geotechnical design report - maine.gov · geotechnical design report ... the objectives of our work...

124
GEOTECHNICAL DESIGN REPORT MATHEW J. LANIGAN BRIDGE NO. 2230 OVER THE KENNEBUNK RIVER MAINE DOT WIN 22504.00 KENNEBUNKKENNEBUNKPORT, MAINE Prepared for: Stantec Scarborough, Maine June 2016 09.0025898.00 Prepared by: GZA GeoEnvironmental, Inc. 477 Congress Street | Suite 700 | Portland, Maine 04101 207.879.9190 27 Offices Nationwide www.gza.com

Upload: duongphuc

Post on 12-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

 

 

GEOTECHNICAL DESIGN REPORT MATHEW  J.  LANIGAN  BRIDGE  NO.  2230 OVER THE KENNEBUNK RIVER MAINE DOT WIN 22504.00 KENNEBUNK‐KENNEBUNKPORT, MAINE         Prepared for: 

Stantec Scarborough, Maine   June 2016 09.0025898.00     Prepared by: 

GZA GeoEnvironmental, Inc. 477 Congress Street | Suite 700 | Portland, Maine 04101 207.879.9190     27 Offices Nationwide www.gza.com 

Page 2: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

    

Copyright © 2016 GZA GeoEnvironmental, Inc. 

477 Congress Street 

Suite 700 

Portland, ME  04101 

207.879.9190 

www.gza.com 

  

Geotechnical

Environmental

Ecological

Water

Construction Management

Proactive by Design VIA EMAIL   June 2, 2016 File No. 09.0025898.00    Mr. Tim Merritt, P.E. Stantec 482 Payne Road Scarborough Court Scarborough, ME 04074  Re:  Final Geotechnical Design Report     Mathew J. Lanigan Bridge No. 2230 over Kennebunk River  

    MaineDOT WIN 22504.00 Kennebunk‐Kennebunkport, Maine 

 Dear Tim:  We are pleased to provide this Final Geotechnical Design Report for MaineDOT Bridge No. 2230 over the Kennebunk River in Kennebunk‐Kennebunkport, Maine.  Our work was completed in accordance with Master Services Agreement 40839 between Stantec and GZA, and Stantec Task Order  JN  195311132,  dated  October  1,  2015,  which  incorporates  GZA’s  proposal  No. 09.P000041.16, dated August 20, 2015, and the attached Limitations included in Appendix A of this report.   This report was prepared by Nicholas Williams, under the supervision of Andrew Blaisdell, P.E.  It has been a pleasure  serving  the Stantec  team on  this project.    If you have any questions regarding the report, or if we can provide further assistance, please do not hesitate to contact the undersigned.  Very truly yours,  GZA GEOENVIRONMENTAL, INC.    Christopher L. Snow, P.E.   Associate Principal     David R. Carchedi          Andrew R. Blaisdell, P.E. Consultant Reviewer        Senior Project Manager   ARB/CLS/DRC:erc \\gzaport1\jobs\09 jobs\0025800s\09.0025898.00 ‐ mdot kennebunk\report\final rpt\final 25898 lanigan bridge report 06‐02‐16.docx 

Page 3: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

TABLE OF CONTENTS  

 i 

Geotechnical

Environmental

Ecological

Water

Construction Management

     

1.0  INTRODUCTION  1 

1.1 BACKGROUND  1 

1.2 OBJECTIVES AND SCOPE OF SERVICES  2 

2.0  SUBSURFACE EXPLORATIONS  2 

2.1 PREVIOUS TEST BORINGS AND PROBES  3 

2.2 REVEW OF ROCK CORE  3 

2.3 SUPPLEMENTAL TEST BORINGS  3 

2.4 GEOPHYSICAL SURVEY  4 

3.0  LABORATORY TESTING  4 

4.0  SUBSURFACE CONDITIONS  5 

4.1 SURFICIAL AND BEDROCK GEOLOGY  5 

4.2 SUBSURFACE PROFILE  5 

4.2.1 Bedrock  6 

4.2.2 Groundwater  6 

5.0  ENGINEERING EVALUATIONS  7 

5.1 GENERAL  7 

5.2 APPROACH EMBANKMENTS  7 

5.2.1 Evaluation of Retaining Wall Type  7 

5.3 LOAD AND RESISTANCE FACTORS  8 

5.4 GRS WALLS  9 

5.4.2 Existing Subsurface Profile  9 

5.4.3 Bearing Resistance  9 

5.4.4 Wall Materials and Geometry  10 

5.4.5 Design Methodology  10 

5.4.6 GRS Wall Global Stability  11 

5.4.7 GRS Wall Settlement  11 

5.5 EXISTING ABUTMENTS BEARING ON ROCK  12 

5.6 LATERAL EARTH PRESSURE  13 

5.7 SEISMIC DESIGN CONSIDERATIONS  13 

5.8 FROST PENETRATION  13 

6.0  RECOMMENDATIONS  13 

6.1 SEISMIC DESIGN  13 

6.2 GRS WALL RECOMMENDATIONS  14 

6.2.1 RSF DESIGN  14 

6.1.2 GRS WALL DESIGN  14 

6.3 ABUTMENTS  15 

Page 4: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

TABLE OF CONTENTS (continued)  

ii 

7.0  CONSTRUCTION CONSIDERATIONS  16 

7.1 EXCAVATION, TEMPORARY LATERAL SUPPORT AND DEWATERING  16 

7.2 REUSE OF ON‐SITE MATERIALS  16 

  FIGURES  

FIGURE 1  Locus Plan 

FIGURE 2  Boring Location Plan & Interpretive Subsurface Profile 

FIGURE 3  GRS Retaining Wall Sections 

  APPENDICES  

APPENDIX A  Limitations 

APPENDIX B  BB‐KKKR‐100 Series Test Boring and Probe Logs 

APPENDIX C  BB‐KKKR‐200 Series Test Boring Logs 

APPENDIX D  Northeast Geophysical Services Report 

APPENDIX E  Laboratory Test Results 

APPENDIX F  Geotechnical Engineering Calculations 

    

 

Page 5: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

1.0 INTRODUCTION 

This report presents the results of the geotechnical evaluation completed by GZA GeoEnvironmental, Inc.  (GZA) for the proposed replacement of Maine Department of Transportation (MaineDOT) Bridge No. 2230 over the Kennebunk River.   Our services were provided  in accordance with Master Services Agreement  40839  between  Stantec  and  GZA,  and  Stantec  Task  Order  JN  195311132,  dated October 1, 2015, which incorporates GZA’s proposal No. 09.P000041.16, dated August 20, 2015, and the attached Limitations included in Appendix A.   1.1 BACKGROUND 

The existing Mathew J. Lanigan Bridge (No. 2230) spans west‐to‐east from Kennebunk to Kennebunkport and carries Route 9 (Western Avenue) over the Kennebunk River at the  location shown on the Locus Plan,  Figure  1.    The  existing  88‐foot,  two‐span  bridge  has  a  steel  through‐girder  superstructure supported on stone masonry abutments and a stone masonry pivot pier capped with concrete.   The structure was  a  swing  bridge,  articulating  about  the  center  pier,  until  1985 when  it was  closed  to navigation.  Based on Stantec’s Preliminary Design Report (PDR) the Kennebunk abutment was constructed in 1933 as concrete‐capped, stone masonry and  is  in fair overall condition. The concrete cap has some minor cracking and the masonry facing has some mortar loss, primarily in the upper two courses. The as‐built plans indicate that the stone masonry was constructed over a concrete seal that bears on bedrock. There are no visible signs of settlement.   The Kennebunkport abutment was originally constructed around 1896, as a stone masonry abutment and adjacent stone masonry pier with a short, granite slab approach span.  The pier was reconstructed in 1933 using granite planks and a concrete cap to tie the two structures together.  The current bridge terminates  above  the  capped  pier  structure,  which  is  referred  to  herein  as  the  Kennebunkport abutment. The Kennebunkport abutment is reportedly founded on bedrock. The masonry appears to be in good condition, with no signs of settlement or bulging.   The project will consist of a  superstructure  replacement.   The new  superstructure will consist of an approximately 88.5‐foot‐long, single span bridge, extending from approximately Sta. 49+55 (Kennebunk abutment)  to  Sta.  50+44  (Kennebunkport  abutment),  as  shown  on  the  Boring  Location  Plan  & Interpretive Subsurface Profile, Figure 2.   The new  superstructure  is proposed  to  consist of precast, pre‐stressed concrete butted box beams with a non‐composite leveling slab.  The existing pier will be removed, and the existing masonry abutment substructures will be reused.       The total  length of the project  is approximately 350 feet (Sta. 48+00 to 51+50).   Modifications to the Kennebunk approach include widening the alignment by up to 5 feet outside of the existing sidewalks.  Modifications  to  the  Kennebunkport  approach  will  be  limited  to  pavement  and  sidewalk reconfigurations.  The approach roadways will generally be at existing grades.  Geosynthetic reinforced soil (GRS) retaining walls will be constructed adjacent to Abutment 1 along the northwest (NW; upstream) and southwest (SW; downstream) Kennebunk approach embankment.  The NW GRS wall will be 14 feet in length (Sta. 49+32 to 49+46) and up 7.5 feet in height.  The SW GRS wall 

Page 6: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

will be approximately 37 feet in length (Sta. 49+08 to 49+45) and up 7.5 feet in height.  The tallest portion of both walls will be about 6 feet long, after which the wall height will quickly transition to one block (1.5 feet) high. The GRS walls will be supported by 2‐ to 2.5‐foot‐thick reinforced soil foundations (RSFs).  Where  embankment modifications  are planned,  a  4‐foot‐thick  layer of  riprap will be placed,  and  a minimum riprap thickness of 2 feet will be used at the toe of the GRS walls.  The location of the proposed bridge and GRS walls  is shown on Figure 2 and on the plan entitled GRS Retaining Wall and Moment Slab, Figure 3.  Portions of the GRS wall will be constructed below mean tide level. Pertinent tide data is summarized below:   Mean Low Water (MLW) = El. ‐4.76 

Mean Tide Level (MTL) = El. ‐0.29  

Mean High Water (MHW) = El. 4.08  1.2 OBJECTIVES AND SCOPE OF SERVICES 

The objectives of our work were to evaluate subsurface conditions and to provide  final geotechnical engineering recommendations for the proposed Mathew J. Lanigan Bridge No. 2230 replacement.  To meet these objectives, GZA completed the following Scope of Services:  

Reviewed preliminary test boring and probe logs and laboratory test data collected by MaineDOT; 

Conducted  site visits  to observe  surficial conditions and  reviewed mapped  surficial and bedrock geology of the site, and existing bridge plans; 

Coordinated and observed GZA’s subsurface exploration program, consisting of two borings; 

Coordinated surface geophysical testing completed by Northeast Geophysical Services (NGS); 

Conducted a laboratory testing program to evaluate engineering properties of the site soils; 

Conducted  geotechnical  engineering  analyses  for  bearing  and  lateral  resistance  of  bedrock supporting existing abutment foundations, and for design of new GRS retaining walls and seismic design considerations; 

Developed  geotechnical  engineering  recommendations  including  design  of  new  retaining walls, evaluation of existing foundations and seismic design parameters;  

Developed  construction  considerations  including  temporary excavation  support and dewatering; and 

Prepared this final report summarizing our findings and design recommendations.  

2.0 SUBSURFACE EXPLORATIONS 

Prior to GZA’s engagement on the project, an exploration program was completed by MaineDOT in 2014. Final design phase explorations by GZA  included  supplemental  test borings and  surface geophysical testing completed in 2015 to provide additional information along the Kennebunk approach. As‐drilled 

Page 7: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

test boring locations and elevations1 were surveyed by MaineDOT for each completed test boring. Boring locations are shown on Figure 2, and as‐drilled coordinates and ground surface elevations are shown on the boring logs in Appendices B and C. Details of the exploration programs are described below.  2.1 PREVIOUS TEST BORINGS AND PROBES 

MaineDOT  conducted  a  subsurface  exploration  program  between  November  19  and December 21, 2014, consisting of five test borings (BB‐KKKR‐101 through BB‐KKKR‐105) and five auger probes (BP‐KKKR‐101 through BP‐KKKR‐105).    Boring BB‐KKKR‐101 and probe BP‐KKKR‐101 were the only explorations that MaineDOT drilled through an approach embankment (Kennebunk).   The remainder of the explorations were drilled through the bridge deck and into the mudline.    The  borings  (BB‐KKKR‐101  through  ‐105)  were  drilled  through  overburden  soil  and  terminated approximately 5 to 10 feet into bedrock.  Depths of the borings ranged from approximately 8 to 43 feet below  ground  surface  (bgs).    The  borings  were  drilled  using  3‐  and  4‐inch  driven  casing  and drive‐and‐wash drilling techniques.  Standard penetration testing (SPT) and split‐spoon sampling were performed at 5‐foot typical intervals in the overburden using a 24‐inch‐long, 1‐3/8‐inch inside‐diameter sampler, driven with an automatic hammer.  Bedrock cores were obtained using NQ2 wire‐line coring equipment in each test boring.    The probes  (BP‐KKKR‐101  through  ‐105) were drilled and  terminated upon  reaching  reported auger refusal at depths ranging from approximately 1 to 9 feet bgs.  The probes were conducted using a 5‐inch solid stem auger.  Soil samples were not collected in the probes.  The borings and probes were backfilled with soil cuttings and/or sand, and where borings/probes were conducted through pavement, they were patched with cold patch.   2.2 REVEW OF ROCK CORE 

GZA requested access to the MaineDOT rock core samples in order to make an independent assessment of the rock.  After receiving approval from the MaineDOT Geotechnical Group, a GZA engineer visited MaineDOT’s  laboratory  in  Bangor,  reviewed  the  available  rock  core  specimens,  and  prepared descriptions for core samples from borings BB‐KKKR‐101 through BB‐KKKR‐105.  The GZA observations were used to develop the rock descriptions included on the logs in Appendix B.  2.3 SUPPLEMENTAL TEST BORINGS 

GZA  completed  a  supplemental  subsurface  investigation  program  consisting  of  two  test  borings (BB‐KKKR‐201 and BB‐KKKR‐202) drilled through the Kennebunk approach in the vicinity of the planned GRS walls.    The original proposed scope included one test boring.  However, BB‐KKKR‐201 was terminated early at 3.3  feet  bgs  after  encountering  an  incorrectly‐marked water  service  line.   BB‐KKKR‐202 was drilled through overburden soil to possible bedrock and was terminated at a depth of 22 feet bgs.  New England Boring Contractors of Hermon, Maine provided drilling services and coordinated utility clearance.  The 

                                                            1 Elevation are in feet and reference the North American Vertical Datum of 1988 (NAVD 88). 

Page 8: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

drilling was completed on November 3, 2015.  GZA personnel monitored the drilling work and prepared logs of each boring.  Boring BB‐KKKR‐202 was drilled using 3‐inch driven casing and drive‐and‐wash drilling techniques.  SPT and  split‐spoon  sampling were  performed  near  continuously  to  11  feet  bgs,  and  at  5‐foot  typical intervals from 15 to 20 feet bgs using a 24‐inch‐long, 1‐3/8‐inch  inside diameter sampler.   SPTs were conducted using a safety hammer and rope‐and‐cathead system. Bedrock cores were not obtained in the 200‐series borings.  The borings were backfilled with soil cuttings and/or sand, and were surfaced with asphalt cold patch.  2.4 GEOPHYSICAL SURVEY 

On November 3, 2015, NGS conducted electromagnetic metal detection (EM) and ground penetrating radar (GPR) surveys on both bridge approaches.  The objective of the surveys was to locate and estimate the geometry of buried structural elements or other subsurface features.    An EM‐61 Metal Detector was used for the EM surveys.  The detector is designed to locate medium to large buried metal objects.  The technique is reportedly sensitive to conductive metal up to a depth of approximately 12 feet.  The data is digitally recorded on an Allegro CX field computer.  Readings were recorded every 0.62 feet along traverses spaced 3 feet apart.    GPR utilizes high‐frequency radio waves, which are reflected at interfaces of materials with contrasting dielectric properties.   The GPR  instrument used was a GSSI, SIR‐3000.   A 400‐MHz antenna was used with a time range set for 60 nanoseconds.  At this setting the depth surveyed was approximately 10 feet.  GPR  profiles were  recorded  over  lines  spaced  3  feet  apart  in  both  east‐west  and  north‐south  grid directions.  Survey ground grids were laid‐out by NGS on both sides of the bridge using measuring tapes and paint.  Surveys were conducted over the entire width of the roadway and accessible portions of the sidewalks on either side of the roadway.  The surveys extended approximately 30 and 39 feet back from the top of the concrete abutment walls at the Kennebunk and Kennebunkport approaches, respectively.    NGS provided the results of the GPR and EM surveys in a report dated January 20, 2016, which is included as Appendix D.  

3.0 LABORATORY TESTING 

MaineDOT  completed  a  laboratory  testing  program  consisting  of  water  content  and  gradation analysis/AASHTO Classification/Frost Classification assessments on five soil samples from the 100‐series borings.    GZA retained Thielsch Engineering’s Geotechnical Laboratory in Cranston, Rhode Island to complete a soil  and  bedrock  testing  program  consisting  of  gradation  analysis/AASHTO  Classification/Frost Classification of five soil samples collected from 200‐series borings and strength characteristics of two bedrock samples from rock core collected by MaineDOT from the 100‐series borings.   

Page 9: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

Results of the testing are included in Appendix E.  

4.0 SUBSURFACE CONDITIONS 

4.1 SURFICIAL AND BEDROCK GEOLOGY 

Based on available  literature, surficial geologic units mapped  in  the vicinity  include Undifferentiated sand, used as a general term and can range from very fine sand to very coarse sand.  Bedrock at the site is mapped as the Kittery Formation bedrock unit.  The Kittery Formation in the site vicinity  is  described  as  variably  thin  to  thick  bedded,  buff‐weathering  feldspathic  and  calcareous metawacke.    The  Kittery  Formation  in  the  site  vicinity  is  characterized  by well‐developed  primary structures including graded bedding, channel cuts and fills, small scale cross‐bedding, flame structure, and flute casts.  4.2 SUBSURFACE PROFILE 

Two soil units were encountered in the test borings overlying bedrock: Fill and River Bottom Deposit. Approximately 4 to 6 inches of asphalt pavement was encountered  in the borings drilled through the Kennebunk approach. The thicknesses and generalized descriptions of the soil units are presented in the following table, in descending order from existing ground surface. Detailed descriptions of the materials encountered at specific locations are provided in the boring logs in Appendices B and C. The subsurface conditions are also shown in relation to the bridge alignment on Figure 2.  

Soil Unit Approx. 

Encountered Thickness (ft) 

Generalized Description 

Fill  5 to 10   

Brown  to Gray,  very  loose  to medium  dense,  fine  to  coarse  SAND,  varying amounts of gravel, trace silt (SW‐SM, or SP). 

MaineDOT Frost Classification = 0‐II 

Encountered in borings BB‐KKKR‐101, BB‐KKKR‐201, BB‐KKKR‐202 

River Bottom Deposit  3 to 12 

Gray  to  Black,  very  loose  to  loose,  silty  fine  to  coarse  SAND, with  varying amounts of  gravel; occasionally  clayey  SAND or  sandy CLAY  (SC‐SM, or CL). Contains shells and wood. 

MaineDOT Frost Classification = III‐IV 

Encountered in all borings 

Top of Bedrock Elevation  

Encountered Top of Rock:  Approx. El. ‐10.1 to El. ‐27.2 

 Boring  BB‐KKKR‐202  encountered  an  apparent  glacial  till/weathered  rock  layer  from  about  18.5  to 21 feet bgs. A similar layer was not encountered in any of the 100‐series borings.  The boring near the west end of the SW GRS wall (BB‐KKKR‐202) penetrated 6.2 feet of wood underlying the fill, which was interpreted to be possible timber cribbing. The boring conducted along the eastern portion of the SW GRS wall (BB‐KKKR‐101) penetrated 10.9 feet of granite masonry underlying the fill.  

Page 10: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

Auger  probes  typically  encountered  shallower  refusal  elevations  than  the  top  of  rock  elevations confirmed by coring  in  the adjacent borings, and collectively did not  represent a consistent  trend  in bedrock elevations. Therefore, we did not include auger refusal elevations in the range of top of bedrock elevations  reported  above,  nor were  they  considered  for  development  of  the  interpreted  bedrock surface shown on Figure 2.  GZA did not review the soil samples collected during MaineDOT drilling.   We used the classifications made by MaineDOT and made limited modifications to those descriptions to achieve consistency with laboratory  test  results.  It  should be noted  that MaineDOT described a Marine  stratum  in  their  test borings, which  appeared  to  be  consistent with what  GZA  described  as  River  Bottom  Deposit.  For simplicity  sake, GZA  categorized  the  “Marine”  stratum  as  River  Bottom Deposit  in  our  generalized stratification above, and in the interpretive subsurface profile.   

4.2.1 Bedrock 

Bedrock was cored in each test boring drilled by MaineDOT and three bedrock types were encountered. Basalt was found only in BB‐KKKR‐101 and was described as gray/black, hard, fresh, and fine to medium grained.  The Basalt consists of a dike intrusion into the metamorphic parent rock. Joints were very close to moderately spaced, low angle to moderately dipping, planar, rough, fresh, and tight to partially open. The Rock Quality Designation (RQD) in the basalt was 90 percent. Metasiltstone and/or metasandstone was encountered  in  the remaining borings and was described as white/gray/purple/light green, very hard, fresh, and aphanitic. Joints were very close to moderately spaced, low to high angle, planar, rough, fresh to discolored, and tight to partially open. The RQD ranged from 0 to 50 percent, with an average of 18 percent.   Two laboratory unconfined compressive strength and secant modulus tests were conducted on bedrock core samples of the Basalt and the Metasiltstone. The test results are included in Appendix D. The Basalt had an unconfined compressive strength of 6.0 kips per square inch (ksi) and a Young’s modulus of 4,360 ksi. The Metasiltstone had an unconfined compressive strength of 11.9 kips per square inch (ksi) and a Young’s modulus of 5,950 ksi. 

