geometrical optics i - biophotonics labbiophotonics.gist.ac.kr/course...

18
2015-09-14 1 GEOMETRICAL OPTICS I Lecture 1 Biophotonics Jae Gwan Kim [email protected] , X 2220 School of Information and Communication Engineering Gwangju Institute of Sciences and Technology Some Course Notes Lecture Notes will be provided on the web or sent by email Office Hours will be anytime as long as I’m at office Email for appointment: [email protected]

Upload: ngotruc

Post on 24-Apr-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

2015-09-14

1

GEOMETRICALOPTICSI

Lecture1

Biophotonics

JaeGwan Kim

[email protected] ,X2220

SchoolofInformationandCommunicationEngineering

Gwangju InstituteofSciencesandTechnology

SomeCourseNotes

LectureNoteswillbeprovidedontheweborsentbyemail

OfficeHourswillbeanytimeaslongasI’matoffice

Emailforappointment:[email protected]

2015-09-14

2

ModuleGoal

• Learnenoughbasicopticstocommunicatehowtocouplelight frompointAtopointB

camera

lasercouplelaserintoafiber

PMT

opticalfiber

pictureafluorescingcell

collectlightfromatissue

?

?

?

ItemsYouWillLearn

1. Lensbasics–Conventions–typesoflenses–useoflensequations

2. Keycouplingconcepts–“f‐number”(f/#)–numericalaperture(NA)–aperturestops

3. FiberOptics–workingprinciples–typesoffibers– limitations

2015-09-14

3

OutlineforLenses

• Snell’sLawandrefraction

• ThinLenses

• LensConventions

• ATrueOpticsProblem

• CollectionEfficiency(f/# andNA)

• ExampleleadingtotheApertureStop

• FocusingConcerns

PRELIMINARY:REFRACTION&THETHINLENS

2015-09-14

4

ASimpleExample

• HowcanIcouplelightfroma1mmfilamentlampintoa0.1mmdiameteropticalfiber?

• Ofcourse,wemayusealens,buthowdowecalculate?

CONVENTIONS

2015-09-14

5

Conventions:LightIncidentonLeft

• Beforewecancalculatethegoodstuff,wewillneedtoadoptsomeconventionsconcerningournewfoundfriends.

• Conventionsneededfor:

1) objectdistance(so)2) imagedistance(si)3) radiusofcurvature(R)4) focalpoint(f)

(1)ObjectConventions

so

object is REALwhen rays diverge from object:

so > 0

object is VIRTUAL when rays converge to object:

so < 0

usually only with lens combinations

so

principal rays

+ ‐0

2015-09-14

6

(2)ImageConventions

si

image is REALwhen rays converge :

si > 0

image is VIRTUAL when rays diverge :

si < 0

rays project back to the imagesi

rays focus on the image‐ +0

(3)R Conventions

R1

R2

R1

R2

R > 0 when line lands on right R < 0 when line lands on left

R1 > 0

R2 < 0

R1 < 0

R2 >0

‐ +0

2015-09-14

7

(4)f Conventions

f

lens is CONVERGINGwhen rays converge:

f > 0

lens is DIVERGINGwhen rays diverge:

f < 0

f

f f check rays from

‐ +0

Geometrical Optics

https://youtu.be/uQE659ICjqQ

2015-09-14

8

LENSTYPE

CommonLensTypes

Planar convex

f > 0f > 0

Bi-convex

• symmetric lenses cancel some aberrations

• focus or magnify light

• produce real or virtual images

ForSimulations,http://phet.colorado.edu/sims/geometric‐optics/geometric‐optics_en.html

http://physics.bu.edu/~duffy/java/Opticsa1.html

2015-09-14

9

RayTracing

• Converginglens

http://upload.wikimedia.org/wikipedia/commons/8/82/Large_convex_lens.jpg

CommonLensTypes

Bi-concave

f < 0f < 0

Planar concave

• increase f of systems

• symmetric lenses cancel some aberrations

• light expanders

• produce real or virtual images

2015-09-14

10

RayTracing

• DivergingLens

http://en.wikipedia.org/wiki/File:Concave_lens.jpg

EyeAnatomy

2015-09-14

11

HumanLensFar distance Short distance

LensesMommyNeverMentioned

Meniscus (convex and concave)

f > 0 or f < 0

• used to change f or light collection in system

• aplanatic: won’t introduce spherical abbs

• BFL: back focal length• EFL: effective focal length,

for a thick lens or imaging system composed of multiple lenses/mirrors

2015-09-14

12

LensesMommyNeverMentioned

Cylindrical

• Used when magnification needed in only one dimension (slits, etc)

• Focus into a line instead of a point

f > 0 or f < 0

LensesMommyNeverMentioned

f > 0

Ball

f > 0

Gradient index (GRIN)

•collimate high-angle outputs (diode lasers, fibers)

• easy alignment, high coupling efficiencies

• easy to correct aberrations

• used in laser diode coupling

n=1.406

n=1.386

2015-09-14

13

LENSEQUATION

Refraction

n=1.33 n=1.51

n=1.0

2015-09-14

14

TheFundamentalLaw

2211 sinsin nn

1

2

n1 n2

taken wrt normal

for n2 > n1:ray bends towardsnormal

Snell’s Law

=

Snell’sLawSimulator

http://interactagram.com/physics/optics/refraction/

2015-09-14

15

ThePowerofSnell’sLaw

h = 0.7 mm

d = 1 mm

• Snell’s Law can calculate the focal spot of the glass sphere.

• Glass spheres are used to couple light into and from optical fibers. Use Snell’s law and that is all!

note: these rays are NOT paraxial

Paraxial: a ray makes a small angle to the optical axis of the system

LensMaker’sEquation

• Thefocallengthofathicklensin aircanbecalculatedfromthisequation.

Wheref isthefocaldistancefromlensnlens istherefractiveindexofthelensmaterial,R1 istheradiusofcurvatureofthelenssurfaceclosesttothelightsource,R2 istheradiusofcurvatureofthelenssurfacefarthestfromthelightsource,andd isthethicknessofthelens(thedistancealongthelensaxisbetweenthetwosurfacevertices).

11

1

1

1

2015-09-14

16

Thin LensEquation

• Ifd issmallcomparedtoR1 andR2,thenthethinlens approximationcanbemade.

• Ex)thinplanar‐convexlens,radius=50mm,=1.5,whatisf?

1.5 1

or 1.5 1 ,

=100mm

11

1

1

R1

R2

GaussianLensFormula

• Withtheparaxialapproximation,Gaussianlensformulaisasfollows

– iftheobjectdistanceSo becomesinfinity,thenSi becomesf.

– Whatare if isat600,200,150,100,and50mm?

–∗ 120 ,200,300,∞,and‐100mm

• Magnification Gaussian Lens Formula, For simulations, http://graphics.stanford.edu/courses/cs178-10/applets/gaussian.html

So is the distance to an object from lensSi is the distance from lens to image

2015-09-14

17

ThinLensEquationSign

So Si f

+ + +

+ ‐ +

+ ‐ ‐

1 1 1

Coupling:LamptoFiber

Goal: couple as much light as possible from this lamp into the fiber

Solution: f = 10 mm, D = 5 mm planar convex lens (cheap)

2015-09-14

18

HomeWork

• Derive usingthefollowingfigure

Center of lens

Optical axis

image

object