geometrical calibration of bi-planar radiography of the ... · geometrical calibration of bi-planar...

45
INEB - Instituto de Engenharia Biomédica Geometrical calibration of bi-planar radiography of the spine for common imaging systems Daniel Moura, Jorge Barbosa, Jo˜ ao Tavares, Ana Reis INEB – Instituto de Engenharia Biom´ edica, Laborat´ orio de Sinal e Imagem FEUP – Faculdade de Engenharia da Universidade do Porto SMIC – Servi¸ co M´ edico de Imagem Computorizada, S. A [email protected]

Upload: ngodan

Post on 28-Jan-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

INE

B -

In

sti

tuto

de

En

ge

nh

ari

a

Bio

dic

aGeometrical calibration of bi-planar

radiography of the spinefor common imaging systems

Daniel Moura, Jorge Barbosa, Joao Tavares, Ana Reis

INEB – Instituto de Engenharia Biomedica, Laboratorio de Sinal e ImagemFEUP – Faculdade de Engenharia da Universidade do PortoSMIC – Servico Medico de Imagem Computorizada, S. A

[email protected]

Introduction

Computer Tomography (CT) is the gold standardfor 3D reconstructions and accurate measurementsof bone structures.

However, not adequate for large bone structures(high radiation)

Alternative: using Plain Radiography (2D)Requires 2+ radiographs from different views.Accomplished for: spine, pelvis, distal and proximalfemur.

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 2 / 22

Introduction: Geometrical calibration

For mapping 2D → 3D coordinates the imagingsystem must be calibrated on every examination.

Calibration of the spine is usually performed usinglarge calibration apparatus.Attempts have been made for using smallercalibration objects, but:

reconstruction errors are highercalibration objects overlap bone structures

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 3 / 22

Introduction: Goal

GoalAchieving accurate calibrations, while

making the method easy to implement in commonclinics

minimising the impact of calibration objects

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 4 / 22

Radiography calibration

Projection of a 3D point into a radiograph:w ·uw ·vw

= M ·

XYZ1

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 5 / 22

Radiography calibration

Projection of a 3D point: bi-planar radiographywi ·ui

wi ·vi

wi

= Mi ·

XYZ1

for i = 1, 2

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 6 / 22

Radiography calibration

Calibration Matrix (for flat detectors)

Mi =

fi/s 0 upi0

0 fi/s vpi0

0 0 1 0

· [Ri ti0T 1

]

f - focal length

(up, vp) - principal point

R, t - geometricaltransformation

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 7 / 22

Radiography calibration

Calibration Matrix (for flat detectors)

Mi =

fi/s 0 upi0

0 fi/s vpi0

0 0 1 0

· [Ri ti0T 1

]

f - focal length

(up, vp) - principal point

R, t - geometricaltransformation

f

X-ray device

X-ray source

Table

Detector( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 7 / 22

Radiography calibration

Calibration Matrix (for flat detectors)

Mi =

fi/s 0 upi0

0 fi/s vpi0

0 0 1 0

· [Ri ti0T 1

]

f - focal length

(up, vp) - principal point

R, t - geometricaltransformation

f

X-ray device

X-ray source

Table

Detector             

(up,vp)

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 7 / 22

Radiography calibration

Calibration Matrix (for flat detectors)

Mi =

fi/s 0 upi0

0 fi/s vpi0

0 0 1 0

· [Ri ti0T 1

]

f - focal length

(up, vp) - principal point

R, t - geometricaltransformation

t

X-ray device

X-ray source

Table

Detector

R

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 7 / 22

Radiography calibration

Calibration Matrix (for flat detectors)

Mi =

fi/s 0 upi0

0 fi/s vpi0

0 0 1 0

· [Ri ti0T 1

]

f - focal length

(up, vp) - principal point

R, t - geometricaltransformation

Calibration GoalFinding the values forthese parameters forboth views.

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 7 / 22

Determining the parameters values

1 Inputs:Initial solution for the parametersA set of point matches

2 Optimisation process (NLSQ):1 Triangulate point matches → 3D points2 Project 3D points → projected 2D points3 Minimise residuals between the original and the projected

points

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 8 / 22

Determining the parameters values

1 Inputs:Initial solution for the parametersA set of point matches

2 Optimisation process (NLSQ):1 Triangulate point matches → 3D points2 Project 3D points → projected 2D points3 Minimise residuals between the original and the projected

points

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 8 / 22

Determining the parameters values

1 Inputs:Initial solution for the parametersA set of point matches

2 Optimisation process (NLSQ):1 Triangulate point matches → 3D points2 Project 3D points → projected 2D points3 Minimise residuals between the original and the projected

points

�(�TSMRX�SRMQEKI��

�(�TSMRX�SRMQEKI��

�(�TSMRX

4VSNIGXIH�(�TSMRX

4VSNIGXIH�(�TSMRX

QMRMQMWI�HMÙIVIRGI

QMRMQMWI�HMÙIVIRGI( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 8 / 22

Determining the parameters values

1 Inputs:Initial solution for the parametersA set of point matches

2 Optimisation process (NLSQ):1 Triangulate point matches → 3D points2 Project 3D points → projected 2D points3 Minimise residuals between the original and the projected

points

ProblemOptimisation gets easily trapped in local minima.