 4.2.2 Groundwater 

Groundwater was measured by MaineDOT  in the boreholes.   The times, borehole depths, and casing conditions  at  the  time  of  the measurements were  not  provided  to  GZA.    The water  levels  in  the land‐based borings were 16 feet bgs (El. ‐5.9) reported by MaineDOT in BB‐KKKR‐101 and 5.7 feet bgs (El. 2.8) observed by GZA in BB‐KKKR‐202.  The remainder of the borings/probes were drilled through the surface river water, and the water  levels were not recorded.   Water  levels  in the river are tidally influenced.    The groundwater observations were made at the times and under the conditions stated in the boring logs.  Groundwater levels fluctuate due to changes in river level, season, tidal variation, precipitation, infiltration,  and  construction  activity  in  the  area.    Therefore,  groundwater  levels  during  and  after construction are  likely to vary from those encountered at the time of the test borings, especially for work in the river.  

Page 11: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

5.0 ENGINEERING EVALUATIONS 

5.1 GENERAL 

GZA has conducted geotechnical engineering evaluations in accordance with the following:  

American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications: Customary U.S. Units, 7th Edition 2014 (AASHTO) with 2015 Interim; 

American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications: Customary U.S. Units, 6th Edition 2012 (2012 AASHTO) with 2013 and 2014 Interims (for footings bearing on bedrock only); 

Geosynthetic  Reinforced  Soil  Integrated  Bridge  System  Interim  Implementation  Guide (FHWA‐HRT‐11‐026), dated June 2012; 

Geosynthetic Reinforced Soil Integrated Bridge System Synthesis Report (FHWA‐HRT‐11‐027), dated January 2011; and 

MaineDOT Bridge Design Guide, 2014 Edition (MaineDOT BDG).    

The sections that follow describe the evaluations conducted  for the project.   Supporting calculations developed by GZA are attached in Appendix F of this report.  5.2 APPROACH EMBANKMENTS 

There are no changes planned at the Kennebunkport approach, and there are no visible signs of distress in the existing masonry retaining walls. Therefore, stability of the Kennebunkport approach was not evaluated.    At  the  Kennebunk  approach,  new  retaining  walls  are  needed  to  support  the  widened  approach embankment.    

5.2.1 Evaluation of Retaining Wall Type  The Kennebunk approach will have two new retaining walls adjoining the existing abutment.  The NW and SW walls will be approximately 14 and 37 feet long, respectively.  The maximum distance from the top of the wall (i.e., sidewalk elevation) to the top of the riprap protection near the toe of the wall is 7.5 to 8.5 feet for both walls.  Two retaining wall types were considered: cast‐in‐place reinforced concrete walls on footings and concrete tremie seals, and GRS walls supported on a RSF.  A cast‐in‐place wall would require embedment for frost protection, which would be 4 to 5 feet below the bottom of the riprap layer.  The corresponding tremie seal bearing elevation would likely be at El. ‐5 or deeper.  This would require placement of the tremie seal in the wet over a loose silty sand subgrade or installation of a cofferdam to allow dewatering. This combination would make  it difficult  to achieve uniform  subgrade  conditions beneath  the  seal, and  is  therefore not considered the preferred alternative.  GRS  is considered a more flexible wall system than cast‐in‐place concrete. The serviceability of the GRS system is anticipated to be better with variable support conditions and minor frost penetration. Since frost 

Page 12: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

penetration into a tidal flat near the low tide level is likely to be limited, it is our opinion that a GRS wall can be constructed over an RSF layer that is embedded at less than the full design frost penetration depth (2.5 feet rather than the full 5 feet).  This reduces the required excavation depth by approximately 2.5 feet, and will  allow  subgrade  preparation  in  the  dry  by working  around  the  tides.  It will  also  allow  for  visual observation of the subgrade prior to RSF placement. Based on these constructability considerations, the GRS wall was selected as the preferred retaining wall type.  Global stability and settlement considerations of the GRS‐supported Kennebunk approach are related to the wall design and are discussed in Section 5.4.  5.3 LOAD AND RESISTANCE FACTORS 

AASHTO LRFD load factors should be applied to horizontal earth pressure (EH), vertical earth pressure (EV), earth surcharge (ES), live load surcharge (LS) loads, and components and attachments (DC) loads using the load factors for permanent loads (γp) provided in LRFD Table 3.4.1‐2 for strength limit state foundation design. We also used these load factors in the GRS design. The relevant load factors used in the GRS design are presented in the following table.     

SUMMARY OF LOAD FACTORS – STRENGTH I 

Horizontal Load Factor Type  Load Factor Symbol  Load Factor 

Earth Pressure from Retained Backfill – Active    γEHMAX  1.5 

Max Earth Pressure from Road Base    γESMAX  1.5 

Min Earth Pressure from Road Base   γESMIN  0.75 

Live Load – Roadway   γLs  1.75 

Live Load – Superstructure    γLL  1.75 

Vertical Load Factor Type  Load Factor Symbol  Load Factor 

Min Dead Weight, GRS  γEVMIN   1.0 

Max Dead Weight, GRS  γEVMAX   1.35 

Min Dead Weight, Moment Slab  γDCMIN   0.9 

 Recommended LRFD resistance factors for strength limit state design of the GRS wall foundations and abutment foundations, from LRFD Tables 10.5.5.2.2‐1 and 11.5.7‐1, are presented in the following table.  

 RESISTANCE FACTORS – STRENGTH I 

Foundation Resistance Type 

Method/Condition  Resistance Factor () 

Abutments 

Bearing  Footing on Rock  0.45 

Sliding  Tremie Concrete on Rock  0.8 

Sliding  Granite Masonry on Tremie Concrete  0.8 

GRS Walls 

Bearing  Nominal Vertical Capacity of Foundation bearing on GRS Wall  0.45 

Bearing  GRS Walls bearing on Soil  0.65 

 Resistance factors for service and extreme limit state design should be taken as 1.0.   

Page 13: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

 5.4 GRS WALLS 

5.4.1 Wall Loading  A moment slab is proposed to support the sidewalk above the GRS wall and to resist impact loads from the guard rails.  Stantec evaluated the guard rail and moment slab system and provided loading data for GZA’s use  in GRS wall design.   The Strength  I  factored  load case  resulted  in  the maximum  factored bearing pressure and served as a basis for GZA’s design.  

 5.4.2 Existing Subsurface Profile 

 GRS wall evaluations for the Kennebunk approach were based on the generalized soil conditions and properties  developed  using  the  two  test  borings  drilled  through  the  approach  soil  profile  and  the bedrock  elevation  encountered  in  BB‐KKKR‐101,  El.  ‐23.  This  represents  the  deepest  encountered bedrock beneath the approach embankment and will therefore be used for evaluation of global stability and settlement. The design subsurface profile is summarized in the table below.  

 DESIGN SUBSURFACE PROFILE AT GRS WALL 

Soil Unit 

Weight (lb/ft3) 

Friction Angle 

(degrees) 

Thickness (ft) 

Additional Comments 

Fill,  River Bottom Deposit 

120  29  21  Retained Fill and GRS Bearing Support 

Bedrock  145  ‐  ‐  Assumed at El ‐23 (BB‐KKKR‐101) 

 Possible beneficial impacts of the apparent granite masonry and timber cribbing encountered in borings BB‐KKKR‐101 and BB‐KKKR‐202 were ignored in the design.  

5.4.3 Bearing Resistance  The subsurface profile below the RSF at both GRS walls consists of the River Bottom Deposit and/or Fill. Therefore,  foundation design  is  controlled by  the engineering properties of  these  strata, which  are summarized below: 

 

Total Unit Weight = 120 pounds per cubic foot; 

Representative SPT N‐value = 7 blows per foot in Fill, 4 blows per foot in River Bottom Deposit; and  

Representative Internal Friction Angle (’) = 29 degrees (for soil anticipated in zone‐of‐influence of footing).   

Bearing resistance was considered and used  in the GRS wall external stability evaluation described  in Section 5.4.5 below. Recommendations are presented for preparation of the soil and placement of the RSF material in Section 7.1.  

Page 14: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

10 

5.4.4 Wall Materials and Geometry  The materials selected as a design basis for the GRS wall are summarized in the table below:  

DESIGN BASIS ‐ GRS WALL MATERIALS AND PROPERTIES 

GRS Wall Element MaineDOT Specification Item No. 

Material Unit Weight 

(lb/ft3) Friction Angle 

Reinforced Fill  703.02  Coarse Aggregate for Concrete, Grading A  135  38 

Reinforced Soil Foundation  703.22  Underdrain Backfill Material, Type C  135  40 

Facing Block  ‐‐  Redi‐Rock, 18” high x 28” deep  127  ‐‐ 

 Two GRS wall cross sections were analyzed.  The primary GRS wall section includes five courses of facing blocks above the RSF and below the moment slab.  The design developed for this section will be used where  there are  two or more  courses of  facing blocks, which  includes  the entire NW GRS wall and between approximately  Sta. 49+31  to 49+44 along  the  SW GRS wall.   The  second GRS wall  section includes  one  course  of  facing  blocks  between  the  RSF  and  moment  slab  and  will  extend  from approximately Sta. 49+08  to 49+31 along  the SW GRS wall.   The GRS wall heights were  selected  to position the bottom of the lowest facing block at least 2 feet below the top of the riprap.  5.4.5 Design Methodology  External stability analyses of the GRS walls were conducted in accordance with FHWA‐HRT‐11‐026 and included evaluation of direct sliding, bearing capacity, and global stability.    Internal stability analyses were  conducted  by  evaluating  the  vertical  load‐carrying  capacity  of  the GRS wall  and  the  required reinforcement strength of the geosynthetic.    The  internal  stability  analysis  was  conducted  using  the  Analytical  Method  prescribed  in FHWA‐HRT‐11‐026.  The design parameters used for internal stability evaluations are presented in the table below.  

INTERNAL STABILITY PARAMETERS 

Parameter  Label  Design Value 

Reinforcement Strength, Ultimate  Tf  4,800 plf 

Reinforcement Strength, 2 percent Strain  T2 percent  960 plf 

Reinforcement Spacing  Sv  9 inches 

GRS Soil Maximum Particle Size  dmax  1 inch 

 The  geosynthetic  reinforcement  was  evaluated  for  each  layer  under  both  strength  and  service conditions.    The results of our evaluations indicate that the GRS wall geometries listed below satisfy external (sliding and bearing) and internal stability requirements in accordance with FHWA‐HRT‐11‐026.    

Page 15: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

11 

7‐foot‐long reinforcement2 for a 7.5‐foot‐high GRS wall with moment slab above; and 

4.5‐foot‐long reinforcement for a 1.5‐foot‐high GRS wall with moment slab above.  Recommendations for construction of the walls are presented in Section 6.2.  

5.4.6 GRS Wall Global Stability  Global  stability was evaluated  for a  representative  cross‐section  taken  through  the  SW GRS wall at Sta. 49+39, where the wall height is 6 feet (four courses of facing). This section is approximately 6 feet away from the stone masonry wingwalls.  The design basis for acceptable performance was a minimum factor of safety against global instability of 1.3, corresponding approximately to a resistance factor of 0.75, which is specified in AASHTO Article 11.6.2.3 for embankments that do not support structures.    GZA utilized SLOPE/W® software to evaluate the reinforcement embedment necessary to achieve global stability of the GRS‐supported embankment.  GZA conducted iterative analyses and found that that a 9‐foot minimum geosynthetic reinforcing length was sufficient to achieve a factor of safety of 1.3 against global instability.    The  9‐foot  required  geosynthetic  reinforcing  length  for  global  stability  exceeds  the  7‐foot  length required  for  internal  and  external  (sliding  and  bearing),  and  is  therefore  the  controlling  condition.  Consequently, a 9‐foot minimum geosynthetic reinforcing length is recommended.  Global  stability was  not  evaluated  for  the  1.5‐foot‐high  GRS wall  section  because  the  variation  in geometry from the existing condition is minimal.    

5.4.7 GRS Wall Settlement  With limited widening or grade changes, significant load increases are not anticipated beneath the new GRS walls. Excavation and replacement of the  fill material will take place atop River Bottom Deposit which  is primarily granular  in nature. Therefore, GRS wall  settlement  is expected  to occur as elastic recompression and to occur rapidly during construction.    In order to assess the magnitude of settlement GZA used the Hough method (AASHTO Article 10.6.2.4), using  the  service  condition bearing pressure at  the base of  the GRS wall.   The maximum estimated settlement between initial placement of the GRS and completion of paving is approximately 2.5 inches.  Settlement was also evaluated between  completion of GRS  construction and  completion of paving, which is representative of the settlement that will be experienced by the moment slab. The estimated settlement for this case is approximately ½ inch or less. We anticipate that post‐construction settlement will be negligible.   

                                                            2 All GRS reinforcement lengths referenced in this report are measured from the back face of the precast facing blocks 

into the embankment. Total reinforcement lengths are longer due to extension between blocks or up the back face of blocks. 

Page 16: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

12 

5.5 EXISTING ABUTMENTS BEARING ON ROCK 

The existing masonry substructures are planned to be reused, and they are believed to be supported by concrete tremie seals bearing on bedrock.  Therefore, foundation design is controlled by the engineering properties of the bedrock.    GZA developed design engineering parameters for the bedrock mass based on evaluation of the rock types, RQD, and unconfined compression strength laboratory data.  RMR was evaluated in accordance with Table 10.4.6.4‐1 of the 2012 AASHTO LRFD Bridge Design Specifications, 6th Edition.  Semi‐empirical rock quality constants were interpolated from values in AASHTO 6th Edition Table 10.4.6.4‐4.  The current (7th  Edition)  of  the  AASHTO  Design  Specifications  does  not  include  the  Rock  Mass  Rating  (RMR) formulation included in the previous version (6th Edition).  However, articles C10.4.6.4 and 10.6.2.6.2 of the 7th Edition refer to RMR‐based design procedures for footings in rock, so the 6th Edition methodology was followed.  Two analyses were conducted, including one for Basalt and one for Metasiltstone/Metasandstone, since the RQD, strength and empirical rock quality constants are different between rock types.  The bedrock properties used in the bearing resistance evaluation are presented below:  

DESIGN BEDROCK PROPERTIES FOR BEARING RESISTANCE EVALUATION 

Rock Type  RQD   

όpercent) 

Unconfined Compressive Strength (ksi) 

Rock Mass Rating (RMR) 

m  s 

Basalt  90  6.0  48  0.42  0.00018 

Metasiltstone / Metasandstone 

34  11.8  42  0.24  0.000066 

 Nominal and  factored bearing  resistances were developed  for both  rock  types using  the RMR‐based empirical correlation presented in “Foundations on Rock,” by Duncan Wyllie and are presented in the table below.    

FOUNDATION BEARING RESISTANCE 

Rock Type Nominal Bearing Resistance (ksf) 

Factored Bearing Resistance (ksf) 

Basalt  80  36 

Metasiltstone/Metasandstone  90  40 

 The Basalt and Metasandstone/Metasiltstone properties and resistance values correspond to the rock encountered at Abutments 1 and 2, respectively. However, considering that the Basalt occurs as dikes and the extent and  location of these features cannot be assessed with the available coring data,  it  is recommended that the evaluations be based on the lower bearing resistance available for the Basalt. Based on a  review of  the Substructure Reuse Memo prepared by Stantec dated March 2, 2015,  the maximum factored bearing pressure at the base of the tremie seal with the replacement superstructure will  be  approximately  29  ksf.    Therefore,  bearing  resistance  is  suitable  to  support  the  new superstructure.  LRFD Article 10.6.2.4.4 indicates that footings bearing on rock with an RMR‐based rock quality of Fair or better and designed using LRFD methods are generally anticipated to experience ½ inch or less of elastic settlement. 

Page 17: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

13 

 5.6 LATERAL EARTH PRESSURE 

The  existing  granite masonry  abutments may not  experience  lateral movement under  the  imposed lateral loads.  Therefore, they should be analyzed using at‐rest lateral earth pressures.   5.7 SEISMIC DESIGN CONSIDERATIONS 

The new superstructure will be supported on the existing abutments bearing on bedrock.  Therefore, in general  accordance  with  LRFD  Table  C3.10.3.1,  the  bridge  should  be  assigned  to  Site  Class  B.  Recommended seismic design parameters are presented in Section 6.1.  5.8 FROST PENETRATION 

Existing Fill soils and/or River Bottom Deposits are anticipated to be present at the GRS walls.  Based on the MaineDOT BDG, Section 5.2.1, the Freezing Index for the site is 1,250, and with moderate moisture content (±20 percent) soils, the estimated depth of frost penetration is 5 feet.    As discussed previously, the GRS wall design is based on a reduced frost embedment depth of 2 feet, which will be provided by embedding the entire RSF below the bottom of a minimum 2‐foot‐thick riprap layer at the toe of the walls.  

6.0 RECOMMENDATIONS 

6.1 SEISMIC DESIGN 

The United States Geological Survey online Design Maps Tool was used to develop parameters for bridge design. Based on  the  site  coordinates,  the  software provided  the  recommended AASHTO Response Spectra (Site Class B) for a 7 percent probability of exceedance in 75 years.  These results are summarized for the site as follows:  

SITE CLASS B SEISMIC DESIGN PARAMETERS 

Parameter  Design Value 

Fpga  1.0 

Fa  1.0 

Fv  1.0 

As (Period = 0.0 sec)  0.079 g 

SDs (Period = 0.2 sec)  0.169 g 

SD1 (Period = 1.0 sec)  0.052 g 

 Per AASHTO Article 4.7.4.2, single span bridges need not be analyzed for seismic loads, but the minimum requirements for superstructure connections and support lengths as specified in AASHTO Articles 4.7.4.4 and 3.10.9 apply.    

Page 18: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

14 

6.2 GRS WALL RECOMMENDATIONS 

6.2.1 RSF Design  

The RSF will consist of open‐graded RSF backfill, encapsulated in non‐woven Separation Geotextile, with a mid‐depth layer of woven geotextile reinforcement. RSF geometry, materials and design parameters are shown on Figure 3 and described below:  

The  RSF materials  and  construction  shall meet  the  requirements  of  Special  Provision  (SP)  203, Reinforced Soil Foundation Backfill.  

The RSF will extend from the back of the reinforcement to a point slightly in front of the outside face of the blocks.  Where there is a single row of blocks, the RSF is 1.5 feet thick and will extend 1.5 feet beyond the face of the blocks.  Where there are two or more rows of blocks, the RSF is 2.5 feet thick and will extend 2.5 feet in front of the blocks.   

The top of the RSF will be beneath at least 2 feet of riprap.  

RSF backfill will consist of MaineDOT Specification 703.22, Underdrain Backfill, Type C.  

Mid‐depth reinforcement shall consist of biaxial woven polypropylene geotextile with an ultimate reinforcement strength of 4,800.  

The RSF shall be completely encapsulated  in non‐woven Separation Geotextile, with a minimum overlap  of  3  feet  at  geotextile  edges.    Since  the  RSF  and  GRS  fill  have  very  similar  grain  size distributions, it is not necessary to provide separation between the RSF and the GRS.  

 6.1.2     GRS WALL DESIGN  The GRS wall will consist of open‐graded fill reinforced by woven polypropylene geotextile, with precast modular concrete facing blocks, and it will be constructed over the RSF. GRS geometry, materials and design parameters are shown on Figure 3 and described below:  

GRS wall materials and construction shall be  in accordance with SP 635, Geosynthetic Reinforced Soil Wall. 

The GRS reinforcement shall meet the requirements presented in the table below.    

GEOSYNTHETIC REINFORCEMENT REQUIREMENTS 

Wall Height Base Width of GRS 

Reinforcement, B (feet)Reinforcement Spacing, SV 

(inches) 

One Course of Blocks (1.5 feet)  4.5  9 

Two or more Courses of Blocks (3 feet or more)  9  9 

 

Reinforced soil placed 2 feet or more behind the back side of concrete facing blocks shall meet the gradation  requirements  of  MaineDOT  Specification  703.02,  Coarse  Aggregate  for  Concrete, Grading A.   

Reinforced soil material placed within 2 feet of the back side of concrete facing blocks will meet the requirements provided for RSF (MaineDOT Specification 703.22, Underdrain Backfill, Type C).  

Page 19: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

15 

Reinforced soil shall be placed and compacted in accordance with the requirements of SP 203, Open Graded  Backfill  and  SP  635,  Geosynthetic  Reinforced  Soil  Wall.  Hand‐operated  compaction equipment is required within 2 feet of the back of the wall face. 

Precast concrete facing blocks will be 18 inches tall, a minimum of 28 inches deep, and shall meet the requirements of SP 635, Concrete Facing Blocks and SP 635, Geosynthetic Reinforced Soil Wall. The facing blocks shown on Figure 3 are 46‐1/8 inches long, corresponding to the dimensions of a standard Redi‐Rock® precast concrete modular block. 

Geosynthetic reinforcement will consist of biaxial woven polypropylene geotextile with an ultimate reinforcement strength of 4,800 plf and a reinforcement strength of 960 plf at two percent strain.  For Mirafi HP570 geotextile, this allows the material to be oriented either machine direction (MD) or cross direction (CD). 

Geosynthetic  reinforcement placed between blocks will  cover a minimum of 85 percent  (2  feet measured horizontally) of the width of the facing block to the front face of the wall. 

Geosynthetic reinforcement placed at mid‐height behind blocks will be wrapped 9 inches up along the backside of the facing block prior to placing the backfill above. 

6.3 ABUTMENTS 

Based  on  our  evaluations,  the  factored  bearing  resistance  of  the  abutments  bearing  on  bedrock  is greater than the maximum factored bearing pressure with the new superstructure.  Therefore, bearing resistance of  the existing abutments  is suitable. The existing substructures should also be evaluated using the following load and resistance parameters:  

Recommended soil properties for existing abutment backfill soils are as follows: 

- Internal Friction Angle of Soil = 29° 

- Soil Total Unit Weight = 120 pcf 

- Coefficient of At‐Rest Earth Pressure, Ko = 0.52 

Live load surcharge should be applied as a uniform lateral surcharge pressure using the equivalent fill  height  (Heq)  values  developed  in  accordance  with  AASHTO  Article  3.11.6.4  based  on  the abutment/wingwall height and distance from the wall backface to the edge of traffic. 

