermometry data (11)

Sample No. Fault _Ivpe Breccia type Ilncl. pop, IUV ratio Te Tm-H20 Th NaCI eQ.wt% Enthaplv Chloride

92-09-3 NNW-dex <2Pen.. I 5 -30.9 148.2 _ j----I

92-09-3 NNW-dex Open L 11 10 364.4 _ 92~-1-~~ Open' 11 "'r-s -33.3 -13.1 160.7 17 11954- -3.5

92-09-4 NNW-dex op~;- I !i---L 20 -29.6 -16.4 145.1 19.7 10750 4.2

92-09-4 NNW-dex Open 11 5 -31.2 -16.9 142.1 _ 20.1 10576 4.3

92-09-4 NNW-dex Open JI 5° 176.9 __

92-09-4 NNW-dex Operl._ _~__ 1.-:.0'---__-...=3...:.1.:....4'-+-__-+__--1- _

92-09-4 NNW-dex Open 10 -36.1 -15.7 272.4 19.2 20718 4.07

92-09-4 NNW·dex Open 20 -35.8 -12.5 113.5 16.4 8398 3.36

92-09-4 NNW-dex:J Open 10 -30.8 -13 147.6 16.9 11022 3.48_

92-09-4 NNW-dex Open ~ 10 -4.7 1_8~.2 f- . 7.4 _

92-09-4 NNW-dex Open + __~ -31.6 -13.1 167.21 17 12534 3.5

92-09-4 NNW-dex Open 10 -32.8 -13 125.81 16.9 9320 3.~

92-09-4 NNW-dex Open 11 5 -35.7 -14.2 143.9 18 10604 3.76

92-09-4 NNW-dex Open 10 -33.4 -1.7 180.3 2.8 13300 0.49

92-09-4 NNW-dex Open 20 145.1 _-----,J!--__I

92-09-4 NNW-dex Open _ 2 0 121.4

92-09-4 NNW-dex Open 5 136.8 I _

92-09-4 NNW-dex Open 10 , 149.9

92-09-4 NNW-dex Open __ 10 190.1 __

92-09-5 NNW-dex ...=0L.p.:.:.en-'..- ._~ 2__0 _-5_2~ _,..!.1_5_.2_ _ ...,_ _ __

92-09-5 NNW-dex Open ~ 30 -27.2 -10.6 119.6 14.6 8973 2.93

1..:9_2_-0.:...9.:...-...:.5_-+----..:N...:.:N_W_-d::.:e'-'-x O_p_e_n' 5 ~I -.~1.2 128.9 15.2 9648 3~

92-09-5 NNW-dex Open _ 5 -c-- 1'40.2 92-09-5 NNW-dex Open ! 10 -36.1 --8-.-8-+-1-10-.-1-+--1-2-.-6- 8241 2.47

92-09-5 NNW-dex Open 5 -41.5 -10.1 113.3 14.1 8049 2.81

92-09-5 NNW-dex Open 5 -45.2 -14.2116.2 18 8198 3.76

92-09-6 NNW-dex Open 5 -31.3 -2.4 117.7 3.9 8490 0.69

92-09-6 NNW-dex Open 5 -3.6 353.1 5.8

92-09-6 NNW-dex Open 5 -46.2 -3.4 234.5 5.5 18158 1

92-09-6 NNW-dex Open__ 5 -37.7 -2.2 197.5 3.6 15097 0.64

92-09-6 NNW-dex Open 10 -2.7 4.4

92-09-6 NNW-dex qpen 5 -42.7 -2.8 185 4.5 14066 0.81

92-09-6 NNW-dex Open _ 10 -44.6 -3.1 253.2 5 19643 0.9

92-09-6 NNW-dex Open 5 -40.1 101.5 I _ 92-09-6 NNW-dex Open 10 112.1 _

92-09-6 NNW-dex Open 5 134.7 _

92-09-6 NNW-dex Open 5 -54.3 -13.4 114.1 17.3 8198 3.58

92-09-6 ,_NNW-dex Open 5 -51.5 -18.7 132.2 21.5 9433 4.69

92-09-6 I NNW-dex Open 5 96.2

92-09-6 NNW-dex Open 5 123.2 _

92-09-6 NNW-dex Open _ 5 f- 108.2 ~ __

92-09-6 NNW-dex" _ Open__t--.__ • .-!..Q.. __ ~ * .__92-09-6 NNW-dex __Q~~_ I 5.... 307.5 __ _ __

92-09-6 NNW-dex._ Open I 1, 0 206.3 . __

92-09-6 I NNW-dex Open I 10 269.6

Appendix 3a Fluid inclusion microthermometry data (12)