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 8 / 22

Determining the parameters values

1 Inputs:Initial solution for the parametersA set of point matches

2 Optimisation process (NLSQ):1 Triangulate point matches → 3D points2 Project 3D points → projected 2D points3 Minimise residuals between the original and the projected

points

SolutionGood inputs :-)

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 8 / 22

Initial solution for spine radiographs

R1 =

[0◦ 0◦ 0◦

]t1 =

[0 0 ?

](up1 , vp1) = size(img1)/2f1 =?

R2 =[0◦ 90◦ 0◦

]t2 =

[0 0 ?

](up2 , vp2) = size(img2)/2f2 =?

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 9 / 22

Determining missing parameters

For narrowing the search space of solutions wepropose using a distance measuring device.

X-Ray imaging system

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 10 / 22

Determining missing parameters

For narrowing the search space of solutions wepropose using a distance measuring device.

X-ray device

X-ray source

Table

Detector

X-Ray imaging systemrepresentation

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 10 / 22

Determining missing parameters

For narrowing the search space of solutions wepropose using a distance measuring device.

f

X-ray device

X-ray source

Table

Detector

f – Focal distance

Distance between thex-ray source and thedetector

Can’t be measureddirectly

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 10 / 22

Determining missing parameters

For narrowing the search space of solutions wepropose using a distance measuring device.

t z

X-ray device

X-ray source

Table

Detector

tz – Z translation

Distance between thex-ray source and theobject

Can’t be measureddirectly

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 10 / 22

Determining missing parameters

For narrowing the search space of solutions wepropose using a distance measuring device.

fd m

X-ray device

X-ray source

Table

Detector

Distance measurer A distance measurer mayonly read dm

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 10 / 22

Determining missing parameters

For narrowing the search space of solutions wepropose using a distance measuring device.

f

d sd d

d m

X-ray device

X-ray source

Table

Detector

Distance measurer We implemented aprocedure for determining ds

and dd , which are constantfor a given system.

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 10 / 22

Determining missing parameters

For narrowing the search space of solutions wepropose using a distance measuring device.

f

d sd d

d m

X-ray device

X-ray source

Table

Detector

Distance measurer Knowing ds and dd enablesto determine f accuratelywith a distance measurer...

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 10 / 22

Determining missing parameters

For narrowing the search space of solutions wepropose using a distance measuring device.

t z

d sd m

X-ray device

X-ray source

Table

Detector

Distance measurer ... and to have an initialguess of tz .

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 10 / 22

Correcting scale

Even with this extension, this method is only able tocalculate up to scale solutions.

A reference distance (visible in both x-rays) isneeded to determine the scaling factor.

We propose using a simple calibration object (C.O.),which may be a bar of 8-12cm attached to patientsbacks.

scaling factor =known reference distance

reconstructed distance

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 11 / 22

Experiments

Currently, the main experiments are:Validation with a phantom object:

Validation in real environmentAccurate results in the presence of noiseTo appear in: CARS’08 (poster)

Simulation study with humanspines:

Validation in simulated environmentData extracted from CT scansUndergoing experiments show promisingresults

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 12 / 22

Experiments: Simulation using CT scan

Resolution:0.4× 0.4× 0.5mm3/voxel

Volume:205× 205× 517mm3

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 13 / 22

Experiments: Simulation using CT scan

DRR - AP projection DRR - Lateral projection

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 14 / 22

Experiments: Simulation using CT scan

3D landmarks: 6 per vertebra

DRR - AP projection DRR - Lateral projection

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 14 / 22

Simulation Process

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 15 / 22

Evaluation

3D reconstruction error (after aligning)

Spinal Length (SL)

Vertebral Body Height (VBH)

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 16 / 22

Evaluation

3D reconstruction error (after aligning)

Spinal Length (SL)

Vertebral Body Height (VBH)

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 16 / 22

Evaluation

3D reconstruction error (after aligning)

Spinal Length (SL)

Vertebral Body Height (VBH)

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 16 / 22

First Experiment

Does the position of the C.O. affects results?If so, can we tell where to place the C.O. for bestresults?