Resistance against sliding should be assessed based on AASHTO Table 3.11.5.3‐1, using a resistance factor  of  0.8  for  the  strength  case.    Recommended  nominal  and  factored  sliding  resistance coefficients are as follows: 

- Cast‐in‐place tremie seal on rock: Nominal = 0.7, Factored = 0.56 

- Dressed Granite Masonry on Tremie Seal: Nominal = 0.6, Factored = 0.48 

- Dressed Granite Masonry on Dressed Granite Masonry: Nominal = 0.6, Factored = 0.48  

Page 20: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

16 

7.0 CONSTRUCTION CONSIDERATIONS        

This  section  provides  guidance  regarding  quality  control,  excavation,  dewatering,  and  foundation subgrade preparation and protection.  These items are given in the paragraphs that follow.  7.1 EXCAVATION, TEMPORARY LATERAL SUPPORT AND DEWATERING 

Excavations  for  the GRS wall are anticipated  to  range  from 2  to 12.5  feet below existing pavement grades, extending as deep as approximately El. ‐2 adjacent to the abutment.  It is our understanding that the retaining walls will be constructed within single‐lane closures.    In areas where sufficient space  is available and water conditions permit, the excavation slopes may consist of sloped, open cuts. This will likely  be  limited  to  the  single‐course  portion  of  the  SW GRS wall.    It  is  anticipated  that  sheet  pile excavation  support will be  required  for  the  remainder of  the SW GRS wall and  the NW GRS wall  to maintain  a  single  lane  of  traffic.  However,  the  potential  for  obstructions  should  be  considered  in selection of  the excavation  support  system, and overexcavation and/or partial demolition of buried structural remnants may be needed to install sheeting to the required depths. In all cases, temporary excavations should comply with OSHA excavation safety requirements.   Considering  the proximity of  the excavations  to  the  river water  level, management of water will be related to tidal conditions. The deepest excavation level for the RSF will be about half way between MTL and MLW.  Therefore, the deepest RSF bearing level will only be accessible in‐the‐dry for a few hours of each  tide  cycle.    The base of  the RSF  should be  cut  smooth prior  to placing  the RSF,  and  loose or otherwise unsuitable material  should be  removed prior  to placement of Separation Geotextile.  It  is recommended  that  final  preparation  of  the  RSF  bearing  surface  be  completed  in‐the‐dry  to  allow observation of  the prepared  surface by  the Geotechnical Engineer, and  that  fill  compaction also be completed in‐the‐dry.    Timber  cribbing  and/or  granite  masonry  were  encountered  at  elevations  ranging  between approximately  El.  ‐1  and  El.  1.  Therefore,  the  contractor  should  be  prepared  to  encounter  these materials  and/or  other  obstructions  at  or  above  bearing  levels  for  the RSF.   Where  present,  these materials should be removed to a depth of at least 3 inches below the design bottom of RSF elevation.  The  Separation Geotextile  should be  placed directly over  the overexcavated  areas,  and RSF  should extend down to the geotextile level.  It is anticipated that it will be very difficult to dewater excavations that extend below tide level.  One option is to work around the tides to complete the work in‐the‐dry.  Alternatively, sheet pile cofferdams could be installed to provide a partial seepage cutoff, such that dewatering could be accomplished using sumps and pumps in the base of the excavation.  The contractor should be responsible for controlling groundwater, surface runoff, tidal inflow, infiltration and water from all other sources by methods which preserve  the undisturbed  condition of  the  subgrade and permit  foundation  construction  in‐the‐dry.  Discharge of pumped  groundwater  and  river water  should  comply with  all  local,  State,  and  federal regulations.    7.2 REUSE OF ON‐SITE MATERIALS 

Fill materials  required  for  this project consist of processed, angular gravel materials and  riprap. The encountered soils are not anticipated to meet gradation requirements for these materials. 

Page 21: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

17 

 Based on  the gradation analyses,  the  fill does not meet MaineDOT specifications  for Granular Borrow and/or Granular Borrow for Underwater Backfill or structural backfill.  The material is considered suitable for use as Common Borrow.    If  the  contractor  wishes  to  reuse  excavated  material  as  embankment  fill  or  in  other  areas,  we recommend that the proposed material be stockpiled and tested for grain size distribution.  Stockpiled materials meeting the appropriate MaineDOT specifications may be reused on the project.   P:\09 Jobs\0025800s\09.0025898.00 ‐ MDOT Kennebunk\Report\Final Rpt\FINAL 25898 Lanigan Bridge Report 06‐02‐16.docx

Page 22: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

 

FIGURES   

Page 23: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Copyright:© 2013 National Geographic Society, i-cubed

© 20

16 - G

ZA G

eoEn

viron

menta

l, Inc

. P:\0

9 Job

s\002

5800

s\09.0

0258

98.00

- MDO

T Ken

nebu

nk\Fi

gures

-CAD

\Figu

re 1 -

Locu

s Plan

.mxd

, 4/6/

2016

, 2:04

:00 PM

, nich

olas.w

illiams

1FIGURE

09.002598.0004/06/2016

RJMARBNVW

CLSNVW

STANTEC

1 in = 2,000 ft

MATHEW J. LANIGAN BRIDGE #2230MAINEDOT WIN 22504.00

KENNEBUNK-KENNEBUNKPORT, MAINE

LOCUS PLAN

40 2,000 4,0001,000

Feet

SITE

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZAGEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR THE USE BY GZA'S CLIENT ORTHE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THEDRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATIONOR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA, ANY TRANSFER, REUSE, OR MODIFICATIONTO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THEUSER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

PREPARED FOR:

SOURCE : THIS MAP CONTAINS THE ESRI ARCGIS ONLINE USA TOPOGRAPHIC MAPSERVICE, PUBLISHED DECEMBER 12, 2009 BY ESRI ARCIMS SERVICES AND UPDATED AS

NEEDED. THIS SERVICE USES UNIFORM NATIONALLY RECOGNIZED DATUM AND CARTOGRAPHYSTANDARDS AND A VARIETY OF AVAILABLE SOURCES FROM SEVERAL DATA PROVIDERS

DATE:DESIGNED BY:PROJ MGR:

PROJECT NO.DRAWN BY:REVIEWED BY:

REVISION NO.SCALE:CHECKED BY:

PREPARED BY: GZA GeoEnvironmental, Inc.

Engineers and Scientistswww.gza.com

Page 24: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program
andrew.blaisdell
Text Box
2
andrew.blaisdell
Text Box
2
Page 25: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program
andrew.blaisdell
Text Box
3
Page 26: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

 

APPENDIX A – LIMITATIONS 

Page 27: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

A‐1 

GEOTECHNICAL LIMITATIONS  Use of Report  1.  GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our 

Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use  of  this  report,  in whole  or  in  part,  at  other  locations,  or  for  other  purposes, may  lead  to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party’s sole risk, and without any liability to GZA. 

 Standard of Care  2.  GZA’s findings and conclusions are based on the work conducted as part of the Scope of Services set 

forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional  opinions  concerning  the  limited  data  gathered  during  the  course  of  our  work.  If conditions other  than  those described  in  this  report are  found at  the  subject  location(s), or  the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions .   

  3.  GZA’s services were performed using the degree of skill and care ordinarily exercised by qualified 

professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.   

 4.  In conducting our work, GZA  relied upon certain  information made available by public agencies, 

Client and/or others.  GZA did not attempt to independently verify the accuracy or completeness of that information.  Inconsistencies in this information which we have noted, if any, are discussed in the Report.    

 Subsurface Conditions  5.  The  generalized  soil  profile(s)  provided  in  our  Report  are  based  on  widely‐spaced  subsurface 

explorations  and  are  intended  only  to  convey  trends  in  subsurface  conditions.  The  boundaries between strata are approximate and  idealized, and were based on our assessment of subsurface conditions.   The composition of strata, and the transitions between strata, may be more variable and more complex  than  indicated. For more  specific  information on  soil conditions at a  specific location  refer  to  the  exploration  logs.    The  nature  and  extent  of  variations  between  these explorations may not become evident until further exploration or construction.  If variations or other latent  conditions  then  become  evident,  it will  be  necessary  to  reevaluate  the  conclusions  and recommendations of this report. 

 6.  In preparing this report, GZA relied on certain  information provided by the Client, state and  local 

officials, and other parties referenced therein which were made available to GZA at the time of our evaluation.    GZA  did  not  attempt  to  independently  verify  the  accuracy  or  completeness  of  all information reviewed or received during the course of this evaluation. 

 

Page 28: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

A‐2 

7.  Water level readings have been made in test holes (as described in this Report) and monitoring wells at  the  specified  times  and  under  the  stated  conditions.    These  data  have  been  reviewed  and interpretations  have  been made  in  this  Report.    Fluctuations  in  the  level  of  the  groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered  in the course of the work may differ from  that indicated in the Report. 

 8.  GZA’s services did not include an assessment of the presence of oil or hazardous materials at the 

property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property. 

 9.  Recommendations  for  foundation  drainage,  waterproofing,  and  moisture  control  address  the 

conventional geotechnical engineering aspects of seepage control. These  recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.  

 Compliance with Codes and Regulations  10. We used reasonable care  in  identifying and  interpreting applicable codes and  regulations. These 

codes  and  regulations  are  subject  to  various,  and  possibly  contradictory,  interpretations.  Compliance with codes and regulations by other parties is beyond our control.   

 Cost Estimates  11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes.  

These estimates may involve approximate quantity evaluations.  Note that these quantity estimates are not  intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information.  Actual costs may vary over time and could be significantly more, or less, than stated in the Report.   

 Additional Services  12. GZA  recommends  that we be  retained  to provide  services during  any  future:  site observations, 

design, implementation activities, construction and/or property development/redevelopment.  This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications  to our design; and  iv) assess  the consequences of changes  in  technologies and/or regulations.  

 

Page 29: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

 

APPENDIX B – BB‐KKKR‐100 SERIES TEST BORING AND PROBE LOGS

Page 30: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program
Page 31: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

1D

2D

R1

MD

24/4

24/18

60/46

24/0

0.5 - 2.5

4.5 - 6.5

9.5 - 14.5

20.5 - 22.5

6/5/4/3

3/8/13/24

7/8/3/2

9

21

11

14

32

17

SSA

26

30

a75

RCA

NQ-2

SPUN

13

15

15

16

15

9.8

6.1

0.6

-10.3

4" Pavement0.3

Brown, dry, medium dense, fine to coarse SAND, somegravel, old pavement, (Fill).

4.0

Brown, moist, dense, gravelly fine to coarse SAND, littlesilt, occasional cobble, (Fill).

a75 blows for 0.4 ft.Cobble from 7.4-8.0 ft bgs.Roller Coned ahead to 9.0 ft bgs.

9.5R1:GRANITE Block.R1:Core Times (min:sec/ft): 7:19, 4:27, 2:38, 5:00, 17:36

Pulled NW Casing, roller cone ahead with large rollercone to 16.0 ft bgs, set in HW Casing to 15.5 ft bgs.Spun HW Casing to 20.4 ft bgs.

20.4Bottom of Granite Wall.Mucky, fine Sandy SILT in wash.

G#263308A-1-a, SW-SM

WC=6.1%

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BB-KKKR-101Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) 10.1 Auger ID/OD: 5" Solid Stem

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/19/2014-11/19/2014 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: N 192342 E 956764 Casing ID/OD: HW & NW Water Level*: 16.0 ft bgs.

Hammer Efficiency Factor: 0.908 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

400-600# down pressure on Core Barrel.Bedrock core descriptions developed by GZA during observation of core samples in Bangor, ME on 10/2/15.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-KKKR-101

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 2

Page 32: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

25

30

35

40

45

50

3D

4D

R2

R3

24/14

24/17

60/60

60/60

25.0 - 27.0

30.0 - 32.0

32.8 - 37.8

37.8 - 42.8

WOH/WOH/WOH/2

WOH/1/3/4

RQD = 90%

RQD = 90%

---

4 6

30

69

32

21

19

18

14

b80NQ-2

-17.9

-22.7

-32.7

Grey, wet, very loose, Silty fine to coarse SAND, littlegravel, with shells, (Marine).

28.0

Grey, wet, medium dense, Silty fine to coarse SAND,with wood.

b80 blows for 0.8 ft.

32.8Top of Bedrock at Elev. -22.7 ft.R2:Hard, fresh, fine to medium grained, gray/black,BASALT. Joints are very close to moderately spaced,low angle, planar, rough, fresh to discolored, tight topartially open. One high angle joint.Rock Mass Quality = GoodR2:Core Times (min:sec/ft): 6:00, 5:21, 4:40, 4:11, 5:34100% Recovery

R3:Hard, fresh, fine to medium grained, gray/black,BASALT. Joints are very close to moderately spaced,low angle to moderately dipping, planar, rough, fresh,tight to partially open.Rock Mass Quality = GoodR3:Core Times (min:sec/ft): 6:00, 5:21, 4:40, 4:11, 5:34100% Recovery

42.8Bottom of Exploration at 42.80 feet below ground

surface.

G#263309A-4, SC-SMWC=47.5%

R#2qp=870.9 ksf

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BB-KKKR-101Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) 10.1 Auger ID/OD: 5" Solid Stem

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/19/2014-11/19/2014 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: N 192342 E 956764 Casing ID/OD: HW & NW Water Level*: 16.0 ft bgs.

Hammer Efficiency Factor: 0.908 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

400-600# down pressure on Core Barrel.Bedrock core descriptions developed by GZA during observation of core samples in Bangor, ME on 10/2/15.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-KKKR-101

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 2 of 2

Page 33: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

1D

2D

R1

24/9

24/13

54/54

3.0 - 5.0

8.0 - 10.0

11.5 - 16.0

WOH/WOH/WOR/WOR

2/2/2/3

RQD = 24%

---

4 6

6

7

11

2

4

5

16

7

2

12

9

a100NQ-2

-27.2

-31.7

Black, very loose, fine to coarse SAND, some silt, muck,shells, wood, (Marine).

Black, medium dense, fine to coarse SAND, some Silt,little Gravel, trace Clay, muck, shells, wood (Marine).

a100 blows for 0.5 ft.11.5

Top of Bedrock at Elev. -27.2 ft.R1:Very hard, fresh, aphanitic, purple to white and graybanded, METASILTSTONE. Primary joints are veryclose to close, low angle, planar, rough, fresh, tight topartially open. Secondary joints are close, high angle,planar, rough, fresh, tight.Rock Mass Quality = Very PoorR1:Core Times (min:sec/ft): 5:18, 4:29, 5:51, 10:37,14:00100% RecoveryCore Blocked, no water return.

16.0Bottom of Exploration at 16.00 feet below ground

surface.

G#263310A-1-b, SC-SM

WC=62.9%

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BB-KKKR-102Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) -15.7 Auger ID/OD: N/A

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/20/2014-11/20/2014 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: N 192363 E 956772 Casing ID/OD: NW Water Level*: River Boring

Hammer Efficiency Factor: 0.908 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

400-600# down pressure on Core Barrel.26.0 ft from Bridge Deck (El. 10.3') to Ground.Bedrock core descriptions developed by GZA during observation of core samples in Bangor, ME on 10/2/15.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-KKKR-102

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 34: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

1D

MDR1

R2

R3

24/17

1.2/048/33

26.4/26.4

24/24

0.0 - 2.0

5.0 - 5.15.1 - 9.1

9.1 - 11.3

11.3 - 13.3

1/2/2/3

50(1.2")RQD = 50%

RQD = 23%

RQD = 0%

4

---

6 1

WOH

3

7

60

NQ-2-20.5

-28.7

Grey, wet, medium dense, silty fine to coarse SAND,trace gravel, trace Clay, shells (Marine).

Failed sample attempt.5.1

Top of Bedrock at Elev. -20.5 ft.R1:Very hard, fresh, aphanitic, purpleMETASILTSTONE. Joints are very close to moderatelyspaced, low angle to moderately dipping, planar, rough,fresh, tight.Rock Mass Quality = PoorR1:Core Times (min:sec/ft): 8:42, 6:16, 0:10, 5:4069% RecoveryCore Barrel dropped from 7.1-8.3 ft bgs.R2:Very hard, fresh to slightly weathered, aphanitic, grayand white banded, METASANDSTONE. Joints are veryclose to close, low angle to moderately dipping, planar,rough, fresh to discolored, tight to partially open. Onehigh angle joint.Rock Mass Quality = Very PoorR2:Core Times (min:sec/ft): 9:03, 16:18, 6:00100% RecoveryCore Blocked, no water return.R3:Very hard, fresh, aphanitic, purple and light green,METASANDSTONE. Joints are very close to close, highangle, planar, rough, discolored, tight to partially open.Rock Mass Quality = Very PoorR3:Core Times (min:sec/ft): 10:56, 20:00100% RecoveryCore Blocked, no water return.

13.3Bottom of Exploration at 13.30 feet below ground

surface.

G#263311A-4, SC-SMWC=42.7%

R#1qp=1711.2 ksf

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BB-KKKR-103Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) -15.4 Auger ID/OD: N/A

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/20/2014-11/21/2014 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: N 192388 E 956805 Casing ID/OD: NW Water Level*: River Boring

Hammer Efficiency Factor: 0.908 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

400-600# down pressure on Core Barrel.25.7 ft from Bridge Deck (El. 10.3') to Ground.Bedrock core descriptions developed by GZA during observation of core samples in Bangor, ME on 10/2/15.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-KKKR-103

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 35: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

1D

R1

24/18

60/60

0.0 - 2.0

3.5 - 8.5

12/7/4/9

RQD = 40%

11 17 7

57

78

a100NQ-2

-11.9

-16.9

Grey-brown, wet, medium dense, Silty fine to coarseSAND, some gravel, shells, mussels, (Marine).

a100 blows for 0.5 ft.3.5

Top of Bedrock at Elev. -11.9 ft.R1:Very hard, fresh to slightly weathered, aphanitic,purple and light green, METASANDSTONE. Joints areclose to moderately spaced, high angle, undulating,rough, discolored, tight to partially open. Highlyfractured from 4.2'-6.4' bgs, resulting in a recoveryconsisting of gravel.Rock Mass Quality = PoorR1:Core Times (min:sec/ft): 3:00, 3:36, 12:32, 6:00, 4:00100% RecoveryNo water return

8.5Bottom of Exploration at 8.50 feet below ground

surface.

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BB-KKKR-104Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) -8.4 Auger ID/OD: N/A

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 12/1/2014-12/1/2014 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: N 192402 E 956824 Casing ID/OD: NW Water Level*: River Boring

Hammer Efficiency Factor: 0.908 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

400-600# down pressure on Core Barrel.18.6 ft from Bridge Deck (El. 10.2') to Ground.Bedrock core descriptions developed by GZA during observation of core samples in Bangor, ME on 10/2/15.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-KKKR-104

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 36: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

1D

R1

R2

24/18

54/54

48/48

0.0 - 2.0

2.5 - 7.0

7.0 - 11.0

20/22/6/14

RQD = 7%

RQD = 18%

28 42 29

25

a75NQ-2

-10.1

-18.6

Grey, wet, dense, Gravelly fine to coarse SAND, someSilt, shells, mussels, (Marine).

a75 blows for 0.5 ft.2.5

Top of Bedrock at Elev. -10.1 ft.R1:Very hard, fresh, aphanitic, purple and light green,METASANDSTONE. Primary joints are very close toclose, low angle, planar, rough, fresh to discolored, tightto partially open. Secondary joints are close tomoderately close, high angle, planar, rough, discolored,tight.Rock Mass Quality = Very PoorR1:Core Times (min:sec/ft): 5:25, 6:35, 4:27, 14:01,20:00100% RecoveryCore Blocked, no water return.R2:Very hard, fresh, aphanitic, purple and light green,METASANDSTONE. Primary joints are very close toclose, high angle, planar, rough, fresh to discolored, tight.Secondary joints are close, low angle, planar, rough,fresh to discolored, partially open. Joints are extremelyclose from 9.5'-11.0' bgs.Rock Mass Quality = Very PoorR2:Core Times (min:sec/ft): 5:34, 3:58, 4:44, 12:40100% RecoveryCore Blocked, no water return.

11.0Bottom of Exploration at 11.00 feet below ground

surface.

G#263312A-2-4, SC-SM

WC=15.8%

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BB-KKKR-105Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) -7.6 Auger ID/OD: N/A

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/19/2014-11/20/2014 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: N 192399 E 956842 Casing ID/OD: NW Water Level*: River Boring

Hammer Efficiency Factor: 0.908 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

400-600# down pressure on Core Barrel.17.9 ft from Bridge Deck (El. 10.3') to Ground.32" Concrete and steel Bridge Deck.Bedrock core descriptions developed by GZA during observation of core samples in Bangor, ME on 10/2/15.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-KKKR-105

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 37: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

SSA

6.3

Power Auger Probe - No Sampling.

4.0Bottom of Exploration at 4.00 feet below ground

surface.REFUSAL

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BP-KKKR-101Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) 10.3 Auger ID/OD: 5" Dia.

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: N/A

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: N/A

Date Start/Finish: 11/19/2014-11/19/2014 Drilling Method: Solid Stem Auger Core Barrel: N/A

Boring Location: N 192356 E 956761 Casing ID/OD: N/A Water Level*: None Observed

Hammer Efficiency Factor: Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BP-KKKR-101

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 38: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

NW

-12.4

Power Auger Probe - No Sampling.

1.6Bottom of Exploration at 1.60 feet below ground

surface.REFUSAL, very good bounce.

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BP-KKKR-102Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) -10.8 Auger ID/OD: N/A

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: N/A

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 300#/16"

Date Start/Finish: 11/19/2014-11/19/2014 Drilling Method: Cased Wash Boring Core Barrel: N/A

Boring Location: N 192352 E 956777 Casing ID/OD: NW Water Level*: River Boring

Hammer Efficiency Factor: Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

21.1 ft from Bridge Deck (El. 10.3') to Ground.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BP-KKKR-102

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 39: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

NW

-17.7

Power Auger Probe - No Sampling.

