geometry notes 30.01.2016

23
8/16/2019 Geometry Notes 30.01.2016 http://slidepdf.com/reader/full/geometry-notes-30012016 1/23 GEOMETRY Dr. Myrto Manolaki [email protected] School of Mathematical Sciences University College Dublin, 30 January 2016

Upload: wayne-martial

Post on 05-Jul-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 1/23

GEOMETRY

Dr. Myrto Manolaki

[email protected]

School of Mathematical Sciences

University College Dublin,

30 January 2016

Page 2: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 2/23

Standard notations for a triangle  ABC :

a =  BC, b =  CA, c = AB

ha =   the altitude from  A

hb =   the altitude from  B

hc =   the altitude from  C 

BC

A

h

h

a

b

a

bc

The 3 altitudes of a triangle meet at the same point. This point is

called the  orthocenter  of the triangle.

Page 3: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 3/23

33

BC

A

h

h

a

b

a

bc

Area of a triangle  ABC  is given by

[ABC ] = BC  · ha

2  =

 CA · hb

2  =

 AB · hc

2

[ABC ] = AB · AC  · sin∠BAC 

2

Page 4: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 4/23

44

Proposition.  The median of a triangle divides it into two triangles

of the same area.

Proof.   Indeed, if  M  is the midpoint of  BC   then

[ABM ] = BM  · ha

2  =

 CM  · ha

2  = [ACM ]

BC

A

M

ha

******************************************************

The 3 medians of a triangle meet at the same point. This point is

called the  centroid of the triangle.

Page 5: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 5/23

55

Problem 1.   Let  G  be the centroid of a triangle   [ABC ]  (that is,

the point of intersection of all its three medians). Then

[GAB

] = [GBC 

] = [GCA

].

Page 6: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 6/23

66

Problem 1.   Let  G  be the centroid of a triangle   [ABC ]  (that is,

the point of intersection of all its three medians). Then

[GAB

] = [GBC 

] = [GCA

].

Solution.   Let   M, N, P    be the midpoints of   BC ,   CA   and   AB

respectively. Denote

[GM B] = x,   [GN A] = y,   [GP B] = z.

BC

A

M

 x x

 y

 y z

 z

NP

G

Page 7: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 7/23

77

Problem 1.   Let  G  be the centroid of a triangle   [ABC ]  (that is,

the point of intersection of all its three medians). Then

[GAB

] = [GBC 

] = [GCA

].

Solution.   Let   M, N, P    be the midpoints of   BC ,   CA   and   AB

respectively. Denote

[GM B] = x,   [GN A] = y,   [GP B] = z.

BC

A

M

 x x

 y

 y z

 z

NP

G

Note that  GM   is median in triangle  GBC   so

[GM C ] = [GM B] = x.

Similarly [GN C ] = [GN A] = y  and  [GP A] = [GP B] = z .

Now [ABM ] = [ACM ] implies 2z  + x = 2y + x so  z  = y.

From [BN C ] = [BN A] we obtain  x =  z , so  x = y  = z 

Page 8: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 8/23

88

Problem 2.   Let M  be a point inside a triangle  ABC  such that

[M AB] = [M BC ] = [M CA].

Prove that  M   is the centroid of the triangle  ABC .

Page 9: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 9/23

99

Problem 2.   Let M  be a point inside a triangle  ABC  such that

[M AB] = [M BC ] = [M CA].

Prove that  M   is the centroid of the triangle  ABC .

Solution.   Let  G be the centroid of the triangle.

Then (by Problem 1):

[GAB] = [GBC ] = [GCA] = [ABC ]

3  .

We will show that  M  = G.

Page 10: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 10/23

1010

• In order to have [M BC ] = [ABC ]

3  = [GBC ], we must have

that   M   belongs to the unique parallel line to   BC   passing

from  G.

Page 11: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 11/23

1111

• In order to have [M BC ] = [ABC ]

3  = [GBC ], we must have

that   M   belongs to the unique parallel line to   BC   passing

from  G.