Sample No. Na(wt.% Mg (wt.% AI (wt.%l Si (wt.%l P(wt.%l Slwt.%l Cl (wt.%l K(wt.%) Ca (wt.% Ti(wt.%) Cr (wt.% Mn Iwt.% Fe (wt.%) Ni (wt.%\

B10-C2-1 4.78 0.28 0.74 29.80 0.66 0.89 3.13 1.32 5.68 0.08 0.06 0.03 0.79 0.04 B10-C2-2 7.75 0.33 6.98 14.92 0.22 0.74 8.64 5.98 0.67 0.15 0.00 0.00 0.46 0.00 B10-C2-3 2.64 0.24 1.53 34.56 0.26 2.38 0.54 3.86 1.83 0.06 0.00 0.07 0.33 0.10 B10-C2-4 1.92 1.86 7.85 5.17 0.30 0.20 0.51 1.24 29.94 0.51 0.07 0.13 13.56 0.04 B10-C2-5 9.57 0.17 0.46 25.55 0.14 0.88 10.58 2.93 0.84-­ 0.37 0.00 0.04 0.65 0.18 B10-C2-6 17.84 0.03 0.08 25.74 0.07 0.11 24.71 0.52 0.20 0.12 0.00 0.00 0.10 0.00 B10-C2-7 9.72 0.18 0.25 22.69 0.20 0.69 12.28 0.77 0.72 0.00 0.06 0.08 3.14 0.04 B15-C3-1 4.61 0.34 0.13 5.65 1.36 1.00 6.43 5.34 1.83 0.02 0.00 0.01 0.13 0.03 B15-C3-2 1.28 1.05 3.11 25.82 0.61 0.39 1.41 2.50 4.03 0.59 0.12 0.55 5.42 0.00 B15-C3-3 2.39 0.04 0.14

..­ .­19.32 0.38 0.40 3.43 - 1.44 0.28 0.00 0.00 0.00 0.12 0.52

-B15-C3-4 1.70 0.03 1.25 28.60 0.11 0.26 1.88 0.90 0.28 0.03 0.00 0.00 0.11 0.27

B15-C3-5 1.07 0.03 0.12 43.41 0.16 0.08 1.64 1.05 0.31 0.02 0.03 0.00 0.08 0.01 B15-C3-6 1.63 1.18 3.07 21.39 0.79 0.60 1.80 2.89 6.21 0.B5 0.01 0.00 4.47 0.04 B15-C3-7 6.70 0.12 0.06 31.42 0.26 0.30 10.37 4.31 0.64 0.00 0.06 0.05 0.04 0.17 B15-C3-8 2.71 0.07 0.05 41.94 0.06 0.21 4.52 1.56 0.16 0.01 0.00 0.00 I 0.10 0.20 B15-C3-9 2.99 1.01 2.43 33.05 0.27 0.13 0.83 3.27 2.19 0.18 0.04 0.00 0.23 0.00

B13-C1-1 3.62 - 0.01 0.02 37.84 0.12 0.04 9.84 5.18 0.04 0.00 0.01 0.07 0.Q1 0.Q7

B13-C1-2 5.86 0.13 0.11 39.66 0.00 0.07 7.97 1.47 0.15 0.01 0.00 0.00 0.06 0.07 B13-C1-3 1.86 0.07 0.16 35.10 0.93 0.44 4.92 4.64 1.06 0.07 0.00 0.02 0.20 0.03 B13-C1-4 5.20 0.11 5.62 23.82 1.05 0.38 8.38 9.39 1.78 0.07 0.04 0.00 0.45 0.04 B13-C1-5 4.28

-'­0.19 0.12 36.05 1.13 0.43 7.05 3.75 1.17 0.02 0.09 0.01 0.18 0.06

B13-C1-6f-----=--'-'- -._" .