8.9Bottom of Exploration at 8.90 feet below ground

surface.REFUSAL

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BP-KKKR-103Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) -8.8 Auger ID/OD: N/A

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: N/A

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 300#/16"

Date Start/Finish: 11/19/2014-11/19/2014 Drilling Method: Cased Wash Boring Core Barrel: N/A

Boring Location: N 192378 E 956813 Casing ID/OD: NW Water Level*: River Boring

Hammer Efficiency Factor: Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

19.1 ft from Bridge Deck (El. 10.3') to Ground.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BP-KKKR-103

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 40: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

NW

-8.4

Power Auger Probe - No Sampling.

1.3Bottom of Exploration at 1.30 feet below ground

surface.REFUSAL

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BP-KKKR-104Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) -7.1 Auger ID/OD: N/A

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: N/A

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 300#/16"

Date Start/Finish: 11/19/2014-11/19/2014 Drilling Method: Cased Wash Boring Core Barrel: N/A

Boring Location: N 192392 E 956832 Casing ID/OD: NW Water Level*: River Boring

Hammer Efficiency Factor: Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

17.4 ft from Bridge Deck (El. 10.3') to Ground.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BP-KKKR-104

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 41: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

SSA-8.0

Power Auger Probe - No Sampling.

0.9Bottom of Exploration at 0.90 feet below ground

surface.REFUSAL

Maine Department of Transportation Project: Mathew J. Lanigan Bridge #2230 carriesRoute 9 over the Kennebunk River

Boring No.:BP-KKKR-105Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: MaineDOT Elevation (ft.) -7.1 Auger ID/OD: 5" Dia.

Operator: Giles/Daggett/Giles Datum: NAVD88 Sampler: N/A

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: N/A

Date Start/Finish: 12/1/2014-12/1/2014 Drilling Method: Solid Stem Auger Core Barrel: N/A

Boring Location: N 192409 E 956835 Casing ID/OD: N/A Water Level*: None Observed

Hammer Efficiency Factor: Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

17.3 ft from Bridge Deck (El. 10.2') to Ground.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BP-KKKR-105

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 42: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

 

APPENDIX C – BB‐KKKR‐200 SERIES TEST BORING LOGS 

Page 43: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program
Page 44: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

1D

2D

24/17

24/13

0.5 - 2.5

3.0 - 5.0

9-14-7-6

2-2-1-3

21

3

21

3

7.8

5.3

3.3

-PAVEMENT-0.5

Dark brown, moist, medium dense, fine to coarse SAND,some Gravel, little Silt.-FILL- (SM)

3.0Light gray, moist, very loose, fine to medium SAND,little Silt, trace Gravel, with shell fragments.-FILL- (SM)

5.0Bottom of Exploration at 5.00 feet below ground

surface.

G#3A-1-bSM

G#4A-2-4SM

Maine Department of Transportation Project: Matthew J. Lanigan Bridge #2230over Kennebunk River

Boring No.:BB-KKKR-201Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: New England Boring Elevation (ft.) 8.3 Auger ID/OD: --

Operator: Tom Schaefer Datum: NAVD 88 Sampler: Split Spoon

Logged By: Blaine Cardali Rig Type: Truck Hammer Wt./Fall: 140/30

Date Start/Finish: 11/03/15-11/03/15 Drilling Method: Cased Wash Boring Core Barrel: --

Boring Location: N 192294 E 956714 Casing ID/OD: NW Water Level*: --

Hammer Efficiency Factor: 0.6 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

1. Hole terminated at 5.0' bgs after encountering a water service line. Boring location had been cleared, but service had been mismarked.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-KKKR-201

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 45: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0

5

10

15

20

25

1D

2D

3D

4D

5D

6D

7D

24/15

24/17

24/17

24/14

24/13

24/19

10/10

0.5 - 2.5

3.0 - 5.0

5.0 - 7.0

7.0 - 9.0

9.0 - 11.0

15.0 - 17.0

20.0 - 20.8

37-25-14-14

2-2-3-2

1-2-2-3

4-3-6-30

30-52-35-39

3-2-2-7

19-75/4"

39

5

4

9

87

4

R

39

5

4

9

87

4

PUSH

5

13

WASH

AHEAD

28

32

15

30

73

WASHAHEAD

8.0

6.0

-0.2

-6.4

-10.0

-11.3

-12.4

-13.5

-PAVEMENT-0.5

Dark brown, moist, dense, fine to coarse SAND, someGravel.-FILL- (SW-SP)

2.5

Light gray, moist, loose, fine SAND, some Silt, shellfragments.-FILL- (SM)

Light gray, wet, very loose, fine SAND, little Silt, shellfragments.-FILL- (SM)

Light gray, wet, loose, fine SAND, little Silt.-FILL- (SM)

8.7Encountered wood at 8.7' bgs.Wood - Probable Timber Cribbing.

Broke through wood at 14.9' bgs.

14.9Dark gray, wet, medium stiff, sandy CLAY.-RIVER BOTTOM DEPOSIT- (CL)

18.5Casing met refusal at 18.5' bgs; roller bit action indicatespossible boulder from 18.5'-19.8' bgs.

19.8Brown, wet, dense to very dense, fine SAND, some Silt,some Gravel.-POSSIBLE GLACIAL TILL/WEATHERED ROCK-(SP-SM)

20.9Split spoon refusal at 20.9' bgs. Roller cone from 20.9'-22.0' bgs. Slow roller cone progression; possible bedrock.

22.0Bottom of Exploration at 22.00 feet below ground

surface.

G#5A-2-4SM

G#6A-2-4SM

G#7A-2-4SM

Maine Department of Transportation Project: Matthew J. Lanigan Bridge #2230over Kennebunk River

Boring No.:BB-KKKR-202Soil/Rock Exploration Log

Location: Kennebunk-Kennebunkport, MaineUS CUSTOMARY UNITS PIN: 22504.00

Driller: New England Boring Elevation (ft.) 8.5 Auger ID/OD: --

Operator: Tom Schaefer Datum: NAVD 88 Sampler: Split Spoon

Logged By: Blaine Cardali Rig Type: Truck Hammer Wt./Fall: 140/30

Date Start/Finish: 11/03/15-11/03/15 Drilling Method: Cased Wash Boring Core Barrel: --

Boring Location: N 192298 E 956713 Casing ID/OD: NW Water Level*: 5.7'

Hammer Efficiency Factor: 0.6 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

1. Cased to 18.5' bgs; open to 22.0' bgs.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-KKKR-202

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 46: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

 

APPENDIX D – NORTHEAST GEOPHYSICAL SERVICES REPORT    

Page 47: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Northeast Geophysical Services 4 Union Street, Suite 3, Bangor, ME 04401 Phone: 207-942-2700 Fax: 207-942-8798

GROUND PENETRATING RADAR AND METAL DETECTION SURVEYS OF THE

MATHEW J. LANIGAN BRIDGE ABUTMENT SITES, KENNEBUNK AND KENNEBUNKPORT, MAINE

For:

GZA GeoEnvironmental, Inc.

January, 2016

Page 48: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Northeast Geophysical Services 4 Union Street, Suite 3, Bangor, ME 04401

January 20, 2016

GROUND PENETRATING RADAR AND METAL DETECTION SURVEYS OF THE MATHEW J. LANIGAN BRIDGE ABUTMENT SITES,

KENNEBUNK AND KENNEBUNKPORT, MAINE INTRODUCTION At the request of GZA GeoEnvironmental, Inc. ground penetrating radar (GPR) and electromagnetic metal detection (EM) surveys were conducted at both ends of the Mathew J. Lanigan Bridge that spans the Kennebunk River between Kennebunk and Kennebunkport, Maine. The objective of the surveys was to locate and determine the geometry of certain buried structural elements behind each of the main abutment structures. Of particular interest was the location, depth and thickness of a large buried reinforced concrete slab on the Kennebunkport end of the bridge. The surveys were conducted on November 3, 2015 by Mike Scully of Northeast Geophysical Services (NGS). This report summarizes the site conditions, methods used, and the results of the geophysical surveys. SITE LOCATION AND CONDITIONS The survey site includes the areas over and immediately adjacent to both abutments of the Mathew J. Lanigan bridge between Kennebunk and Kennebunkport, Maine. The bridge is a steel girder swing bridge built in 1933. Figure 1 shows the general layout of the areas adjacent to each end of the bridge as well as the results of the surveys. On both sides of the bridge the surveys were conducted over the entire width of the roadway and accessible portions of the sidewalks on either side of the roadway. On the Kennebunk (west) side of the bridge the surveys extended to 30 feet back from the steel plate on top of the concrete abutment wall. On the Kennebunkport (east) side of the bridge the surveys extended to 39 feet back from the steel plate on top of the concrete abutment wall. Weather conditions on the day of the surveys were amenable to the field work. Test borings were being conducted on the same day by a separate subcontractor and GZA personnel were on site to supervise the field activities. Traffic control was also provided by a separate subcontractor and alternate one-way traffic was employed to allow access to the busy roadway. METHODS AND INSTRUMENTATION EM-61 Metal Detector: A Geonics EM61-MK2 metal detector was used for the metal detection surveys. The EM61 is a portable time-domain instrument with a coincident transmitter/receiver coil and second parallel receiver coil for depth to target estimation and rejection of surface metal response. The instrument measures the secondary electromagnetic field response in milli-volts (mV). The EM61 is designed specifically to locate medium to large buried metal objects such as drums and tanks while being relatively insensitive to above-surface metallic objects such as fences, buildings and power lines. The technique is sensitive to conductive metal up to a depth of approximately 12 feet. The size and burial depth of the metal determine the strength of the response. EM data is digitally recorded on an Allegro CX field computer. Readings can be

Page 49: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Northeast Geophysical Services

2

triggered automatically (by time), manually, or if the wheel mode is used, readings can be recorded at regular intervals controlled by the rotation of the wheels. The wheel mode was used for the surveys at this site and readings were recorded every 0.62 feet along traverses spaced three feet apart. The results of the EM61 survey are shown on Figure 1. Ground Penetrating Radar (GPR): Ground penetrating radar utilizes high frequency radio waves to probe the subsurface. Radar waves are transmitted into the ground from an antenna that is pushed or pulled across the ground surface. In the subsurface, radar waves are reflected at interfaces of materials with contrasting dielectric properties. The returning signal is intercepted by a receiver and converted to a digital graphic image. The horizontal axis of the image is distance along the traverse. The vertical axis is two-way travel time of the radar pulses, in nanoseconds (ns) which can be converted to depth. Tanks, pipelines and other objects with rounded tops (boulders, tree roots, or segments of old foundations, for example) may show up on the profiles as hyperbola-shaped reflections. Tanks and pipelines usually appear on more than one survey line as hyperbolic reflectors on lines perpendicular to the tank or pipe axis and as horizontal reflectors on lines along the axis. The GPR instrument used was a GSSI, SIR-3000. A 400-MHz antenna was used with a time range set for 60 nanoseconds. At this setting the depth surveyed is approximately 10 feet. Field Survey Procedures: Survey ground grids were laid out on both sides of the bridge using measuring tapes and paint. This was done in four quadrants as access was made available by traffic control. The south side of each end of the bridge was marked and surveyed first, followed by the north side of each end. On the Kennebunk side of the bridge the grid extended to 30 feet west of the steel plate on top of the concrete abutment wall. On the Kennebunkport side of the bridge the grid extended to 39 feet east of the steel plate on top of the concrete abutment wall. The road centerline was used as zero north on the survey grid. EM61 readings were then recorded using the wheel mode at 0.62-foot intervals along lines spaced three feet apart in the east-west direction as shown on Figure 1. GPR profiles were recorded over lines spaced three feet apart in both the east-west and north-south grid directions. SURVEY RESULTS Figure 1 shows the site layout and the location and results of the EM and GPR surveys at the site. For the EM61 the figure indicates the distribution of metal within approximately 12 feet of the ground surface. The strength of the metal response shown is directly proportional to the total surface area of metal under the instrument and inversely proportional to the depth of the metal. Zero or very low metal responses are shown as small gray plus marks that also indicate the path of the traverses. Increasing metallic responses are indicated by colored blocks progressing from yellow to gold to red to black as shown in the explanation on the figure. On the Kennebunk side of the bridge the EM metal response is interpreted to be caused by reinforcing steel in the concrete sidewalks and the bridge abutment wall and by the steel plates at the contact between the bridge and abutment. There is an obvious halo effect of diminishing metal response with distance away from the abutment. Other than two small responses from the utility and light poles, there were no other significant metal anomalies that could be attributed to

Page 50: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Northeast Geophysical Services

3

other unseen metal-bearing objects. Figure 2 illustrates the significant features detected by the GPR surveys on the Kennebunk side of the bridge. There is a linear pipe-like reflector at about 2.5 feet deep that runs alongside the southerly sidewalk. This could be caused by a pipe or possibly by a structural feature such as the top of a buried wall. It appears to be non-metallic. Reinforcing steel in the concrete sidewalk can also be seen in the same figure. There is also a fairly large looking buried feature that appears to cross the road about 10-12 feet back from the bridge abutment. The nature of the fill material appears to be different on either side of this feature as can be seen on the figure. This is labeled on the figure as “Possible buried masonry structure”. The top of this feature is about 2 feet below grade and it appears to increase in width with depth from about a foot or so at the top to roughly four feet wide a few feet lower. On the Kennebunkport side of the bridge the EM response is also mainly caused by reinforcing steel in the bridge abutment and concrete walks, the steel plate at the end of the bridge, and also from the light and utility poles as shown on Figure 1. The buried reinforced concrete slab shows a muted response on the EM because of the burial depth. The slab showed up quite well on the GPR where you can see the top of the slab as well as the rebar in it as shown on Figures 3 and 4. The top of the slab is approximately 2.7 feet below the road surface. On Figure 4 the top of the concrete slab appears to drop down suddenly beneath the sidewalks on either end. This apparent drop is not real and is caused by the fact that the sidewalk surfaces rise several inches above the road surface. The top of the slab is actually flat. The westerly edge of the slab is approximately 3 to 3.5 feet east of the east edge of the curved steel plate on the bridge abutment at the center of the roadway and the slab is approximately 14 feet wide. The bottom of the slab does not show up clearly on the GPR profiles but it appears to be about 12” to 18” thick. The slab appears to have two layers of reinforcing steel in it, each with rebar at about 12” on center in a square grid pattern. An attempt was made to identify the location and pattern of steel rails in a concrete and steel rail counterweight on the Kennebunkport end of the bridge structure. Unfortunately there was too much steel in the structure for either the EM or GPR instruments used to identify individual rails within it. There is also a linear pipe-like reflector at about 1.5 to 2.0 feet deep that runs alongside the southerly sidewalk on this side of the bridge. Another shallow linear feature running between the signal light and the Operator’s House is most likely an electrical conduit. LIMITATIONS OF THE SURVEYS The EM61 metal detection survey provides an indication of where buried metal exists at the site surveyed. The Ground Penetrating Radar survey produces reflectors at interfaces of materials with contrasting dielectric properties. Both of these instruments provide indirect measurements of subsurface conditions. The actual cause of the features depicted on the figures can only be conclusively determined by direct observation.

Page 51: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

0 10 20 30 40Easting (Feet)

0 10 20 30 40

-20

-10

0

10

20

-20

-10

0

10

20

Nor

thin

g (F

eet)

-30 -20 -10 0Easting (Feet)

-30 -20 -10 0

-20

-10

0

10

20

Nor

thin

g (F

eet)

-20

-10

0

10

20

0 10 20

-100 mv to -10 mv-10 mv to 20 mv20 mv to 100 mv100 mv to 200 mv200 mv to 400 mv400 mv to 12,000 mvScale in Feet

EM61 Metallic Response in millivolts

Utility Pole

FIGURE 1

GEOPHYSICAL SURVEY MAP

MATHEW J. LANIGAN BRIDGE

KENNEBUNK-KENNEBUNKPORT, ME

For:

GZA GeoEnvironmental, Inc.

Surveyed: 11/03/2015 by:Northeast Geophysical Services

Operator'sHouse Bench Brick Walk

Brick Walk

Cro

ssw

alk

ConcreteWalkWooden Sidewalk

Concrete Walk

Street Light

Signal Light

KennebunkportKennebunk

Bridge

Linear GPR Reflector

Top of ConcreteBridge Abutment

Possible BuriedMasonry Structure

Linear GPR Reflector

Buried ReinforcedConcrete Slab

Page 52: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

App

roxi

mat

e D

epth

in F

eet

4.0

2.0

0

8.0

Profile Looking EastNorth South

6.0

App

roxi

mat

e D

epth

in F

eet

4.0

2.0

0

8.0

Profile Looking NorthWest East

6.0

MATHEW J. LANIGAN BRIDGEKENNEBUNK-KENNEBUNKPORT, ME

Figure 2. Example GPR profiles on Kennebunk side of bridge.

Line 6' West

Linear GPRReflector

Rebar inConcrete Sidewalk

Line 3' NorthTop of ConcreteBridge Abutmentwith Steel PlatePossible

Masonry StructureRoad Base Fill?

Page 53: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

App

roxi

mat

e D

epth

in F

eet

4.0

2.0

0

8.0

Profile Looking SouthEast West

6.0

Line 9' NorthTop of ConcreteBridge Abutmentwith Steel Plate

MATHEW J. LANIGAN BRIDGEKENNEBUNK-KENNEBUNKPORT, ME

Figure 3. Example GPR profile on Kennebunkport side of bridge.

ReinforcedConcrete Slab

Page 54: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

App

roxi

mat

e D

epth

in F

eet

4.0

2.0

0

8.0

Profile Looking West NorthSouth

6.0

MATHEW J. LANIGAN BRIDGEKENNEBUNK-KENNEBUNKPORT, ME

Figure 4. Example GPR profile on Kennebunkport side of bridge.

Line 9' East

Sidewalk SidewalkTop of Reinforced

Concrete Slab

Page 55: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

 

APPENDIX E – LABORATORY TEST RESULTS   

Page 56: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Station Offset Depth Reference G.S.D.C. W.C. L.L. P.I.

(Feet) (Feet) (Feet) Number Sheet % Unified AASHTO Frost

4.5-6.5 263308 1 6.1 SW-SM A-1-a 030.0-32.0 263309 1 47.5 SC-SM A-4 III8.0-10.0 263310 1 62.9 SC-SM A-1-b III0.0-2.0 263311 1 42.7 SC-SM A-4 III0.0-2.0 263312 1 15.8 SC-SM A-2-4 III

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification

is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

The "Frost Susceptibility Rating" is based upon the MaineDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

State of Maine - Department of TransportationLaboratory Testing Summary Sheet

Town(s): Kennebunk-KennebunkportBoring & Sample

BB-KKKR-102, 2D

Identification Number

BB-KKKR-101, 2D

Work Number: 22504.00

BB-KKKR-101, 4D

Classification

BB-KKKR-103, 1DBB-KKKR-105, 1D

NP = Non Plastic

1 of 1

Page 57: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Reference No.

263308

1 2 D e s e r t R d , F r e e p o r t M a i n e D O T T E S T I N G L A B O R A T O R I E S 2 1 9 H o g a n R d , B a n g o r

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: BRUCE WILDER

Location: OTHER

Sampled

11/12/2014

Received

3/24/2015

Miscellaneous Tests

Comments:

Station: Offset, ft: Dbfg, ft: 4.5-6.5

Boring No./Sample No.

BB-KKKR-101/2DSample Type: GEOTECHNICAL

Depth taken in tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water Content,

%

Description of Material Sampled at the Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Paper Copy: Lab File; Project File; Geotech File

Reported by: BRIAN FOGG Date Reported: 4/7/2015

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27, T 11)

3 in. [75.0 mm] 100.0

⅜ in. [9.5 mm] 74.4

¾ in. [19.0 mm] 91.9½ in. [12.5 mm] 79.7

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 64.9No. 4 [4.75 mm] 59.6No. 10 [2.00 mm] 46.2

1 in. [25.0 mm] 93.7

No. 20 [0.850 mm] 32.5No. 40 [0.425 mm] 21.4

No. 200 [0.075 mm] 10.7

No. 60 [0.250 mm] 16.5No. 100 [0.150 mm] 13.4

Wash MethodProcedure A

GEOTECHNICAL TEST REPORTCentral Laboratory

Consolidation (T 216)Trimmings, Water Content, %

Initial FinalVoidRatio

%Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

WIN/Town 022504.00 - KENNEBUNK, KENNEBUNK

Loss on Ignition (T 267)

Loss, %

H2O, %

Specific Gravity, Corrected to 20°C (T 100)

Liquid Limit @ 25 blows (T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Water Content (T 265), % 6.1

Page 58: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Reference No.

263309

1 2 D e s e r t R d , F r e e p o r t M a i n e D O T T E S T I N G L A B O R A T O R I E S 2 1 9 H o g a n R d , B a n g o r

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: BRUCE WILDER

Location: OTHER

Sampled

11/13/2014

Received

3/24/2015

Miscellaneous Tests

Comments:

Station: Offset, ft: Dbfg, ft: 30.0-32.0

Boring No./Sample No.

BB-KKKR-101/4DSample Type: GEOTECHNICAL

Depth taken in tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water Content,

%

Description of Material Sampled at the Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Paper Copy: Lab File; Project File; Geotech File

Reported by: BRIAN FOGG Date Reported: 4/9/2015

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 99.3

¾ in. [19.0 mm] 100.0½ in. [12.5 mm] 99.9

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 98.0No. 4 [4.75 mm] 97.1No. 10 [2.00 mm] 93.6

1 in. [25.0 mm]

No. 20 [0.850 mm]No. 40 [0.425 mm] 54.8

No. 200 [0.075 mm] 38.1

No. 60 [0.250 mm]No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORTCentral Laboratory

Consolidation (T 216)Trimmings, Water Content, %

Initial FinalVoidRatio

%Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

WIN/Town 022504.00 - KENNEBUNK, KENNEBUNK

Loss on Ignition (T 267)

Loss, %

H2O, %

Specific Gravity, Corrected to 20°C (T 100) 2.63

Liquid Limit @ 25 blows (T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Water Content (T 265), % 47.5

[0.0330 mm] 31.4[0.0211 mm] 28.6[0.0124 mm] 22.9[0.0090 mm] 17.1[0.0064 mm] 14.3[0.0032 mm] 11.4[0.0013 mm] 8.6

Page 59: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Reference No.