• In order to have  [M AB] = [ABC ]3

  = [GAB], we must have

that   M   belongs to the unique parallel line to   AB   passing

from  G.

• Hence  M  belongs in the intersection of these 2 lines, which

is the point  G. Hence  M  = G.

Page 12: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 12/23

1212

SIMILAR TRIANGLES

Let  ABC  and  ABC  be two similar triangles, that is,

AB

AB  =

 C A

CA  =

 BC 

BC   = ratio of similarity

Then

[ABC ][ABC ]

  =

AB

AB

2

=

C A

CA

2

=

BC 

BC 

2

.

Proposition.  The ratio of areas of two similar triangles equals the

square of ratio of similarity.

Page 13: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 13/23

1313

Example.   Consider the median triangle ABC  of a triangle ABC 

(A,  B and  C  are the midpoints of the sides of triangle  ABC ).

Then:

• AB parallel to  AB  and equal to   AB2

• AC  parallel to  AC  and equal to   AC 2

• BC  parallel to  BC  and equal to   BC 2

The similarity ratio is

A

B C

A’

B’C’

AB

AB   = AC 

AC   = BC 

BC    = 1

2

so

[ABC ]

[ABC ]  =

AB

AB

2

= 1

4  that is,   [ABC ] =

 1

4[ABC ].

Page 14: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 14/23

1414

Problem 3.   Let   ABC  be the median triangle of   ABC   and

denote by   H 1,   H 2   and   H 3   the orthocenters of triangles   CAB,

ABC  and  BC A respectively.

Prove that:

(i)  [AH 1BH 2C H 3] =   1

2[ABC ].

(ii) If we extend the line segments  AH 2, BH 3  and  CH 1, then they

will all 3 meet at a point.

Page 15: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 15/23

1515

Problem 3.   Let   ABC  be the median triangle of   ABC   and

denote by   H 1,   H 2   and   H 3   the orthocenters of triangles   CAB,

ABC  and  BC A respectively.

Prove that:

(i)  [AH 1BH 2C H 3] =   1

2[ABC ].

(ii) If we extend the line segments  AH 2, BH 3  and  CH 1, then they

will all 3 meet at a point.

Solution.

BCA’

B’C’

H

H

2

H3   1

A

(i) First remark that   ABC  and   ABC   are similar triangles with

the similarity ratio  BC  : BC  = 1 : 2. Therefore

[ABC ] = 1

4[ABC ].

Page 16: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 16/23

1616

BC

B’C’

A

H2

H

Let  H  be the orthocenter of  ABC . Then  A, H 2  and  H  are on the

same line. Also triangles   H 2C B and   HBC  are similar with the

same similarity ratio, thus

[H 2BC ] = 1

4[HBC ].

In the same way we obtain

[H 1AB] = 1

4[HAB]   and   [H 3C A] =

 1

4[HCA].

We now obtain

[AH 1BH 2C H 3] = [ABC ] + [H 1AB] + [H 2BC ] + [H 3C A]

= 14

[ABC ] + [HAB] + [HBC ] + [HCA]4

= 1

4[ABC ] +

 1

4[ABC ] =

 1

2[ABC ].

(*This is a different solution from the one given in class)

Page 17: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 17/23

1717

(ii)Remark that the extensions of   AH 2,   BH 3   and   CH 1   are the

altitudes of the triangle   ABC . Hence they all meet at a point

(namely the orthocenter of  ABC ).

Page 18: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 18/23

1818

Problem 4.   Let   Q   be a point inside a triangle   ABC . Three

lines pass through  Q and are parallel with the sides of the triangle.

These lines divide the initial triangle into six parts, three of which

are triangles of areas  S 1,  S 2  and  S 3. Prove that

 [ABC ] =

 S 1 +

 S 2 +

 S 3.

Solution.

A

B   C

D

E

FG

H

I

S

S

1

2

S3Q

Let D, E ,F , G, H, I   be the points of intersection between the three

lines and the sides of the triangle.