1.18 0.03 0.04 I 42.17 0.53 0.12 3.54 3.30 0.25 0.13._ 0.00 0.04 0.04 0.00 B13-C1-7 3.30 0.12 0.4'1 35.15 1.42 0.32 7.00 5.90 0.63 0.00 0.04 0.00 0.62 0.04 .. B13-C1-8 2.80 0.14 0.59 33.94 0.86 0.29 7.93 6.80_ .. 0.65 0.14 0.15 0.05 0.66 0.22 B1O-CH 3.97 0.20 0.14 24.12 1.08 0.44 5.07 4.37 12.35 0.00 0.12 0.09 0.15 0.35 B10-C1-2 0.88 0.30 0.75 40.67 0.29 0.05 1.78 1.78 1.55 0.16 0.00 0.02 0.75 0.18 B10-C1-3 2.38 0.27 8.42 27.45 0.26 0.04 I 0.52 8.13 0.42 0.08 0.07 0.05 2.12 0.00 B10-C1-4 2.34 0.25 0.59 11.29 1.30 0.42 2.85 3.83 1.19 0.15 0.00 0.00 0.77 0.00 B10-C1-5 1.40 0.41 0.23 10.24 0.23 0.72 1.44 2.86 2.73 -~ 0.00 0.04 0.29 0.56 B10-C1-6 1.01 0.07 0.17 39.72 0.32 0.14 1.39 0.81 4.65 0.06 0.00 0.04 0.12 0.14 B10-C1-7 1.08 0.00 0.03 42.38 0.06 0.06 2.46 0.95 1.61 0.00 0.03 0.21 0.73 0.00 B10-C1-8 2.80 0.07 0.10 32.47 0.37 0.41 3.80 2.02 0.31 0.01 0.00 0.00 0.00 0.00 B16-C1-1 7.91 0.08 0.09 30.48 0.10 0.22 12.04 3.05 0.26 0.00 0.00 0.00 0.02 0.13 B16-C1-2 12.95 0.06 0.17 22.78 0.07 0.40 19.48 4.53 0.29 0.00 0.00 0.00 0.03 0.00 B16-C1-3 9.97 0.05 0.09 30.09 0.06 0.10 17.10 2.89 0.18 0.00 0.00 0.00 0.06 0.15 B16-C1-4 15.95 0.01 0.19 20.25 0.05 0.01 30.30 7.10 0.13 0.05 0.18 0.00 0.12 0.03 B16-C1-5 12.21 0.13 0.57 . 9.85 0.29 0.57 20.16 6.90 1.01 0.06 0.00 0.00 0.35 0.09 B16-C1-6 3.57 0.19 0.31 22.97 0.30 0.29 5.32 3.58 0.69 0.09 0.07 0.08 0.45 0.00 B16-C1-7 7.70 0.11 0.60 16.89 0.11 0.41 9.18 2.89 1.02 0.05 0.00 0.03 0.17 0.03 B16-C1-8 8.77 0.02 0.06 30.80 0.12 0.20 17.04 4.15 0.06 0.03 0.04 0.01 0.04 0.03

Appendix 3b Fluid inclusion decrepitate microprobe analyses

Appendix 4

Appendix 4a Structural geology of the study region�

Appendix 4b Structural geology of the Batten Range�

Appendix 4e Structural geology of the Scrutton Range�

Appendix 4d Structural geology of the Tawallah Range - Region 1�

Appendix 4e Structural geology of the Tawallah Range - Region 2�

Appendix 4f Structural geology of the Tawallah Range - Region 3�

135°30' 135°40'

16°00'

16°10'

~ 16°20'

LEGEND:

.Cl. ;:> . ,Undivided MeArthur Group

.. ~

t:l. Tatoofa SandtOlleet

;:> :t:� >- Undividad.McArthur. Group� .~

::E" Maslertonsandstone

•• Nyan·antu Formation Cl..

;:> 'anumbitini Rhyolite

Warramana Sandstoneo 0: Gold Ct'eek:Yolcanlcs (')

Wollogoranl! FormaliOl1 ::t S<>ttlement CrllQk Volcaolcs .. « ..J� ..J.�

Aquarium Formation« ·'sII"Cre:ek Sllndstooe

« ~

DScrutto.n Volcanics

~ Reverse Fault

-=- Strike-Slip Faun

.-:¥. Qblique-Sllp Fault

16°10'

16°20'

I i

~ ~--­ , JI-"t,I

I I

/I

I ...._..1

GN

NMN

GRID CONVERGENCE

0,20 , r,.... GRIDIMAGNlrrrC

. ANGl.E-5.0

\ :>!rlkelOip Q)rection·(So) 0 1 2 3 4 5 kin , , , ,

Appendix 4a SlrucluraLgeolo,9Y of the study region, I I 16030'1' . . .. I\i?'il {V I

-'-J 16°30'1

135"30' 135°40' 135°50'

30 \ ......... \

\ \ \ I \ I \ I \ 1 \ I

1 1 j

I I 1 t I

\ I \ t

a I I I I I I I I

/ 24\ -- =- ......~ ~I, -_ ... ­

",,10 ---­/ ( ~~\ ~~22~(lr)}&·~~1',,,; t.;'J; ~ 2~ " :mrm'W',.;::,,;n:f' \.~. \ _~ " '~9 '.I Pm

Geological boundary ~ Alluvium

I1 0� UJ :g,

~~I 0 o a: UJo.