263310

1 2 D e s e r t R d , F r e e p o r t M a i n e D O T T E S T I N G L A B O R A T O R I E S 2 1 9 H o g a n R d , B a n g o r

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: BRUCE WILDER

Location: OTHER

Sampled

11/20/2014

Received

3/24/2015

Miscellaneous Tests

Comments:

Station: Offset, ft: Dbfg, ft: 8.0-10.0

Boring No./Sample No.

BB-KKKR-102/2DSample Type: GEOTECHNICAL

Depth taken in tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water Content,

%

Description of Material Sampled at the Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Paper Copy: Lab File; Project File; Geotech File

Reported by: BRIAN FOGG Date Reported: 4/9/2015

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 94.3

¾ in. [19.0 mm] 98.5½ in. [12.5 mm] 97.8

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 86.2No. 4 [4.75 mm] 81.6No. 10 [2.00 mm] 68.9

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm]No. 40 [0.425 mm] 46.0

No. 200 [0.075 mm] 22.1

No. 60 [0.250 mm]No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORTCentral Laboratory

Consolidation (T 216)Trimmings, Water Content, %

Initial FinalVoidRatio

%Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

WIN/Town 022504.00 - KENNEBUNK, KENNEBUNK

Loss on Ignition (T 267)

Loss, %

H2O, %

Specific Gravity, Corrected to 20°C (T 100) 2.62

Liquid Limit @ 25 blows (T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Water Content (T 265), % 62.9

[0.0338 mm] 21.2[0.0216 mm] 19.0[0.0126 mm] 16.9[0.0090 mm] 14.8[0.0064 mm] 12.7[0.0032 mm] 8.5[0.0013 mm] 6.3

Page 60: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Reference No.

263311

1 2 D e s e r t R d , F r e e p o r t M a i n e D O T T E S T I N G L A B O R A T O R I E S 2 1 9 H o g a n R d , B a n g o r

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: BRUCE WILDER

Location: OTHER

Sampled

11/21/2014

Received

3/24/2015

Miscellaneous Tests

Comments:

Station: Offset, ft: Dbfg, ft: 0.0-2.0

Boring No./Sample No.

BB-KKKR-103/1DSample Type: GEOTECHNICAL

Depth taken in tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water Content,

%

Description of Material Sampled at the Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Paper Copy: Lab File; Project File; Geotech File

Reported by: BRIAN FOGG Date Reported: 4/9/2015

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 96.9

¾ in. [19.0 mm] 100.0½ in. [12.5 mm] 98.2

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 94.6No. 4 [4.75 mm] 93.1No. 10 [2.00 mm] 90.5

1 in. [25.0 mm]

No. 20 [0.850 mm]No. 40 [0.425 mm] 86.0

No. 200 [0.075 mm] 35.5

No. 60 [0.250 mm]No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORTCentral Laboratory

Consolidation (T 216)Trimmings, Water Content, %

Initial FinalVoidRatio

%Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

WIN/Town 022504.00 - KENNEBUNK, KENNEBUNK

Loss on Ignition (T 267)

Loss, %

H2O, %

Specific Gravity, Corrected to 20°C (T 100) 2.67

Liquid Limit @ 25 blows (T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Water Content (T 265), % 42.7

[0.0337 mm] 24.3[0.0215 mm] 21.5[0.0125 mm] 18.8[0.0090 mm] 16.1[0.0064 mm] 13.5[0.0032 mm] 10.8[0.0013 mm] 8.1

Page 61: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Reference No.

263312

1 2 D e s e r t R d , F r e e p o r t M a i n e D O T T E S T I N G L A B O R A T O R I E S 2 1 9 H o g a n R d , B a n g o r

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: BRUCE WILDER

Location: OTHER

Sampled

11/20/2014

Received

3/24/2015

Miscellaneous Tests

Comments:

Station: Offset, ft: Dbfg, ft: 0.0-2.0

Boring No./Sample No.

BB-KKKR-105/1DSample Type: GEOTECHNICAL

Depth taken in tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water Content,

%

Description of Material Sampled at the Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Paper Copy: Lab File; Project File; Geotech File

Reported by: BRIAN FOGG Date Reported: 4/9/2015

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm] 100.0

⅜ in. [9.5 mm] 79.9

¾ in. [19.0 mm] 93.5½ in. [12.5 mm] 84.3

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 75.3No. 4 [4.75 mm] 70.9No. 10 [2.00 mm] 61.8

1 in. [25.0 mm] 96.4

No. 20 [0.850 mm]No. 40 [0.425 mm] 49.9

No. 200 [0.075 mm] 33.4

No. 60 [0.250 mm]No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORTCentral Laboratory

Consolidation (T 216)Trimmings, Water Content, %

Initial FinalVoidRatio

%Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

WIN/Town 022504.00 - KENNEBUNK, KENNEBUNK

Loss on Ignition (T 267)

Loss, %

H2O, %

Specific Gravity, Corrected to 20°C (T 100) 2.72

Liquid Limit @ 25 blows (T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Water Content (T 265), % 15.8

[0.0315 mm] 25.7[0.0204 mm] 22.0[0.0120 mm] 18.4[0.0087 mm] 14.7[0.0062 mm] 12.9[0.0031 mm] 11.0[0.0013 mm] 7.4

Page 62: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

State of Maine - Department of Transportation

Laboratory Testing Summary Sheet

MDOT Project Number:

GZA Project Number: 09.0025898.00

Town(s): Kennebunk-Kennebunkport, MEBoring & Sample Station Sample Depth Lab Organic W.C. L.L. P.I.

Identification Number (Feet) No. (Feet) Number % Unified AASHTO Frost

BB-KKKR-201 1D 0.5-2.5 3 SM A-1-b II

BB-KKKR-201 2D 3-5 4 SM A-2-4 II

BB-KKKR-202 2D 3-5 5 SM A-2-4 II

BB-KKKR-202 3D 5-7 6 SM A-2-4 II

BB-KKKR-202 4D 7-9 7 SM A-2-4 II

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification

is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

Classification

Mathew J. Lanigan Bridge #

2230 - Kennebunk River

Page 63: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

3

Thielsch Engineering Inc.

Cranston, RI

(no specification provided)*

PL= LL= PI=

USCS (D 2487)= AASHTO (M 145)=

D90= D85= D60=D50= D30= D15=D10= Cu= Cc=

Remarks

Dark brown f-c SAND, some f-c Gravel, little Silt

1"0.75"

.5".375"

#4#10#20#40#60

#100#200

100.096.188.286.280.072.261.450.242.834.919.9

SM A-1-b

14.1693 7.9825 0.76870.4141 0.1172

3/7/16 3/8/16MS

Matthew PolskyLaboratory Manager

GZA GeoEnvironmental, Inc.Mathew J. Lanigan Bridge # 2230 - Kennebunk RiverKennebunk-Kennebunkport, ME

09.0025898.00

Material Description

Atterberg Limits (ASTM D 4318)

Classification

Coefficients

Date Received: Date Tested:

Tested By:

Checked By:

Title:

Date Sampled:Source of Sample: BB-KKKR-201 Depth: 0.5-2.5'Sample Number: 1D

Client:

Project:

Project No: Figure

TEST RESULTS (D422)

Opening Percent Spec.* Pass?

Size Finer (Percent) (X=Fail)

PE

RC

EN

T F

INE

R

0

10

20

30

40

50

60

70

80

90

100

GRAIN SIZE - mm.

0.0010.010.1110100

% +3"Coarse

% Gravel

Fine Coarse Medium

% Sand

Fine Silt

% Fines

Clay

0.0 4.0 16.0 7.8 21.8 30.5 19.9

6 in

.

3 in

.

2 in

.

in

.

1 in

.

¾ in

.

½ in

.

3/8

in

.

#4

#1

0

#2

0

#3

0

#4

0

#6

0

#1

00

#1

40

#2

00

Particle Size Distribution Report

Page 64: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

4

Thielsch Engineering Inc.

Cranston, RI

(no specification provided)*

PL= LL= PI=

USCS (D 2487)= AASHTO (M 145)=

D90= D85= D60=D50= D30= D15=D10= Cu= Cc=

Remarks

Gray f-m SAND, little Silt, trace Gravel

1"0.75"

.5".375"

#4#10#20#40#60

#100#200

100.095.795.794.693.091.088.585.580.967.618.5

SM A-2-4(0)

1.3758 0.3851 0.13010.1117 0.0862

3/7/16 3/8/16MS

Matthew PolskyLaboratory Manager

GZA GeoEnvironmental, Inc.Mathew J. Lanigan Bridge # 2230 - Kennebunk RiverKennebunk-Kennebunkport, ME

09.0025898.00

Material Description

Atterberg Limits (ASTM D 4318)

Classification

Coefficients

Date Received: Date Tested:

Tested By:

Checked By:

Title:

Date Sampled:Source of Sample: BB-KKKR-201 Depth: 3-5'Sample Number: 2D

Client:

Project:

Project No: Figure

TEST RESULTS (D422)

Opening Percent Spec.* Pass?

Size Finer (Percent) (X=Fail)

PE

RC

EN

T F

INE

R

0

10

20

30

40

50

60

70

80

90

100

GRAIN SIZE - mm.

0.0010.010.1110100

% +3"Coarse

% Gravel

Fine Coarse Medium

% Sand

Fine Silt

% Fines

Clay

0.0 4.3 2.7 2.0 5.4 67.1 18.5

6 in

.

3 in

.

2 in

.

in

.

1 in

.

¾ in

.

½ in

.

3/8

in

.

#4

#1

0

#2

0

#3

0

#4

0

#6

0

#1

00

#1

40

#2

00

Particle Size Distribution Report

Page 65: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

5

Thielsch Engineering Inc.

Cranston, RI

(no specification provided)*

PL= LL= PI=

USCS (D 2487)= AASHTO (M 145)=

D90= D85= D60=D50= D30= D15=D10= Cu= Cc=

Remarks

Gray fine SAND, some Silt

.375"#4#10#20#40#60

#100#200

100.099.899.598.497.093.577.022.2

SM A-2-4(0)

0.2100 0.1788 0.11610.1026 0.0817

3/7/16 3/8/16MS

Matthew PolskyLaboratory Manager

GZA GeoEnvironmental, Inc.Mathew J. Lanigan Bridge # 2230 - Kennebunk RiverKennebunk-Kennebunkport, ME

09.0025898.00

Material Description

Atterberg Limits (ASTM D 4318)

Classification

Coefficients

Date Received: Date Tested:

Tested By:

Checked By:

Title:

Date Sampled:Source of Sample: BB-KKKR-202 Depth: 3-5'Sample Number: 2D

Client:

Project:

Project No: Figure

TEST RESULTS (D422)

Opening Percent Spec.* Pass?

Size Finer (Percent) (X=Fail)

PE

RC

EN

T F

INE

R

0

10

20

30

40

50

60

70

80

90

100

GRAIN SIZE - mm.

0.0010.010.1110100

% +3"Coarse

% Gravel

Fine Coarse Medium

% Sand

Fine Silt

% Fines

Clay

0.0 0.0 0.2 0.3 2.5 74.8 22.2

6 in

.

3 in

.

2 in

.

in

.

1 in

.

¾ in

.

½ in

.

3/8

in

.

#4

#1

0

#2

0

#3

0

#4

0

#6

0

#1

00

#1

40

#2

00

Particle Size Distribution Report

Page 66: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

6

Thielsch Engineering Inc.

Cranston, RI

(no specification provided)*

PL= LL= PI=

USCS (D 2487)= AASHTO (M 145)=

D90= D85= D60=D50= D30= D15=D10= Cu= Cc=

Remarks

Gray fine SAND, little Silt

.375"#4#10#20#40#60

#100#200

100.099.398.697.896.492.475.616.9

SM A-2-4(0)

0.2196 0.1841 0.11960.1062 0.0857

3/7/16 3/8/16MS

Matthew PolskyLaboratory Manager

GZA GeoEnvironmental, Inc.Mathew J. Lanigan Bridge # 2230 - Kennebunk RiverKennebunk-Kennebunkport, ME

09.0025898.00

Material Description

Atterberg Limits (ASTM D 4318)

Classification

Coefficients

Date Received: Date Tested:

Tested By:

Checked By:

Title:

Date Sampled:Source of Sample: BB-KKKR-202 Depth: 5-7'Sample Number: 3D

Client:

Project:

Project No: Figure

TEST RESULTS (D422)

Opening Percent Spec.* Pass?

Size Finer (Percent) (X=Fail)

PE

RC

EN

T F

INE

R

0

10

20

30

40

50

60

70

80

90

100

GRAIN SIZE - mm.

0.0010.010.1110100

% +3"Coarse

% Gravel

Fine Coarse Medium

% Sand

Fine Silt

% Fines

Clay

0.0 0.0 0.7 0.7 2.2 79.5 16.9

6 in

.

3 in

.

2 in

.

in

.

1 in

.

¾ in

.

½ in

.

3/8

in

.

#4

#1

0

#2

0

#3

0

#4

0

#6

0

#1

00

#1

40

#2

00

Particle Size Distribution Report

Page 67: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

7

Thielsch Engineering Inc.

Cranston, RI

(no specification provided)*

PL= LL= PI=

USCS (D 2487)= AASHTO (M 145)=

D90= D85= D60=D50= D30= D15=D10= Cu= Cc=

Remarks

Gray fine SAND, little Silt

.375"#4#10#20#40#60

#100#200

100.099.699.599.398.593.766.612.4

SM A-2-4(0)

0.2252 0.2021 0.13670.1196 0.0929 0.0774

3/7/16 3/8/16MS

Matthew PolskyLaboratory Manager

GZA GeoEnvironmental, Inc.Mathew J. Lanigan Bridge # 2230 - Kennebunk RiverKennebunk-Kennebunkport, ME

09.0025898.00

Material Description

Atterberg Limits (ASTM D 4318)

Classification

Coefficients

Date Received: Date Tested:

Tested By:

Checked By:

Title:

Date Sampled:Source of Sample: BB-KKKR-202 Depth: 7-9'Sample Number: 4D

Client:

Project:

Project No: Figure

TEST RESULTS (D422)

Opening Percent Spec.* Pass?

Size Finer (Percent) (X=Fail)

PE

RC

EN

T F

INE

R

0

10

20

30

40

50

60

70

80

90

100

GRAIN SIZE - mm.

0.0010.010.1110100

% +3"Coarse

% Gravel

Fine Coarse Medium

% Sand

Fine Silt

% Fines

Clay

0.0 0.0 0.4 0.1 1.0 86.1 12.4

6 in

.

3 in

.

2 in

.

in

.

1 in

.

¾ in

.

½ in

.

3/8

in

.

#4

#1

0

#2

0

#3

0

#4

0

#6

0

#1

00

#1

40

#2

00

Particle Size Distribution Report

Page 68: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

LABORATORY TESTING DATA SHEET

Project Name Mathew J. Lanigan Bridge Location Kennebunk-Kennebunkport, ME Reviewed By

Project No. 09.0025898.00 WIN 22504.00 Assigned By A. Blaisdell

Project Manager A. Blaisdell Report Date Date Reviewed

Sample Data

Boring

No.

Sample

No.

Depth

Ft.

Lab

No.

Moh's

Hard-

ness

Do

in.

L

in.

(1)

Unit

Wt.

PCF

(2) Wet

Density

PCF

Bulk

Gs.

(3)

Other

Tests

(4)

Strength

PSI

(5)

Strain

%

(6)

Conf.

Stress

(7) E

sec

PSI

EE+06

(8)

Poisson's

Ratio

st

PSI

Is50

KSI

Rock Formation or

Description or Remarks

BB-KKKR-

101 R2

37.9-

38.3 1 1.983 4.597 179.3 U 6,048 0.12 4.36 0.24

BB-KKKR-

103 R1

5.5-

5.9 2 1.983 4.611 181.0 U 11,883 0.17 5.95 0.07

(1) Volume Determined By Measuring Dimensions (3) P=Petrographic PLD=Point Load (diametrical), (5) Strain at Peak Deviator Stress

(2) Determined by Measuring Dimensions and PLA= Point Load (Axial) RST= Splitting Tensile (6) Represents Confining Stress on Triaxial Tests

Weight of Saturated Sample U= Unconfined Compressive Strength (7) Represents Secant Modulus at 50% of Total Failure Stress

(4) Taken at Peak Deviator Stress (8) Represents Secant Poisson's Ratio at 50% of Total Failure Stress

195 Frances Avenue

Cranston, RI 02910 401-467-6454

Compression Tests

10/9/201510/9/2015

Page 69: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Mathew J. Lanigan Bridge

Kennebunk-Kennebunkport, ME

Rock Unconfined Compression Testing - ASTM D7012

Boring No. BB-KKKR-101 File No. 09.0025898.00

Sample No. R2 Date: 10/08/15

Depth: 37.9-38.3' Test No. U 1

0

1

2

3

4

5

6

7

8

9

10

-5.0-4.0-3.0-2.0-1.00.01.02.03.04.0

Str

ess (

ksi)

Lateral Strain (in/inX1000) Axial Strain (in/inX1000)

Page 70: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program
Page 71: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program
Page 72: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Mathew J. Lanigan Bridge

Kennebunk-Kennebunkport, ME

Rock Unconfined Compression Testing - ASTM D7012

Boring No. BB-KKKR-103 File No. 09.0025898.00

Sample No. R1 Date: 10/08/15

Depth: 5.5-5.9' Test No. U 2

0

1

2

3

4

5

6

7

8

9

10

11

12

-5.0-4.0-3.0-2.0-1.00.01.02.03.04.05.0

Str

ess (

ksi)

Lateral Strain (in/inX1000) Axial Strain (in/inX1000)

Page 73: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program
Page 74: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program
Page 75: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

06/02/2016 

MATHEW J. LANIGAN BRIDGE REPLACEMENT 09.0025898.00 

 

 

 

APPENDIX F – GEOTECHNICAL ENGINEERING CALCULATIONS

Page 76: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00              SUBJECT:   MSE Wall Bearing Resistance, Kennebunk ApproachSHEET:                        1 OF 5                      CALCULATED BY    N. Williams    4/7/2016CHECKED BY    A. Blaisdell  4/11/16  

Objec ve Calculate soil bearing resistance for GRS wall bearing on granular soil (fric on angle greater than 0) using the1.Theore cal method (Munfakh et al., 2001) in sand using SPT data.  Evaluate strength limit bearing resistancefor a range of effec ve foo ng widths based on an cipated GRS heights up to approximately 7.5 feet.Es mate se lement for GRS wall corresponding to bearing resistance calculated above using Hough Method2.(AASHTO LRFD, 2014).

References American Associa on of State Highway and Transporta on Officials, AASHTO LRFD Bridge Design Specifica ons:1.Customary U.S. Units, 7th edi on, 2014 (AASHTO LRFD) with 2015 Interim, Ar cles 10.6.3.1, 11.5.6 for bearing resistanceand 10.6.2.4.2 for se lement.

Soil Proper es and Geotechnical Inputsϕf 29deg Fric on angle of soil (represents River Bo om Sand, ignores Exis ng Fill above River Bo om ‐ conserva ve)

ϕb 0.65 Bearing resistance factor as specified in Table 11.5.7‐1

c 0ksf Cohesion, taken as undrained shear strength (Cohesion terms below not used  if c=0) 

γ 120pcf Unit weight of soil above or below the bearing depth of the foo ng

Nc 27.9 Cohesion term bearing capacity factor as specified in Table 10.6.3.1.2a‐1

Nq 16.4 Surcharge term bearing capacity factor as specified in Table 10.6.3.1.2a‐1

Nγ 19.3 Total unit weight term bearing capacity factor as specified in Table 10.6.3.1.2a‐1

Cwq, Cwγ:= Correc on factors to account for the loca on of the groundwater table as specified in Table 10.6.3.1.2a‐2

Depth to water table at depth of foo ng (Df) Cwq 0.5 Cwγ 0.5d.q:= 

Correc on factor to account for the shearing resistance along the failure surface passing through cohesionlessmaterial above the bearing eleva on as specified in Table 10.6.3.1.2a‐4

sc, sγ, sq:= Foo ng shape correc on factors as specified in Table 10.6.3.1.2a‐2

Load inclina on factors are omi ed considering modest embedment of foo ng per C10.6.3.1.2a.

Foo ng Dimensions

Range of effec ve RSF widths considered (should include eccentricity)B1

4

6

8

10

ft

L1 17ft Length of foo ng

Df 2.5ft Foo ng embedment depth

Soil bearing resistance LRFD GRS Sand.xmcd 1 OF 5

Page 77: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00              SUBJECT:   MSE Wall Bearing Resistance, Kennebunk ApproachSHEET:                        2 OF 5                      CALCULATED BY    N. Williams    4/7/2016CHECKED BY    A. Blaisdell  4/11/16  

Strength Limit Design

qn=cNcm+γDfNqmCwq+0.5γBNγmCwγ Nominal Bearing Resistance Formula

qr= ϕb qn Factored Bearing Resistance Formula

 Correc on Factors

dq assumed soil above foo ng lesscompetent than soil below foo ng.dqtable

Df

B1 dqtable

0.63

0.42

0.31

0.25

Using Table 10.6.3.1.2a‐4 dq 1

sc 1B1

L1

Nq

Nc

sc

1.14

1.21

1.28

1.35

sq 1B1

L1tan ϕf

sq

1.13

1.2

1.26

1.33

sγ 1 0.4B1

L1

0.91

0.86

0.81

0.76

 Bearing Capacity Factors

Ncm Nc scNcm

31.8

33.7

35.6

37.5

Soil bearing resistance LRFD GRS Sand.xmcd 2 OF 5

Page 78: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00              SUBJECT:   MSE Wall Bearing Resistance, Kennebunk ApproachSHEET:                        3 OF 5                      CALCULATED BY    N. Williams    4/7/2016CHECKED BY    A. Blaisdell  4/11/16  

Nqm Nq sq dqNqm

18.5

19.6

20.7

21.7

Nγm Nγ sγNγm

17.5

16.6

15.7

14.8

 Nominal Bearing Resistance

qn c Ncm γ Df Nqm Cwq 0.5 γ B1 Nγm Cwγ

qn

4.9

5.9

6.9

7.7

ksf

 Factored Bearing Resistance ‐ Strength Limit State

qR ϕb qnqR

3.2

3.9

4.5

5

ksf for B1

4

6

8

10

ft

Service Limit Design

Evaluate service limit design by es ma ng se lement under the imposed GRS wall dead load using the Houghmethod, see a ached sheets.  Selected service bearing pressure, qs, values equal to the 135% of the unfactoredpressure increase under the RSF plus surcharge. 