Then triangles  DGQ,  HQF ,  QIE  and  ABC  are similar so

S 1

[ABC ] =

GQ

BC 

2

=

BI 

BC 

2

Similarly

S 2

[ABC ] =

IE 

BC 

2

,  S 3

[ABC ] =

QF 

BC 

2

=

CE 

BC 

2

.

Page 19: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 19/23

1919

Then   S 1

[ABC ] +

   S 2

[ABC ] +

   S 3

[ABC ] =

  BI 

BC  +

  IE 

BC  +

 EC 

BC   = 1.

This yields  [ABC ] =

 S 1 +

 S 2 +

 S 3.

Page 20: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 20/23

2020

Problem 5.   Let  ABC  be a triangle. On the line BC, beyond the

point  C  we take the point  A such that  BC   =  CA. On the line

CA beyond the point A we take the point B such that AC  = AB.

On the line AB , beyond the point B  we take the point C  such that

AB  = BC . Prove that

[ABC ] = 7[ABC ].

Page 21: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 21/23

2121

Solution.   We bring the lines   AA,   BB,   CC  so that we split

the big triangle   ABC  into 7 triangles. We will show that all 7

triangles have area equal to  [ABC ].

• [BBA] = [ABC ]   (since   AB   is a median of the triangle

CBB).

• [BBC ] = [BBA] = [ABC ] (since  BB is a median of the

triangle  C AB).

• [ACA] = [ABC ]   (since   AC   is a median of the triangle

AAB).

• [AAB] = [ACA] = [ABC ]  (since  AA is a median of the

triangle  A

B

C ).• [CBC ] = [ABC ]   (since   CB   is a median of the triangle

CAC ).

• [CC A] = [CBC ] = [ABC ] (since  CC  is a median of the

triangle  BAC ).

Page 22: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 22/23

2222

Homework

6.  Let ABCD be a quadrilateral. On the line AB, beyond the point

B  we take the point   A such that   AB   =   BA. On the line   BC 

beyond the point   C   we take the point  B such that   BC   =   CB.

On the line C D beyond the point D  we take the point C  such that

CD = DC . On the line DA beyond the point A  we take the point

D such that  DA =  AD. Prove that

[ABC D] = 5[ABCD].

7.   Let  G be the centroid of triangle  ABC . Denote by  G1,  G2  and

G3  the centroids of triangles  ABG,  BCG and  CAG. Prove that

[G1G2G3] = 1

9[ABC ].

Hint: Let  T  be the midpoint of  AG. Then  G1  belongs to the line

BT  and divides it in the ration 2:1. Similarly  G3 belongs to the line

CT  and divides it in the ratio 2:1. Deduce that  G1G3  is parallel to

BC  and G1G3 =   1

3BC . Using this argument, deduce that triangles

G1G2G3  and  ABC  are similar with ratio of similarity of 1/3.

8.   Let  A

,  B

and  C 

be the midpoints of the sides  BC ,  CA  andAB  of triangle  ABC . Denote by  G1,  G2  and  G3   the centroids of 

triangles  ABC ,  BAC  and  CAB. Prove that

[AG2BG1C G3] = 1

2[ABC ].

Page 23: Geometry Notes 30.01.2016

8/16/2019 Geometry Notes 30.01.2016

http://slidepdf.com/reader/full/geometry-notes-30012016 23/23

2323

9.   Let  ABCD  be a convex quadrilateral. On the line  AC  we take

the point C 1 such that C A =  C C 1 and on the line  BD we take the

point  D1  such that  BD = DD1. Prove

[ABC 1D1] = 4[ABCD].

10.   Let   M  be a point inside a triangle   ABC   whose altitudes are

ha, hb   and  hc. Denote by  da,   db   and  dc  the distances from   M   to

the sides  BC ,  CA and  AB  respectively. Prove that

min{ha, hb, hc} ≤ da + db + dc ≤ max{ha, hb, hc}.