1-:>10'�o ~ • a:(!J 0.. o :li II~f~l.rti~I!:i:l'~1

o�

Strike-slip fault

Mallapunyah Formation ~ Reverse fault

-.---rr Normal fault Masterton Sandstone

~ Oblique-slip fault

Palaeosol horizon 19\ Strike and dip of strata

GN

Wununmantyala Sandstone IrtMN

GRID CONVERGENCE

I f I GRIDlMAGNETlCAquarium Formation 0,2"

ANGLE 5.0"

Rosie Creek Sandstone

o 0,5 1,Okm Sly Creek Sandstone I l

APPENDIX 4b Structural geology of the Batten Range, Pm

ol'iO Undtvlde9McAithu(G'oup

i 0 MaUapunyah Forma:lton O' N ~ D M$SlertQl1 S:andstOl1e

o F· ~'I NyananlU FOJTrl82Jon

a; D Tanumb~ini Rhyont.,

~ : fW~;4 w~a S~4sJone

0,; ,D Gold C"';k VolcenJcS « '� ~ ~ f~ W~6(ailg FO<inatloll; C;lIt>oilatelSands1o""'IOhofacles�

o : Seltlement Creek Volcaf.licsD . - D WununMlintYi!JaSandstone

31 D Aqu,,"um Fonnalion(+ Ca\rmotcAliwiumf

ImhHiH Roste Creek sandstone

D Sly.creek Sandstone

GeologioaJ,boundary """'T""T'T Normal1auh

-"!=.. Strike·slip lauh ~ Gb.que-.~ faun Reverse tauh 19\' Strikeld~ at strata

o (),2 o;-.t 0:8 0.$ 1.0l<ni ~CftOo~1O

. .>I1CIU!u"~ ,~ l!!!!!!!!l ~r"'"APPEIfOIX 4.cSl,uc,tural geolOgy, 0.1 thi! S<;rutton Range,

\ \

"� \ \

-.-""

22

~

'" "­ ....

10 i

51

GN TN MN

GRID 8 1COmE RGENCE 0.2" GRID/MAGNETIC

ANGl£ sO­

o� 0.2 0.4 0.6 0.8 1.0 km ,'lI

I~ Alluvium

,~ i D Undivided McArthur Group O~

.'~ i D Mallapunyah Formation

er~

LW E D Masterton Sandstone 1-:::>

.~ ~ D .. Wununmantyala Sandstone 0.

0" ~ DCl> ~ Aquarium Formation

~;~

~ ~ ~ Yiyintyi Sandstone�

<)

~~ D Scrutton Volcanics; Volcanics IIII

~i D Scrutton Volcanics; Sandstone

Geological boundary --.-rT" Normal fault

Strike-slip fault ~

Oblique-slip fault

~ Reverse fault 19\ Strike/dip of strata

APPENDIX 4d Structural Geology of the Tawallah Range - Region 1.

\ \

\ \

\

-- .... _-- ....

c-­

~~ tr-e0 Alluvium~N L..:::..j

00 IfI(l' .~2 ,~CretaqeolJS Sa,ndmone

'()l~rr Undivided McArthur Group,,~,~

,~~ ~ :O'wununmantyala S~npstone

0, .,

:; ~. :0 Aquarium Form;:ltion ~

o -~_

cc ,.r:;.' ~ f10sie Cre.ek Sand~tone .&..­

0. ",: ~

. 0, - .O· Sly Greek Sandstone 19\ "" ­<ll

~ ~ l£i~;::'~"1' seiga! Vblcanics ~ ro "::.~'~;'~'. o 0.2 0. P.L~~~f}H Yiyintyi Sandstone

~

"",, \

\ \ \

\ \ ,\ / , 'I \

\ , ""- ,

Geologicii.1 bOj.lndary \

"­,, Strjk~-sljp fault \

" , ,Reverse fault \

\ \

Oblique-slip fault \

Strike and dip of strata

0,4 0.9 OJl 1.0 I9'n \ ,

J' L I "\ , "­

''-,APPENDIX 4e Structural geology of the TawaJlah f=lange - Region 2. "

GN:

TN MN

GRID C9NV€RdENCE

02° GRID/MAGNETIC ANGLE5,OQ

119 / /37 / /

;(, 1 67 "

/28

-......:: '

- - _ 21 " ff / ___

-r­

.--,-- I ,// 33 J 125 o::r ,. . Undivided McArthurGroup 43 I _ / ~ 0 D

I _ - - /, , _ -t / / oS

I I N ::J Mallapunyah Formation J :.C D0 ~.I- -r­ I

(.)

22 -,--

I - - , ,3~ 0::

~ LU Ma~terton Sandstone19 ~ I ~ D

0 -,-- ~ - 0:: 0. WUriunrriantyala Sandstone 19 1i ::J' Iconglom:'1

0.. 0 0 <!5

:.C(1)

Aquarium Formation co 12 D- (U -r­ co 3: 21 o..~~~ DS'Y Creek Sandstone

19

o 0.2 0.4 0,6 0.8 1.0 km ,Geofogical boundary Normal fault 1 11

--.-­ Strike-slip fault Oblique-Slip fault 18 - • - •

APPENDIX 4f Structural geology of Tawallah Range - Region 3. ~ Reverse fawlt Strike and dip of strata19\