The es mated se lement occuring at the service bearing pressure values is 2.5 inches for the maximum wallheight.  The se lement will occur elas cally and will be essen ally complete at the comple on of construc on.Es mated se lement following GRS construc on (during/a er construc on of moment slab and pavement) ises mated to be 0.5 inches or less.

Soil bearing resistance LRFD GRS Sand.xmcd 3 OF 5

Page 79: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00              SUBJECT:   MSE Wall Bearing Resistance, Kennebunk ApproachSHEET:                        4 OF 5                      CALCULATED BY    N. Williams    4/7/2016CHECKED BY    A. Blaisdell  4/11/16  

Soil bearing resistance LRFD GRS Sand.xmcd 4 OF 5

Page 80: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00              SUBJECT:   MSE Wall Bearing Resistance, Kennebunk ApproachSHEET:                        5 OF 5                      CALCULATED BY    N. Williams    4/7/2016CHECKED BY    A. Blaisdell  4/11/16  

Soil bearing resistance LRFD GRS Sand.xmcd 5 OF 5

Page 81: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Calculation of Immediate Settlement of GRS Wall based on the Hough Method (AASHTO LRFD Eq. 10.6.2.4.2‐2 and ‐3)

Matthew J. Lanigan Bridge #2230 over Kennebunk River, File No. 25898.00

Calc by NVW 4/4/2016

Review by ARB 4/7/2016

(10.6.2.4.2‐2) (10.6.2.4.2‐3)

Inputs

Btotal 10.7 ft    (Effective Width of GRS Wall)

H 7.50 ft    (Height of GRS Wall, assumed B/0.7)

gf 135 psf (Unit Weight of Reinforced Fill)

RoadBase 405 psf (Due to 3' of Road Base Mat'l)

LL 250 psf (design live load)

v surface 2093 psf (1.35 x Unfactored pressure at base of GRS wall)

Hc ' vo' D to midpt v midpt Assumed N / C' Hi

Layer (ft) pcf psf ft psf USCS dim. inOpen Grade 

Material (RSF) 2.5 67.6 85 1.25 1874 ‐‐ ‐‐ 0

Fill 4.5 62.6 310 4.75 1449 7 bpf / SP 44 0.9

River Bottom 16 62.6 952 15 871 4 bpf / SC ‐ SM 35 1.5

Se 2.5 in

Basis of Assumptions and Evaluation

1. Footing width corresponds to the effective base width of GRS including facing.

Height corresponds to height of wall from top of highest block.

2.  The soil layering is as assumed for the Kennebunkport approach stability analysis. 

3.  Stress increase at the midpoint of each layer was calculated using 2V:1H load spread in the width

direction only.  

4.  The selected service bearing pressure (qs) corresponds to the 135% of the total unfactored dead load of the GRS and 

overlying materials plus a 250 psf live load surcharge. RSF is assumed to be in‐place and not contribute to settlement.

∆ ∆ 1 ′ ∆

Page 82: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Calculation of Immediate Settlement of GRS Wall based on the Hough Method (AASHTO LRFD Eq. 10.6.2.4.2‐2 and ‐3)

Matthew J. Lanigan Bridge #2230 over Kennebunk River, File No. 25898.00

Calc by NVW 4/4/2016

Review by ARB 4/7/2016

(10.6.2.4.2‐2) (10.6.2.4.2‐3)

Inputs

Btotal 10.7 ft    (Effective Width of GRS Wall)

H 0.00 ft    (Height of GRS Wall)

gf 135 psf (Unit Weight of Reinforced Fill)

RoadBase 405 psf (Due to 3' of Road Base Mat'l)

LL 250 psf (design live load)

v surface 655 psf (Unfactored pressure at top of GRS wall)

Hc ' vo' D to midpt v midpt Assumed N / C' Hi

Layer (ft) pcf psf ft psf USCS dim. in

GRS Wall 7 135 473 3.5 494 ‐‐ ‐‐ 0Open Grade 

Material (RSF) 2.5 67.6 1030 8.25 370 ‐‐ ‐‐ 0

Fill 4.5 62.6 1255 11.75 312 7 bpf / SP 44 0.1

River Bottom 16 62.6 1897 22 214 4 bpf / SC ‐ SM 35 0.3

Se 0.4 in

Basis of Assumptions and Evaluation

1. Footing width corresponds to the effective base width of GRS including facing.

Height corresponds to height of wall from top of highest block.

2.  The soil layering is as assumed for the Kennebunkport approach stability analysis. 

3.  Stress increase at the midpoint of each layer was calculated using 2V:1H load spread in the width

direction only.  

4.  The selected service bearing pressure (qs) corresponds to the total unfactored dead load of the materials overlying 

the GRS plus a 250 psf live load surcharge. RSF and GRS are assumed to be in‐place and not contribute to settlement.

∆ ∆ 1 ′ ∆

Page 83: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Max Wall Height)SHEET:                        1 OF 8                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Objec ve Design Geosynthe c Reinforced Soil (GRS) Wall to support the Kennebunk approach, analyzing Sliding, Bearing Resistance,Global Stability, and Internal Stability  using AASHTO LRFD Bridge Design Specifica ons with the Geosynthe c Reinforced SoilIntegrated Bridge System Interim Implementa on Guide.

Design Case: Highest Required GRS Wall (7.5 feet from Top of Reinforced Soil Founda on to Bo om ofMoment Slab)

References American Associa on of State Highway and Transporta on Officials, AASHTO LRFD Bridge Design Specifica ons:1.Customary U.S. Units, 7th edi on, 2014 (AASHTO LRFD) with 2015 InterimGeosynthe c Reinforced Soil Integrated Bridge System Interim Implementa on Guide FHWA‐HRT‐11‐026 June 2012 (GRS2.IBS 2012)Geosynthe c Reinforced Soil Integrated Bridge System Synthesis Report FHWA‐HRT‐11‐027 January 20113.STATE OF MAINE Department of Transporta on Standard Specifica ons November 20144.Maine DOT Bridge Design Guide (BDG)5.

Design Inputs

Soil and Geosynthe c Proper esFric on angle of the reinforced soilMaineDOT Standard Specifica on 703.02"Coarse Aggregate for Concrete, Grading A"

ϕr 38 deg

γτ 135 pcf Unit weight of the reinforced soil

ϕb 29 deg Es mated Fric on angle of retained soil 

γb 120 pcf Es mated Unit Weight of the retained soil

ϕRSF 40 deg Fric on angle of Reinforced Soil Founda on (RSF)MaineDOT Standard Specifica on 703.22"Underdrain Backfill Type C"

γRSF 135 pcf Unit weight of Reinforced Soil Founda on

μ2

3

tan ϕr 0.521 Coefficient of fric on between reinforced fill and RSF

Kab

1 sin ϕb

1 sin ϕb 0.347 Rankine coefficient of Ac ve earth pressure for retained soil

GRS Wall Design.xmcd 1 OF 8

Page 84: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Max Wall Height)SHEET:                        2 OF 8                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Wall Geometry

H 7.5 ft Height of the wall from top of RSF to top of highest block

B 7 ft Base width of the GRS reinforcement not including the wallfacing

BBlock 28 in Facing Block Thickness (Redi‐Rock)

γBlock 127 pcf Facing Block Unit Weight (Redi‐Rock)

BTotal B BBlock 9.33 ft Base width of GRS including wall facing

BRSF 1.25 BTotal 11.7 ft Minimum width of Reinforced Soil Founda on,Use 12.0  .

BRSF 12 ft

DRSF Round 0.25 BTotal 0.5 ft 2.5 ft Depth of Reinforced Soil Founda on

b 7.2 ft Width of the moment slab (measured normal to the wall)

beff.s 6 ft Effec ve width of moment slab

Hs 2 ft Average thickness of moment slab

brb.t max BTotal b 0.5 ft( ) 0 2.6 ft Width over the GRS abutment where the road base DL acts

Loads 

γc 150 pcf Unit weight of concrete ‐ Moment Slab

qt 250psf Equivalent roadway LL surcharge

qrb 405 psf Surcharge due to road base above GRS ‐ 3' thick

Equivalent moment slab DL pressureqb γc Hs 300 psf

Max factored bearing pressure from moment slab(provided by Stantec, triangular distribu on)Qmax.s 1239 psf

Fb 0.5 γb Kab H2

1171 plf Driving force behind GRS abutment from retained backfill

Frb qrb Kab H 1054 plf Driving force behind GRS abutment from road base

Ft qt Kab H 651 plf Driving force behind GRS abutment from road LL surcharge

Weight of the GRS fill, not including wall facingW γτ H B 7088 plf

WRSF BRSF DRSF γRSF 4050 plf Weight of the Reinforced Soil Founda on

WFace H BBlock γBlock 2223 plf Weight of the Modular Block Facing

GRS Wall Design.xmcd 2 OF 8

Page 85: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Max Wall Height)SHEET:                        3 OF 8                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Load and Resistance Factors

Analyze Strength I Load Case Load and Resistance Factors from Table 16&17 GRS IBS2012

 Horizontal Load Factors

γEHMAX 1.5 Max earth Pressure from Retained Fill

γESMAX 1.5 Max earth pressure from Road Base

γESMIN 0.75 Min earth pressure from Road Base

γLS 1.75 Live load ‐ Roadway

γLL 1.75 Live Load ‐ Superstructure

 Ver cal Load Factors

γEVMIN 1.0 Min GRS Weight

γEVMAX 1.35 Max GRS Weight

γDCMIN 0.9 Min Moment Slab dead weight

γDCMAX 1.25Max Moment Slab dead weight

Φcap 0.45 Resistance factor for Nominal Ver cal load carryingCapacity of GRS Wall 

Φτ 1.0 Interface fric on resistance factor, base of GRS wall

External Stability Analysis

Direct Sliding

Check direct sliding of interface between GRS mass and RSF

Require RR

FR1 , where RR = Factored Sliding Resistance and FR= Factored Lateral Driving Force  

FR γEHMAX Fb γESMAX Frb γLS Ft 4476 plf

Wt.R γEVMIN W WFace γDCMIN qb b γESMIN qrb brb.t 12054 plf

Where Wt.R is Minimum total factored weight of the GRS Wall, Block Facing,

Moment Slab Dead Load, and Road Base directly above the GRS wall.

RR Φτ Wt.R μ 6278 plf

Greater than 1, Direct sliding is okRR

FR1.4

GRS Wall Design.xmcd 3 OF 8

Page 86: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Max Wall Height)SHEET:                        4 OF 8                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Bearing Resistance

Require qR

σv.base.R1.0 , where  qR = Factored Bearing resistance and σv.base.R = Factored Applied Ver cal Pressure

Calculate factored ver cal loads and moments about the bo om center of RSF to calculate eccentricity in accordancewith GRS IBS 2012, Sec on 4.3.6.2. Use max load factors used for overturning loads, min load factors used for resis ngloads.

 Moment Arms for Horizontal Loads ‐ Measured up from base of RSF

Moment arm for lateral earth pressure caused by theretained backfill (Fb)yqb

DRSF Hs H

34.0 ft

Moment arm for lateral earth pressure caused byEquivalent road Live Load (Ft)yqt

DRSF Hs H

26.0 ft

Moment arm for lateral earth pressure caused byequivalent road base dead load (Frb)

yqrb

DRSF H

25.0 ft

 Moment Arms for Ver cal Loads ‐ Measured horizontally from center of RSF

Moment arm for ver cal load of GRS wall (W)xW

BRSF

2

B

2

2.5 ft

Moment arm for ver cal load of block wall (Wface)xblock

BRSF

2

BBBlock

2

2.2 ft

Moment arm for ver cal load of road base Material above GRS (qrb)xrb

BRSF

2

brb.t

2 4.7 ft

xb

BRSF

2

brb.t b beff.s .667 beff.s 0.5 ft 1.3 ft

Moment arm for Max factored bearing pressure frommoment slab (Qmax.s), use max because it is overturning ‐

nega ve eccentricity

GRS Wall Design.xmcd 4 OF 8

Page 87: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Max Wall Height)SHEET:                        5 OF 8                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

ΣVR γEVMAX W( ) γEVMAX WRSF γDCMAX WFace γLS qt brb.t

γESMAX qrb brb.t Qmax.s

beff.s

2

24283 plf

Total factored ver cal load imposed by the GRS wall on soil beneath the RSF (eq. 85), BRSF is the width of the

Reinforced Soil Founda on, and eB,R is the eccentricity of the resul ng force at the base of the wall.

ΣMD.R γEHMAX Fb yqb γESMAX Frb yqrb γLS Ft yqt 21762 lbf Total factored driving moment

ΣMR.R γEVMIN W xW Qmax.s beff.s xb γESMIN qrb brb.t xrb γDCMAX WFace xblock 5519 lbf

Total factored resising moment

Eccentricity of the total factored ver cal load about thecenter‐bo om of RSFeB.R max 0

ΣMD.R ΣMR.R

ΣVR

0.67 ft

BRSFe BRSF 2eB.R 10.7 ft Effec ve width of RSF

Factored bearing resistance for effec ve RSF widthqR 5000 psf

Factored applied ver cal pressureσv.base.R

ΣVR

BRSFe2277 psf

Greater than 1, Bearing Resistance is OKqR

σv.base.R2.2

GRS Wall Design.xmcd 5 OF 8

Page 88: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Max Wall Height)SHEET:                        6 OF 8                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Internal Stability AnalysisSoil and Geosynthe c Inputs

Mirafi HP 570 Geotex le (Woven Biaxial Polypropylene)

Sv 9 in Reinforcement Spacing

Minimum ul mate strength of the reinforcement(Machine Direc on)Tf 4800 plf

Minimum strength of geotex le at 2% strain(Machine Direc on)Tε2% 960 plf

Reinforced Soil

dmax 1.0 in Maximum grain size of the reinforced soil (MaineDOT 703.02,Grading A)

Rankine Coefficient of Passive earth pressure forreinforced soilKpr

1 sin ϕr

1 sin ϕr

4.204

Kar

1 sin ϕr

1 sin ϕr 0.238 Rankine Coefficient of Ac ve earth pressure for reinforced

soil

Analy cal Method

Factored applied pressure on the GRS massfrom moment slabVapplied.f Qmax.s 1239 psf

Soil‐Geosynthe c composite capacity equa on.qn.an =  nominal ul mate load‐carrying capacity 

qn.an .7

Sv

6dmax

Tf

Sv

Kpr 15757 psf

Factored applied pressure must be less than the factoredul mate capacity (eq. 83).  The resistance factor Φcap = .45

Φcap

qn.an Vapplied.f 5.72

Greater than 1,  OK

GRS Wall Design.xmcd 6 OF 8

Page 89: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Max Wall Height)SHEET:                        7 OF 8                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Required Reinforcement StrengthSee spreadsheet

RFglobal 2.25 Global Reduc on factor for long‐term geotex le strengthloss

Φreinf 0.9 Geotex le Strength reinforcement Resistance Factor

Calcula on of the fi h reinforcing level to verify spreadsheet

z 5Sv 3.75 ft Depth below the top of the GRS wall

βb atanbeff.s

2 z

0.67 rad Angles for Boussinesq theory ‐ Load distribu on through a soilmass for an area transmi ng a uniform stress a distance,x,horizontally from the edge of the load.  For the requiredreinforcement strength calcula on, the loca on of interest isdirectly underneath the moment slab centerline.

αb atanbeff.s

2 z

βb 1.35 rad

Factored lateral earth pressure due to the reinforced backfillσh.W.f γEHMAX γτ z Kar 180.6 psf

σh.slab.f Kar

Qmax.s

3.14

αb sin αb cos αb 2 βb 218.2 psf

Factored lateral earth pressure due to the MomentSlab Load

σh.rb.f γEHMAX qrb Kar 144.5 psf Factored lateral earth pressure due to the road base material

Factored lateral earth pressure due to the roadway Live Loadsuchargeσh.t.f γLS qt Kar 104.1 psf

σh.total.f σh.W.f σh.slab.f σh.rb.f σh.t.f 647.5 psf Total factored lateral earth pressure

GRS Wall Design.xmcd 7 OF 8

Page 90: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Max Wall Height)SHEET:                        8 OF 8                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Treq.f

σh.total.f

0.7

Sv

6 dmax

Sv 829.2 plf Factored required geotex le reinforcement strength

Factored ul mate strength of the geotex leTf.f Φreinf

Tf

RFglobal 1920.0 plf

The factored reinforcement strength must be greater thanthe factored  required reinforcement strength.  The ra o of Tf.f to Treq.f must be greater than 1.

Tf.f

Treq.f2.3

σh.total Kar

Qmax.s

3.14

αb sin αb cos αb 2 βb z γτ Kar qrb Kar qt Kar 494.5 psf

The total unfactored lateral earth  pressure

Treq

σh.total

0.7

Sv

6 dmax

Sv 633.2 plf Unfactored required reinforcement strength of the geotex le fabric

The reinforcement strength at a 2% strain in geotex le mustbe greater than the unfactored required reinforcementstrength 

Tε2%

Treq1.5

Global Stability

Evaluated global stability using Slope/W. Preliminary evalua ons conducted for B=7' and BTotal=9.33' indicated FS =

1.2, lengthened geoysynthe c to improve global stability.

Increased B to 9' BTotal to 11.33'and reevaluated global stability.  Achieved a minimum FS=1.3.

The 9‐foot required geosynthe c reinforcing length for global stability exceeds the 7‐foot length  required for internaland external (sliding and bearing), and is therefore the controlling condi on.  Consequently, a 9‐foot minimumgeosynthe c reinforcing length is recommended. Slope/W output is a ached.  

GRS Wall Design.xmcd 8 OF 8

Page 91: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

GRS Wall Design ‐ Internal Stability Analysis, Required Reinforcement Strength (Kennebunk Approach)

Project: Mathew J. Lanigan Bridge #2230, File No. 09.0025898.00 

Prepared By: NVW 3/20/2016

Checked By: ARB 4/11/2016

Parameters Description Variables Description

Qmax.s (psf) 1239 Equivalent superstructure DL pressure z (ft) Depth of reinforcement level below the top of the GRS facing

qrb (psf) 405 Surcharge due to the structural backfill of the integrated approach (3.0 ' road base) σh,slab (psf) Horizontal stress due to bridge load 

qt (psf) 250 Equivalent roadway LL surcharge σh,rb (psf) Horizontal stress due to road base DL

γt (pcf) 135 Unit weight of Reinforced soil σh,t (psf) Horizontal stress due to roadway LL

φr 38 Friction Angle of Reinforced Soil σh,W (psf) Horizontal stress due to earth pressure (Rankine)

Kar 0.237883078 Coefficient of Active Earth Pressure of Reinforced Soil σh,total,f (psf) Total factored horizontal stress

Sv (in) 9 Geotextile Spacing (in) σh,total (psf) Total unfactored horizontal stress

dmax (in) 1 Maximum particle size (in) αb

Geosynthetic HP570 βb

Direction MD

Tu (plf) 4800 Geotextile ultimate tensile strength

Tf,f (plf) 1920 Factored Geotextile strength

T2% (plf) 960 Strength of Geotextile at 2% strain

γLS 1.75 Live Load ‐ Roadway

γEH‐MAX 1.5 Earth Pressure Active

γES‐MAX 1.5 Earth Pressure from Road Base

γDC‐MAX 1.25 Moment Slab

φreinf 0.9 Geotextile Strength reinforcement resistance factor

Rfglobal 2.25 Global reduction factor for long‐term geotextile strength loss

b 7.2 width of bridgeMoment slab

beff.s 6 effective width of moment slab load

z (ft) βb αb σh,W,f (psf) σh,slab (psf) σh,rb,f (psf) σh,t,f (psf) σh,total,f (psf) Treq,f (lb/ft) Tf,f /Treq,f σh,total (psf) Treq,f < Tf,f Treq (lb/ft)  T@2% / Treq Treq < T@2%

0.75 ‐1.33 2.65 36.1 293.1 144.5 104.1 577.8 739.9 2.6 473.0 OK 605.7 1.6 OK

1.5 ‐1.11 2.21 72.3 282.9 144.5 104.1 603.8 773.2 2.5 486.9 OK 623.6 1.5 OK

2.25 ‐0.93 1.85 108.4 264.2 144.5 104.1 621.2 795.5 2.4 492.3 OK 630.4 1.5 OK

3 ‐0.79 1.57 144.5 241.3 144.5 104.1 634.4 812.4 2.4 493.5 OK 631.9 1.5 OK

3.75 ‐0.67 1.35 180.6 218.2 144.5 104.1 647.5 829.2 2.3 494.5 OK 633.2 1.5 OK

4.5 ‐0.59 1.18 216.8 197.0 144.5 104.1 662.4 848.3 2.3 497.4 OK 636.9 1.5 OK

5.25 ‐0.52 1.04 252.9 178.3 144.5 104.1 679.8 870.6 2.2 502.7 OK 643.8 1.5 OK

6 ‐0.46 0.93 289.0 162.1 144.5 104.1 699.7 896.1 2.1 510.6 OK 653.9 1.5 OK

6.75 ‐0.42 0.84 325.2 148.2 144.5 104.1 721.9 924.5 2.1 520.8 OK 666.9 1.4 OK

7.5 ‐0.38 0.76 361.3 136.2 144.5 104.1 746.0 955.4 2.0 532.8 OK 682.4 1.4 OK

8.25 ‐0.35 0.70 397.4 125.8 144.5 104.1 771.8 988.3 1.9 546.5 OK 699.9 1.4 OK

9 ‐0.32 0.64 433.5 116.7 144.5 104.1 798.9 1023.0 1.9 561.6 OK 719.1 1.3 OK

Angles for Boussinesq 

calculation

Page 92: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Min Wall Height)SHEET:                        1 OF 6                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Objec ve Design Geosynthe c Reinforced Soil (GRS) Wall to support the Kennebunk approach, analyzing Sliding, Bearing Resistance,Global Stability, and Internal Stability  using AASHTO LRFD Bridge Design Specifica ons with the Geosynthe c Reinforced SoilIntegrated Bridge System Interim Implementa on Guide.