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 17 / 22

First Experiment: Conclusions

Effects of the C.O. positionMean 3D errors: negligibleMean VBH: negligibleSL: highly dependable

Experimentally, we determined that the best C.O.position (left vs. right) depends of two factors:

1 Patient rotation2 C.O. position: anterior vs. posterior

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 18 / 22

Second Experiment

Experiment goal: simulating a real scenarioConditions:

Noise: Gaussian, typical range of values1

C.O.: placed only in good positions

Results (mm):

VBH SL

In Vivo1

3D

In Vitro2

RMS 0.9 1.4 1.8Mean 0.9 0.9

2.1

1.8

2.1

StD 0.2 1.2

1.0

0.4

1.5

1Kadoury et al. (2007). Med. Bio. Eng. Comp., 45(6):591–602.2Aubin et al. (1997). Med. Bio. Eng. Comp., 35(6):611–618.

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 19 / 22

Second Experiment

Experiment goal: simulating a real scenarioConditions:

Noise: Gaussian, typical range of values1

C.O.: placed only in good positions

Results (mm):

VBH SL

In Vivo1

3D

In Vitro2

RMS 0.9 1.4 1.8Mean 0.9 0.9

2.1

1.8

2.1

StD 0.2 1.2

1.0

0.4

1.5

1Kadoury et al. (2007). Med. Bio. Eng. Comp., 45(6):591–602.2Aubin et al. (1997). Med. Bio. Eng. Comp., 35(6):611–618.

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 19 / 22

Second Experiment

Experiment goal: simulating a real scenarioConditions:

Noise: Gaussian, typical range of values1

C.O.: placed only in good positions

Results (mm):

VBH SL In Vivo1 3D

In Vitro2

RMS 0.9 1.4 1.8Mean 0.9 0.9 2.1 1.8

2.1

StD 0.2 1.2 1.0 0.4

1.5

1Kadoury et al. (2007). Med. Bio. Eng. Comp., 45(6):591–602.

2Aubin et al. (1997). Med. Bio. Eng. Comp., 35(6):611–618.

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 19 / 22

Second Experiment

Experiment goal: simulating a real scenarioConditions:

Noise: Gaussian, typical range of values1

C.O.: placed only in good positions

Results (mm):

VBH SL In Vivo1 3D In Vitro2

RMS 0.9 1.4 1.8Mean 0.9 0.9 2.1 1.8 2.1StD 0.2 1.2 1.0 0.4 1.5

1Kadoury et al. (2007). Med. Bio. Eng. Comp., 45(6):591–602.2Aubin et al. (1997). Med. Bio. Eng. Comp., 35(6):611–618.( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 19 / 22

Conclusions

Simulations show that the method has comparableaccuracy with other methods

... still, in vivo or in vitro validation should be performed.

Advantageous:C.O. does not need to overlap the spineC.O. is easy to buildCompensates patient movement between acquisitionsLow budget

Main Disadvantageous:Requires several points to be handmarkedNeeds an initial calibration procedureInstallation of a measuring device

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 20 / 22

Conclusions

Simulations show that the method has comparableaccuracy with other methods

... still, in vivo or in vitro validation should be performed.

Advantageous:C.O. does not need to overlap the spineC.O. is easy to buildCompensates patient movement between acquisitionsLow budget

Main Disadvantageous:Requires several points to be handmarkedNeeds an initial calibration procedureInstallation of a measuring device

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 20 / 22

Conclusions

Simulations show that the method has comparableaccuracy with other methods

... still, in vivo or in vitro validation should be performed.

Advantageous:C.O. does not need to overlap the spineC.O. is easy to buildCompensates patient movement between acquisitionsLow budget

Main Disadvantageous:Requires several points to be handmarkedNeeds an initial calibration procedureInstallation of a measuring device

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 20 / 22

Future work

1 Simulations with more CT scans (VHP)2 Designing and prototyping the Calibration Object3 In vitro experiment with a dried human spine4 Experiments using 2 calibration objects

5 Semi-automatic detection of landmarks

( INEB – FEUP – SMIC ) Calibration of bi-planar radiography Enc. Ciencias Jun/08 21 / 22

INE

B -

In

sti

tuto

de

En

ge

nh

ari

a

Bio

dic

a

Thank You!

Daniel Moura, Jorge Barbosa, Joao Tavares, Ana Reis

INEB – Instituto de Engenharia Biomedica, Laboratorio de Sinal e ImagemFEUP – Faculdade de Engenharia da Universidade do PortoSMIC – Servico Medico de Imagem Computorizada, S. A

[email protected]