Design Case: Shortest GRS Wall (1.5 feet from Top of Reinforced Soil Founda on to Bo om ofMoment Slab)

References American Associa on of State Highway and Transporta on Officials, AASHTO LRFD Bridge Design Specifica ons:1.Customary U.S. Units, 7th edi on, 2014 (AASHTO LRFD) with 2015 InterimGeosynthe c Reinforced Soil Integrated Bridge System Interim Implementa on Guide FHWA‐HRT‐11‐026 June 2012 (GRS2.IBS 2012)Geosynthe c Reinforced Soil Integrated Bridge System Synthesis Report FHWA‐HRT‐11‐027 January 20113.STATE OF MAINE Department of Transporta on Standard Specifica ons November 20144.Maine DOT Bridge Design Guide (BDG)5.

Design Inputs

Soil and Geosynthe c Proper esFric on angle of the reinforced soilMaineDOT Standard Specifica on 703.02"Coarse Aggregate for Concrete, Grading A"

ϕr 38 deg

γτ 135 pcf Unit weight of the reinforced soil

ϕb 29 deg Es mated Fric on angle of retained soil 

γb 120 pcf Es mated Unit Weight of the retained soil

ϕRSF 40 deg Fric on angle of Reinforced Soil Founda on (RSF)MaineDOT Standard Specifica on 703.22"Underdrain Backfill Type C"

γRSF 135 pcf Unit weight of Reinforced Soil Founda on

μ2

3

tan ϕr 0.521 Coefficient of fric on between reinforced fill and RSF

Kab

1 sin ϕb

1 sin ϕb 0.347 Rankine coefficient of Ac ve earth pressure for retained soil

GRS Wall Design ‐ Short.xmcd 1 OF 8

Page 93: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Min Wall Height)SHEET:                        2 OF 6                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Wall Geometry

H 1.5 ft Height of the wall from top of RSF to top of highest block

B 4.5 ft Base width of the GRS reinforcement not including the wallfacing

BBlock 28 in Facing Block Thickness (Redi‐Rock)

γBlock 127 pcf Facing Block Unit Weight (Redi‐Rock)

BTotal B BBlock 6.83 ft Base width of GRS including wall facing

BRSF 1.25 BTotal 8.5 ft Minimum width of Reinforced Soil Founda on,Use 12.0  .

BRSF 8.5 ft

DRSF Round 0.25 BTotal 0.5 ft 1.5 ft Depth of Reinforced Soil Founda on

b 7.2 ft Width of the moment slab (measured normal to the wall)

beff.s 6 ft Effec ve width of moment slab

Hs 2 ft Average thickness of moment slab

brb.t max BTotal b 0.5 ft( ) 0 0.1 ft Width over the GRS abutment where the road base DL acts

Loads 

γc 150 pcf Unit weight of concrete ‐ Moment Slab

qt 250psf Equivalent roadway LL surcharge

qrb 405 psf Surcharge due to road base above GRS ‐ 3' thick

Equivalent moment slab DL pressureqb γc Hs 300 psf

Max factored bearing pressure from moment slab(provided by Stantec, triangular distribu on)Qmax.s 1239 psf

Fb 0.5 γb Kab H2

47 plf Driving force behind GRS abutment from retained backfill

Frb qrb Kab H 211 plf Driving force behind GRS abutment from road base

Ft qt Kab H 130 plf Driving force behind GRS abutment from road LL surcharge

Weight of the GRS fill, not including wall facingW γτ H B 911 plf

WRSF BRSF DRSF γRSF 1721 plf Weight of the Reinforced Soil Founda on

WFace H BBlock γBlock 445 plf Weight of the Modular Block Facing

GRS Wall Design ‐ Short.xmcd 2 OF 8

Page 94: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Min Wall Height)SHEET:                        3 OF 6                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Load and Resistance Factors

Analyze Strength I Load Case Load and Resistance Factors from Table 16&17 GRS IBS2012

 Horizontal Load Factors

γEHMAX 1.5 Max earth Pressure from Retained Fill

γESMAX 1.5 Max earth pressure from Road Base

γESMIN 0.75 Min earth pressure from Road Base

γLS 1.75 Live load ‐ Roadway

γLL 1.75 Live Load ‐ Superstructure

 Ver cal Load Factors

γEVMIN 1.0 Min GRS Weight

γEVMAX 1.35 Max GRS Weight

γDCMIN 0.9 Min Moment Slab dead weight

γDCMAX 1.25Max Moment Slab dead weight

Φcap 0.45 Resistance factor for Nominal Ver cal load carryingCapacity of GRS Wall 

Φτ 1.0 Interface fric on resistance factor, base of GRS wall

External Stability Analysis

Direct Sliding

Check direct sliding of interface between GRS mass and RSF

Require RR

FR1 , where RR = Factored Sliding Resistance and FR= Factored Lateral Driving Force  

FR γEHMAX Fb γESMAX Frb γLS Ft 614 plf

Wt.R γEVMIN W WFace γDCMIN qb b γESMIN qrb brb.t 3340 plf

Where Wt.R is Minimum total factored weight of the GRS Wall, Block Facing,

Moment Slab Dead Load, and Road Base directly above the GRS wall.

RR Φτ Wt.R μ 1740 plf

Greater than 1, Direct sliding is okRR

FR2.83

GRS Wall Design ‐ Short.xmcd 3 OF 8

Page 95: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Min Wall Height)SHEET:                        4 OF 6                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Bearing Resistance

Require qR

σv.base.R1.0 , where  qR = Factored Bearing resistance and σv.base.R = Factored Applied Ver cal Pressure

Calculate factored ver cal loads and moments about the bo om center of RSF to calculate eccentricity in accordancewith GRS IBS 2012, Sec on 4.3.6.2. Use max load factors used for overturning loads, min load factors used for resis ngloads.

 Moment Arms for Horizontal Loads ‐ Measured up from base of RSF

Moment arm for lateral earth pressure caused by theretained backfill (Fb)yqb

DRSF Hs H

31.7 ft

Moment arm for lateral earth pressure caused byEquivalent road Live Load (Ft)yqt

DRSF Hs H

22.5 ft

Moment arm for lateral earth pressure caused byequivalent road base dead load (Frb)

yqrb

DRSF H

21.5 ft

 Moment Arms for Ver cal Loads ‐ Measured horizontally from center of RSF

Moment arm for ver cal load of GRS wall (W)xW

BRSF

2

B

2

2 ft

Moment arm for ver cal load of block wall (Wface)xblock

BRSF

2

BBBlock

2

1.4 ft

Moment arm for ver cal load of road base Material above GRS (qrb)xrb

BRSF

2

brb.t

2 4.2 ft

xb

BRSF

2

brb.t b beff.s .667 beff.s 0.5 ft 0.6 ft

Moment arm for Max factored bearing pressure frommoment slab (Qmax.s), use max because it is overturning ‐

nega ve eccentricity

GRS Wall Design ‐ Short.xmcd 4 OF 8

Page 96: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Min Wall Height)SHEET:                        5 OF 6                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

ΣVR γEVMAX W( ) γEVMAX WRSF γDCMAX WFace γLS qt brb.t

γESMAX qrb brb.t Qmax.s

beff.s

2

7966 plf

Total factored ver cal load imposed by the GRS wall on soil beneath the RSF (eq. 85), BRSF is the width of the

Reinforced Soil Founda on, and eB,R is the eccentricity of the resul ng force at the base of the wall.

ΣMD.R γEHMAX Fb yqb γESMAX Frb yqrb γLS Ft yqt 1161 lbf Total factored driving moment

ΣMR.R γEVMIN W xW Qmax.s beff.s xb γESMIN qrb brb.t xrb γDCMAX WFace xblock 3147 lbf

Total factored resising moment

Eccentricity of the total factored ver cal load about thecenter‐bo om of RSFeB.R max 0

ΣMD.R ΣMR.R

ΣVR

0.54 ft

BRSFe BRSF 2eB.R 7.4 ft Effec ve width of RSF

Factored bearing resistance for effec ve RSF widthqR 4000 psf

Factored applied ver cal pressureσv.base.R

ΣVR

BRSFe1074 psf

Greater than 1, Bearing Resistance is OKqR

σv.base.R3.7

GRS Wall Design ‐ Short.xmcd 5 OF 8

Page 97: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers andScientists

JOB:        09.0025898.00            SUBJECT:   GRS Wall Design, Kennebunk Approach (Min Wall Height)SHEET:                        6 OF 6                      CALCULATED BY    N. Williams    4/6/2016CHECKED BY    A. Blaisdell  4/6/2016

Internal Stability Analysis

Reinforcing type and spacing and fill type are the same as analyzed for the tall GRS wall.  Therefore, internal stability issuitable.

Global Stability

Evaluated global stability using Slope/W for the tall GRS wall sec on. Stability of the short wall does not control andis not evaluated.

GRS Wall Design ‐ Short.xmcd 6 OF 8

Page 98: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

DE

SIG

N-

DE

TAIL

ED

BY

DA

TE

PR

OJ.

MA

NA

GE

R

SHEET NUMBER

FIE

LD

CH

AN

GE

S

RE

VISIO

NS

1

RE

VISIO

NS

2

RE

VISIO

NS

3

RE

VISIO

NS

4

CH

EC

KE

D-

RE

VIE

WE

D

BRID

GE

Divisio

n:

Filena

me:...\

00\

BRID

GE\

MS

TA\

002

_Pla

n.d

gn

Userna

me:

Date:1

0/16/2

015

co

mm

on

OF

DE

SIG

N2-

DE

TAIL

ED

2

DE

SIG

N3-

DE

TAIL

ED

3

WIN

BRID

GE P

LA

NS

ST

AT

E O

F M

AIN

E

DE

PA

RT

ME

NT O

F T

RA

NSP

OR

TA

TIO

N

DA

TE

SIG

NA

TU

RE

P.E.

NU

MB

ER

2

STP-2

250(4

00)X

19

22504.0

0

MA

TH

EW

J.

LA

NIG

AN

BRID

GE

KE

NN

EB

UN

K

RIV

ER

KE

NN

EB

UN

K-

KE

NN

EB

UN

KP

OR

TY

OR

K

CO.

BRID

GE N

O. 2230

SJP

TW

M

DD

TD

DT

LE

MP

ZA

OC

T

2015

OC

T

2015

L.

TIM

BE

RL

AK

E

OC

T

2015

GE

NE

RA

L

PL

AN

-20

-20

-15

-15

-15

-15

-15

-10

-10

-10

-10

-10

-10

-10

-10

-10

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

0

0

0

0

0

0

0

0

0

000000

0

0

0

0

0000

0

0

00

0

0

55

5

5

5

5

5

55

5

5 5 55

5

5

5

5

5

555555

5

5

5

10

10

10

10

Sill E

L

Sill EL

Sill EL

Sill EL

Sill EL

Sill EL

Sill E

L

Sill E

L

Sill E

L

Sill E

L

Sill E

L

Sill E

L

Sill ELSill EL

Sill EL

IPFIPFIPF

IPF

IPF

IPF

IPFIPF

IPF

IPF

IPF

W

W

W

W

W

T

IPF

3"MAPLE

6"HDPE

1HR PRKNG

10"HDPE8"PVC

10"PVC

10" PVC

LOADING ZONE ONLY

FOUND M.N.

6"HDPE

0.25"X1" FLAT BAR 1"DN

12"PVC

JOINT CMP#J4 1DROP

8" PVC

TOP BACK GRANITE

JOINT CMP#3

FOUND M.N.

COASTAL JEWELERS0.5" IP FLUSH

WD FRM "SAXONY"

18"PVC

ROUND WITH CURB INLETTELE PED VERIZON NO#

1HR PRKNG

6"PVC

BRRD

HEAVY SILT

JOINT CMP#4 2 DROPS

TOP BACK GRANITE5/8" CIR ILLEGIBLE

6"HDPE

PANEL BOX/ ELECT METER

HEAVY SILT

6"HDPE

8" PVC

12"PVC

4"MAPLE

5/8" CIR FLSH "LOWER VILLAGE SURVEY 2133"

3"MAPLE

6"HDPEHEAVY SILT

5/8" CIR LOWER VILLAGE SURVEY 2133

18"PVC

8"PVC

5/8" CIR FLSH "LOWER VILLAGE SURVEY 2133"

BRIDGE ATTNDNT BLDG

AREA BSNSS

SIGNAL UNDER PVMNT

6"PVC

5/8" CIR LOWER VILLAGE SURVEY 2133

SILTED10"PVC

0.5" DH CONC RWALL

0.5" IP 1"AG

0.5" D.H. CONC RWALL

6"HDPE

HEAVY SILT

6"PVC

5/8" CIR FLSH DOWE/COUL #1201

FOUND M.N.

3"MAPLE

TOP BACK GRANITE

HEAVY SILT

10"PVC

18"ROUND

NO#

10" PVC

FOUND SMALL M.N.

TOP BACK GRANITE

8"PVC

GRANITE 8"SQUARE 28"T

BUSINESS BARTLEYS

6"HDPE

SUPPORT NO#

JOINT CMP#J2

JOINT CMP#3

HURRICANE RESTAURANT

HEAVY SILT

HEAVY SILT

12" X 12" ELECT HAND HOLE

HEAVY SILT

6"HDPE

BARTLEY'S

FRM "BIG APPLE"

BUSINESS WD

SEAFOOD MARKET"

"CLAM SHACK

BUSINESS WD FRM

JOINT CMP NO#

CONCMATHEW J. LANIGAN BRIDGENOT IN USE

DIRECTORY

RESTROOM

PUBLIC

W/CURB INLETROUND

SHOPSSHIPYARD

8"SQUARE 36"TGRANITE

FLAG POLE

(SHOWN HATCHED)APPROXIMATE LOCATION OF FAIRPOINT'S MARINE CABLE

BENCH

47+00 48+00 49+00 50+00 51+0052+00

PO

B

=

ST

A. 47

+00.00

PI =

ST

A. 49

+46.23

PI =

ST

A. 50+

46.7

5

PO

E

=

ST

A. 52

+50.00

88'-6"

2'-0"

11'-0"

11'-0"

2'-0"

26'-0"

41'-2

"

(Typ.)

7'-7"

(Typ.)

6'-0"

(Typ.)

11'-0"

Sidewalk

Brick

Sidewalk

Brick

EAS

EM

EN

T

AR

EA

TO

RIV

ER

VIE

W

SH

OPS P

AR

CEL

Y.C.R.D.

BK. 1448,

PG. 374

&

PA

RT

Y

WA

LL

AG

RE

EM

EN

T

IN

DE

NT

UR

E,

EA

SE

ME

NT

APPROXIMATE LOCATION

APPROXIMATE LOCATION

Adjust CB to Grade

Pipe

Remove

6" UD Type "C" 6" UD Type "C"

Foundation

Pole and

Remove Traffic

Sta. 48+00

Begin Transition

Limit Of Work

Sta. 48+50

Begin Project

End Transition

Sta. 51+00

Begin Transition

End Project

Sta. 49+55.50

Brg. Abut. No. 1É

Sta. 50+44.00

Brg. Abut. No. 2É

Scale of Feet

PLAN

25 0 25 50

ROUTE 9

KENNEBUNK RIVER

Ebb

Flo

od

Plug Exist. Outlet Pipe

18" RCP Class III

12" Option III

Reset Bench

Remove &

Post (Typ.)

Retain Wood

Sta. 51+50

Limit of Work

End Transition

House

Operator's

Remove

Remove CB

(Typ.)

Telephone Conduit

Electrical and

of Underground

Approximate Location

To Kennebunk

To Kennebunkport

Shim & 1•" HMA

Begin 1•" Mill,

(Typ.)

Heavy Riprap

Sta. 49+25

Begin 6" HMA

End Mill

Class III

18" RCP

Sta. 48+75

Shim & 3" HMA

Begin 1•" Mill,

Sawcut (Typ.)

TO

WN

OF

KE

NN

EB

UN

K

TO

WN

OF

KE

NN

EB

UN

KP

OR

T

EXIS

TIN

G

DR

AIN

AG

E

EA

SE

ME

NT - S

EE S.H.C. F

ILE

NO. 1

6-196

L.O.W.P.

LIMITS OF WROUGHT PORTIONLIMITS OF WROUGHT PORTION

L.O.W.P.

WROUGHT PORTION (L.O.W.P.)

HIGHWAY PURPOSES WITHIN LIMITS OF

NOTE: PRESCRIPTIVE EASEMENT FOR

WROUGHT PORTION (L.O.W.P.)

HIGHWAY PURPOSES WITHIN LIMITS OF

NOTE: PRESCRIPTIVE EASEMENT FOR

APPR

OXIM

ATE LO

CAIT

ON

WROUGHT PORTION (L.O.W.P.)

HIGHWAY PURPOSES WITHIN LIMITS OF

NOTE: PRESCRIPTIVE EASEMENT FOR

Y.C.C.R. VOL. 27, PG. 360

Y.C.C.R. VOL. 27, PG. 360

andrew.blaisdell
Polygonal Line
andrew.blaisdell
Callout
Location of Global Stability Cross Section, Sta. 49+39
Page 99: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

1.3

Surcharge (Unit Weight): 250 pcf

GRS Wall Material

Block Wall

Name: GRS Wall Material Unit Weight: 135 pcfName: Concrete Unit Weight: 150 pcfName: Road Base Material Unit Weight: 135 pcf Cohesion': 0 psf Phi': 36 °Name: Block Wall Unit Weight: 127 pcfName: Bedrock Unit Weight: 145 pcfName: Marine Deposit/River Bottom Unit Weight: 120 pcf Cohesion': 0 psf Phi': 29 °Name: Rip-Rap Unit Weight: 140 pcf Cohesion': 0 psf Phi': 45 °Name: RSF Material Unit Weight: 135 pcf Cohesion': 0 psf Phi': 40 °

Concrete

Bedrock

Marine Deposit/River Bottom

Rip-Rap

RSF Material

Road Base Material

Method: Bishop

Magnitude: 821 lbs

Global Stability - Mathew Lanigan Bridge #2230 - GRS Wall

STA 49+39 (6±' From Abutment)

Distance

-10 10 30 50 70 90

Ele

vatio

n

-30

-25

-20

-15

-10

-5

0

5

10

15

20

Page 100: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Slope StabilityReport generated using GeoStudio 2012. Copyright © 1991-2013 GEO-SLOPE International Ltd.

File InformationTitle: Global Stability - Mathew Lanigan Bridge #2230 - GRS WallComments: STA 49+39 (6±' From Abutment)Created By: Nicholas WilliamsLast Edited By: Nicholas WilliamsRevision Number: 121File Version: 8.1Tool Version: 8.11.1.7283Date: 3/28/2016Time: 1:49:11 PMFile Name: GlobalStability 9 foot GRS Length.gszDirectory: P:\09 Jobs\0025800s\09.0025898.00 - MDOT Kennebunk\Work\Calcs\GRS on Soil\Last Solved Date: 3/28/2016Last Solved Time: 1:49:13 PM

Project SettingsLength(L) Units: feetTime(t) Units: SecondsForce(F) Units: lbfPressure(p) Units: psfStrength Units: psfUnit Weight of Water: 62.4 pcfView: 2DElement Thickness: 1

Analysis SettingsSlope Stability

Kind: SLOPE/WMethod: BishopSettings

PWP Conditions Source: Piezometric LineApply Phreatic Correction: NoUse Staged Rapid Drawdown: No

Slip SurfaceDirection of movement: Left to RightUse Passive Mode: NoSlip Surface Option: Entry and ExitCritical slip surfaces saved: 1Optimize Critical Slip Surface Location: NoTension Crack

Tension Crack Option: (none)

Page 1 of 7Slope Stability

3/28/2016file:///P:/09%20Jobs/0025800s/09.0025898.00%20-%20MDOT%20Kennebunk/Work/Cal...

F of S DistributionF of S Calculation Option: Constant

AdvancedNumber of Slices: 30F of S Tolerance: 0.001Minimum Slip Surface Depth: 0.1 ftOptimization Maximum Iterations: 2,000Optimization Convergence Tolerance: 1e-007Starting Optimization Points: 8Ending Optimization Points: 16Complete Passes per Insertion: 1Driving Side Maximum Convex Angle: 5 °Resisting Side Maximum Convex Angle: 1 °

MaterialsGRS Wall Material

Model: High StrengthUnit Weight: 135 pcfPore Water Pressure

Piezometric Line: 1

ConcreteModel: High StrengthUnit Weight: 150 pcfPore Water Pressure

Piezometric Line: 1

Road Base MaterialModel: Mohr-CoulombUnit Weight: 135 pcfCohesion': 0 psfPhi': 36 °Phi-B: 0 °Pore Water Pressure

Piezometric Line: 1

Block WallModel: High StrengthUnit Weight: 127 pcfPore Water Pressure

Piezometric Line: 1

BedrockModel: High StrengthUnit Weight: 145 pcfPore Water Pressure

Piezometric Line: 1

Page 2 of 7Slope Stability

3/28/2016file:///P:/09%20Jobs/0025800s/09.0025898.00%20-%20MDOT%20Kennebunk/Work/Cal...

Page 101: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Marine Deposit/River BottomModel: Mohr-CoulombUnit Weight: 120 pcfCohesion': 0 psfPhi': 29 °Phi-B: 0 °Pore Water Pressure

Piezometric Line: 1

Rip-RapModel: Mohr-CoulombUnit Weight: 140 pcfCohesion': 0 psfPhi': 45 °Phi-B: 0 °Pore Water Pressure

Piezometric Line: 1

RSF MaterialModel: Mohr-CoulombUnit Weight: 135 pcfCohesion': 0 psfPhi': 40 °Phi-B: 0 °Pore Water Pressure

Piezometric Line: 1

Slip Surface Entry and ExitLeft Projection: RangeLeft-Zone Left Coordinate: (0.04988, 10) ftLeft-Zone Right Coordinate: (26, 10) ftLeft-Zone Increment: 20Right Projection: RangeRight-Zone Left Coordinate: (32.72137, 6.287709) ftRight-Zone Right Coordinate: (92, -15) ftRight-Zone Increment: 60Radius Increments: 4

Slip Surface LimitsLeft Coordinate: (0, 10) ftRight Coordinate: (92, -15) ft

Piezometric LinesPiezometric Line 1

Page 3 of 7Slope Stability

3/28/2016file:///P:/09%20Jobs/0025800s/09.0025898.00%20-%20MDOT%20Kennebunk/Work/Cal...

Coordinates

Surcharge LoadsSurcharge Load 1

Surcharge (Unit Weight): 250 pcfDirection: Vertical

Coordinates

Point Loads

Points

X (ft) Y (ft)Coordinate 1 0 4Coordinate 2 20 4Coordinate 3 22.5 0Coordinate 4 92.5 0

X (ft) Y (ft)0 1126 11

Coordinate (ft) Magnitude (lbs) Direction (°)Point Load 1 (28, 10) 821 90

X (ft) Y (ft)Point 1 34 2Point 2 32.5 -0.5Point 3 20 -0.5Point 4 20 2Point 5 29 2Point 6 29 8Point 7 26 8Point 8 31 2Point 9 31 8Point 10 31 10Point 11 26 10Point 12 0 8Point 13 0 10Point 14 92 -25Point 15 0 -25Point 16 92 -29

Page 4 of 7Slope Stability

3/28/2016file:///P:/09%20Jobs/0025800s/09.0025898.00%20-%20MDOT%20Kennebunk/Work/Cal...

Page 102: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Regions

Current Slip SurfaceSlip Surface: 3,308F of S: 1.3Volume: 788.33249 ft³Weight: 98,274.194 lbsResisting Moment: 2,073,940.8 lbs-ftActivating Moment: 1,606,514.5 lbs-ftF of S Rank: 1Exit: (82.352585, -15) ftEntry: (13.02494, 10) ftRadius: 58.93018 ftCenter: (63.289164, 40.761565) ft

Slip Slices

Point 17 0 -29Point 18 34.5 3Point 19 31 7Point 20 63.5 -7Point 21 59 -7Point 22 72.5 -11.5Point 23 77 -15Point 24 60 -5Point 25 20 8Point 26 92 -15

Material Points Area (ft²)Region 1 RSF Material 1,2,3,4,5,8 33.125Region 2 GRS Wall Material 5,4,25,7,6 54Region 3 Block Wall 5,6,9,19,8 12Region 4 Concrete 9,6,7,11,10 10Region 5 Road Base Material 7,25,12,13,11 52Region 6 Bedrock 15,14,16,17 368Region 7 Marine Deposit/River Bottom 1,18,21,20,22,23,26,14,15,12,25,4,3,2 2,007.8Region 8 Rip-Rap 19,24,20,21,18,1,8 81.25

X (ft) Y (ft) PWP (psf) Base NormalStress (psf)

FrictionalStrength (psf)

CohesiveStrength (psf)

Slice1 13.664982 9 -312 204.91187 148.87719 0

Slice2 15.768018 6 -124.8 478.98605 265.5063 0

Slice3 18.615506 2.388194 100.5767 829.32179 403.95 0

Page 5 of 7Slope Stability

3/28/2016file:///P:/09%20Jobs/0025800s/09.0025898.00%20-%20MDOT%20Kennebunk/Work/Cal...

Slice4 20.625 0.12027918 179.69458 1,014.4629 700.45378 0

Slice5 21.875 -1.1533626 134.36983 1,266.0402 627.29513 0

Slice6 23.375 -2.5767619 160.78994 1,419.2891 697.59749 0

Slice7 25.125 -4.1265586 257.49726 1,609.4105 749.3777 0

Slice8 27.5 -6.0180769 375.528 1,887.0546 837.85289 0

Slice9 30 -7.8504575 489.86855 1,874.603 767.57083 0

Slice10 31.75 -9.0105043 562.25547 1,704.6447 633.23665 0

Slice11 32.65 -9.5770575 597.60839 1,731.2817 628.40538 0

Slice12 33.4 -10.021496 625.34135 1,737.6017 616.53597 0

Slice13 34.25 -10.516213 656.2117 1,740.2165 600.87366 0

Slice14 35.725 -11.306293 705.51266 1,770.9683 590.59169 0

Slice15 38.175 -12.532065 782.00087 1,826.8795 579.18565 0

Slice16 40.625 -13.61987 849.87992 1,865.2008 562.80155 0

Slice17 42.861111 -14.504145 905.05868 1,886.0147 543.75282 0

Slice18 44.883333 -15.21038 949.12771 1,892.5865 522.96774 0

Slice19 46.905556 -15.835568 988.13946 1,888.286 498.95936 0

Slice20 49.025 -16.404814 1,023.6604 1,897.9392 484.62065 0

Slice21 51.241667 -16.912883 1,055.3639 1,921.7754 480.25974 0

Slice22 53.458333 -17.331957 1,081.5141 1,934.6908 472.92359 0

Slice23 55.675 -17.663955 1,102.2308 1,936.736 462.57376 0

Slice24 57.891667 -17.910356 1,117.6062 1,927.9037 449.15524 0

Slice25 59.5 -18.044534 1,125.979 1,911.6728 435.51716 0

Slice26 60.875 -18.112632 1,130.2282 1,873.6335 412.07627 0

Slice27 62.625 -18.158375 1,133.0826 1,811.3239 375.9553 0

Page 6 of 7Slope Stability

3/28/2016file:///P:/09%20Jobs/0025800s/09.0025898.00%20-%20MDOT%20Kennebunk/Work/Cal...

Page 103: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Slice28 64.625 -18.142725 1,132.1061 1,747.5165 341.12758 0

Slice29 66.875 -18.048618 1,126.2337 1,679.9225 306.91471 0

Slice30 69.125 -17.868044 1,114.9659 1,599.6705 268.67613 0

Slice31 71.375 -17.600199 1,098.2524 1,506.2849 226.17608 0

Slice32 73.625 -17.243873 1,076.0177 1,379.6865 168.32637 0

Slice33 75.875 -16.79742 1,048.159 1,218.0311 94.161656 0

Slice34 78.338146 -16.197882 1,010.7479 1,088.5698 43.137401 0

Slice35 81.014439 -15.422169 962.34332 990.46817 15.58986 0

Page 7 of 7Slope Stability

3/28/2016file:///P:/09%20Jobs/0025800s/09.0025898.00%20-%20MDOT%20Kennebunk/Work/Cal...

Page 104: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        1 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

Objec ve Assess nominal and factored bearing resistance of a founda on on rock based on support in BASALT from boringBB‐KKKR‐101.

Methodology Use data from test borings and evaluate the nominal bearing resistance as follows: 

1.  Bedrock Proper es From Test Borings

2.  Calcula on Of Rock Mass Ra ng 

3.  Determine Rock Property Constants s and m

4.  Calculate Nominal Bearing Resistance of Bedrock qn

References 

1.  American Associa on of State Highway and Transporta on Officials, AASHTO LRFD BridgeDesign Specifica ons: Customary U.S. Units, 6th edi on, 2012. (AASHTO LRFD)

2.  Wyllie, Duncan C., "Founda ons on Rock", Second edi on, 1992.

1.  Rock Proper es

Bedrock proper es were obtained from rock core specimens and logs completed for the Mathew J. Lanigan Bridge Project inKennebunk, ME.  The following table presents the data for boring BB‐KKKR‐101. 

Boring Run RQ D Joint Spacing Desc. Corr. Spacing (in) Aperture Desc. Corr. Aperture (in) Rock Type

BB-KKKR-101 R2 32.8 37.8 90% Very Close to Moderate 0.75-24 T ight to Part ially Open 0.004-0.1 BASALT

BB-KKKR-101 R3 37.8 42.8 90% Very Close to Moderate 0.75-24 T ight to Part ially Open 0.004-0.1 BASALT

Average 90%

Depth (ft)

101215 Bedrock Bearing Resistance Calc  1 OF 8

Page 105: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        2 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

2.  Calcula on of Rock Mass Ra ng(RMR)

From AASHTO LRFD Table 10.4.6.4‐1, determine the RMR. 

Parameter 1‐ Uniaxial Compressive Strength

Representa ve unconfined compressive strength of intact rock (based on the onlylaboratory test on this rock type done on sample R2 in boring BB‐KKKR‐101).σu.r 6.0ksi

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng RR1 4 for σu.r=3.6 to 7.5 ksi

Parameter 2‐ Drill Core QualityAverage RQD from table above: 90%

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng RR2 17

101215 Bedrock Bearing Resistance Calc  2 OF 8

Page 106: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        3 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

Parameter 3‐ Spacing of Joints

From Boring Logs, generally very close to moderately spaced = <2cm to  60 cm ~ < .75  in to 2 feet 

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng

RR3 10

Parameter 4‐ Condi on of Joints

From boring logs, hard joint walls and rough surface, with joint sepera on less than 0.05 in.

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng RR4 20

Parameter 5‐ Ground Water Condi ons

Hydrosta c Condi ons‐ Water under moderate pressure

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng RR5 4

Adjustment for joint orienta on (Parameter 6)

The joint sets are generally high angle to low angle and generally rough  and  ght to par ally open. Therefore thejoint orienta on is considered Fair.

From AASHTO LRFD Table 10.4.6.4‐2 

 Rela ve Ra ng RR6 7

Total RMR Ra ng 

RMR RR1 RR2 RR3 RR4 RR5 RR6

RMR 48

From AASHTO LRFD Table 10.4.6.4‐3 RMR= 41 to 60 is indica ve of Fair Rock Quality

101215 Bedrock Bearing Resistance Calc  3 OF 8

Page 107: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        4 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

3.  Determine Rock Property Constants s and m

From AASHTO LRFD Table 10.4.6.4‐4 for Fair Quality Rock Mass

Categorized as rock type D, Fine grained  igneous  (andesite, diabase, etc.), RMR=48, using s and m valuesinterpolated from the logarithmic trend of plo ed values from AASHTO Table 10.4.6.4‐4 (plots on sheet 10).

m 0.42

s 0.00018

4.  Calculate  Nominal and Factored Bearing Resistance of Bedrock qn and qR

From Wyllie "Founda ons on Rock"

Eq. 5.4 Pg.138

qn Cf1 s σu.r 1 m s

1

2

1

Cf1

Where 

Cf1 1.0 From Wyllie Table 5.4 Pg. 138 Correc on factor for founda on shape for rectangularfounda on:                      For  L/B>6, use factor Cfl=1.0, 

                      For L/B=1, use factor Cfl=1.12, therefore,

                      For conserva sm, assume long strip, lowest  Cfl.

s 0.00018

m 0.42

σu.r 6 ksi

Nominal Bearing Resistance 

qn Cf1 s σu.r 1 m s

1

2

1

qn 77.5 ksf   Say 80 ksf 

Factored Bearing Resistance 

Bearing Resistance Factor is specified in Table 10.5.5.2.2‐1

ϕb 0.45 Foo ng on rock

qR ϕb qn

qR 34.9 ksf   Say 36 ksf 

101215 Bedrock Bearing Resistance Calc  4 OF 8

Page 108: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        5 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

Reference:I:\Mathcad\units.xmcd

101215 Bedrock Bearing Resistance Calc  5 OF 8

Page 109: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        6 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

101215 Bedrock Bearing Resistance Calc  6 OF 8

Page 110: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        7 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

101215 Bedrock Bearing Resistance Calc  7 OF 8

Page 111: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        8 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

y = 0.0136e0.0713x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 25 30 35 40 45 50 55 60 65

m

Rock Mass Rating

mm

Expon. (m)

y = 6E‐08e0.1658x

0.00001

0.00006

0.00011

0.00016

0.00021

0.00026

0.00031

0.00036

0.00041

0.00046

35 40 45 50

s

Rock Mass Rating

s

s

Expon. (s)

101215 Bedrock Bearing Resistance Calc  8 OF 8

Page 112: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        1 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

Objec ve Assess nominal and factored bearing resistance of a founda on on rock based on support in METASILTSTONE andMETASANDSTONE from borings BB‐KKKR‐102 through BB‐KKKR‐105.

Methodology Use data from test borings and evaluate the nominal bearing resistance as follows: 

1.  Bedrock Proper es From Test Borings

2.  Calcula on Of Rock Mass Ra ng 

3.  Determine Rock Property Constants s and m

4.  Calculate Nominal Bearing Resistance of Bedrock qn

References 

1.  American Associa on of State Highway and Transporta on Officials, AASHTO LRFD BridgeDesign Specifica ons: Customary U.S. Units, 6th edi on, 2012. (AASHTO LRFD)

2.  Wyllie, Duncan C., "Founda ons on Rock", Second edi on, 1992.

1.  Rock Proper es

Bedrock proper es were obtained from rock core specimens and logs completed for the Mathew J. Lanigan Bridge Project inKennebunk, ME.  The following table presents the data.  The data used for this analysis excludes boring BB‐KKKR‐101 since adifferent rock type was encountered.  Some of the core runs with lower quality bedrock (lower RQD) were not representa ve due tover cal fracturing.  The data used for this analysis is highlighted  in the table below.

Boring Run RQ D Joint Spacing Desc. Corr. Spacing (in) Aperture Desc. Corr. Aperture (in) Rock Type

BB-KKKR-102 R1 11.5 16.0 24% Very Close to Close 0.75-8 Tight 0.004-0.01 METASILT STONE

BB-KKKR-103 R1 5.1 9.1 50% Very Close to Moderate 0.75-24 Tight 0.004-0.01 METASILT STONE

BB-KKKR-103 R2 9.1 11.3 23% Very Close to Moderate 0.75-24 Tight 0.004-0.01 METASANDST ONE

BB-KKKR-103 R3 11.3 13.3 0% Very Close to Close 0.75-8 T ight to Partially Open 0.004-0.1 METASANDST ONE

BB-KKKR-104 R1 3.5 8.5 40% Close to Moderate 2.5-24 T ight to Partially Open 0.004-0.1 METASANDST ONE

BB-KKKR-105 R1 2.5 7.0 7% Very Close to Close 0.75-8 T ight to Partially Open 0.004-0.1 METASANDST ONE

BB-KKKR-105 R2 7.0 11.0 7% Very Close to Close 0.75-8 T ight to Partially Open 0.004-0.1 METASANDST ONE

Average 34%

Depth (ft)

101215 Bedrock Bearing Resistance Calc  1 OF 8

Page 113: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        2 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

2.  Calcula on of Rock Mass Ra ng(RMR)

From AASHTO LRFD Table 10.4.6.4‐1, determine the RMR. 

Parameter 1‐ Uniaxial Compressive Strength

Representa ve unconfined compressive strength of intact rock (based on the onlylaboratory test on this rock type done on sample R1 in boring BB‐KKKR‐103).σu.r 11.8ksi

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng RR1 7 for σu.r=7.5 to 15 ksi

Parameter 2‐ Drill Core QualityAverage RQD from table above: 34%

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng RR2 8

101215 Bedrock Bearing Resistance Calc  2 OF 8

Page 114: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        3 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

Parameter 3‐ Spacing of Joints

From Boring Logs, generally very close to moderately spaced = <2cm to  60 cm ~ < .75  in to 2 feet 

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng

RR3 10

Parameter 4‐ Condi on of Joints

From boring logs, hard joint walls and rough surface, with joint sepera on less than 0.05 in.

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng RR4 20

Parameter 5‐ Ground Water Condi ons

Hydrosta c Condi ons‐ Water under moderate pressure

From AASHTO LRFD Table 10.4.6.4‐1 

 Rela ve Ra ng RR5 4

Adjustment for joint orienta on (Parameter 6)

The joint sets are generally high angle to low angle and generally rough  and  ght to par ally open. Therefore thejoint orienta on is considered Fair.

From AASHTO LRFD Table 10.4.6.4‐2 

 Rela ve Ra ng RR6 7

Total RMR Ra ng 

RMR RR1 RR2 RR3 RR4 RR5 RR6

RMR 42

From AASHTO LRFD Table 10.4.6.4‐3 RMR= 41 to 60 is indica ve of Fair Rock Quality

101215 Bedrock Bearing Resistance Calc  3 OF 8

Page 115: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        4 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

3.  Determine Rock Property Constants s and m

From AASHTO LRFD Table 10.4.6.4‐4 for Fair Quality Rock Mass

Categorized as rock type C, Sandstone and Quartzite, RMR=42, using s and  m values interpolated from thelogarithmic trend of plo ed values from AASHTO Table 10.4.6.4‐4 (plots on sheet 10).

m 0.24

s 0.000066

4.  Calculate  Nominal and Factored Bearing Resistance of Bedrock qn and qR

From Wyllie "Founda ons on Rock"

Eq. 5.4 Pg.138

qn Cf1 s σu.r 1 m s

1

2

1

Cf1

Where 

Cf1 1.0 From Wyllie Table 5.4 Pg. 138 Correc on factor for founda on shape for rectangularfounda on:                      For  L/B>6, use factor Cfl=1.0, 

                      For L/B=1, use factor Cfl=1.12, therefore,

                      For conserva sm, assume long strip, lowest  Cfl.

s 0.000066

m 0.24

σu.r 11.8 ksi

Nominal Bearing Resistance 

qn Cf1 s σu.r 1 m s

1

2

1

qn 90.1 ksf   Say 90 ksf 

Factored Bearing Resistance 

Bearing Resistance Factor is specified in Table 10.5.5.2.2‐1

ϕb 0.45 Foo ng on rock

qR ϕb qn

qR 40.5 ksf   Say 40 ksf 

101215 Bedrock Bearing Resistance Calc  4 OF 8

Page 116: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        5 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

Reference:I:\Mathcad\units.xmcd

101215 Bedrock Bearing Resistance Calc  5 OF 8

Page 117: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        6 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

101215 Bedrock Bearing Resistance Calc  6 OF 8

Page 118: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        7 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

101215 Bedrock Bearing Resistance Calc  7 OF 8

Page 119: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street ‐ Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

                 Engineers and                     Scientists

JOB:  09.0025898.00 SUBJECT:   Kennebunk Bearing Resistance 

SHEET:                        8 OF 8 CALCULATED BY:     __ETL   ______CHECKED BY:      __ARB                 _REVIEWED BY:   ___CLS       ____

y = 0.0118e0.0714x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 25 30 35 40 45 50 55 60 65

m

Rock Mass Rating

mm

Expon. (m)

y = 6E‐08e0.1658x

0.000001

0.000011

0.000021

0.000031

0.000041

0.000051

0.000061

0.000071

0.000081

0.000091

30 35 40 45

s

Rock Mass Rating

s

s

Expon. (s)

101215 Bedrock Bearing Resistance Calc  8 OF 8

Page 120: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Design Maps Summary Report

Report Title

Building Code Reference Document

Site Coordinates

Site Soil Classification

Risk Category

User–Specified InputMathew J. Lanigan Bridge, Kennebunk, ME Thu October 15, 2015 20:04:41 UTC

2012 International Building Code (which utilizes USGS hazard data available in 2008)

43.3611°N, 70.47824°W

Site Class B – “Rock”

I/II/III

USGS–Provided Output

SS = 0.253 g SMS = 0.253 g SDS = 0.169 g

S1 = 0.079 g SM1 = 0.079 g SD1 = 0.052 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the “2009 NEHRP” building code reference document.

Page 1 of 2Design Maps Summary Report

10/15/2015http://ehp1-earthquake.cr.usgs.gov/designmaps/us/summary.php?template=minimal&latit...

Page 121: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Design Maps Detailed Report

From Figure 1613.3.1(1) [1]

From Figure 1613.3.1(2) [2]

2012 International Building Code (43.3611°N, 70.47824°W)

Site Class B – “Rock”, Risk Category I/II/III

Section 1613.3.1 — Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain SS) and 1.3 (to obtain S1). Maps in the 2012 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

SS = 0.253 g

S1 = 0.079 g

Section 1613.3.2 — Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class B, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard – Table 20.3-1SITE CLASS DEFINITIONS

Site Class vS N or Nch su

A. Hard Rock >5,000 ft/s N/A N/A

B. Rock 2,500 to 5,000 ft/s N/A N/A

C. Very dense soil and soft rock 1,200 to 2,500 ft/s >50 >2,000 psf

D. Stiff Soil 600 to 1,200 ft/s 15 to 50 1,000 to 2,000 psf

E. Soft clay soil <600 ft/s <15 <1,000 psf

Any profile with more than 10 ft of soil having the characteristics: • Plasticity index PI > 20,• Moisture content w ≥ 40%, and• Undrained shear strength su < 500 psf

F. Soils requiring site response analysis in accordance with Section 21.1

See Section 20.3.1

For SI: 1ft/s = 0.3048 m/s 1lb/ft² = 0.0479 kN/m²

Page 1 of 4Design Maps Detailed Report

10/15/2015http://ehp1-earthquake.cr.usgs.gov/designmaps/us/report.php?template=minimal&latitude...

Page 122: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Section 1613.3.3 — Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1)VALUES OF SITE COEFFICIENT Fa

Site Class Mapped Spectral Response Acceleration at Short Period

SS ≤ 0.25 SS = 0.50 SS = 0.75 SS = 1.00 SS ≥ 1.25

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.2 1.2 1.1 1.0 1.0

D 1.6 1.4 1.2 1.1 1.0

E 2.5 1.7 1.2 0.9 0.9

F See Section 11.4.7 of ASCE 7

Note: Use straight–line interpolation for intermediate values of SS

For Site Class = B and SS = 0.253 g, Fa = 1.000

TABLE 1613.3.3(2)VALUES OF SITE COEFFICIENT Fv

Site Class Mapped Spectral Response Acceleration at 1–s Period

S1 ≤ 0.10 S1 = 0.20 S1 = 0.30 S1 = 0.40 S1 ≥ 0.50

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.7 1.6 1.5 1.4 1.3

D 2.4 2.0 1.8 1.6 1.5

E 3.5 3.2 2.8 2.4 2.4

F See Section 11.4.7 of ASCE 7

Note: Use straight–line interpolation for intermediate values of S1

For Site Class = B and S1 = 0.079 g, Fv = 1.000

Page 2 of 4Design Maps Detailed Report

10/15/2015http://ehp1-earthquake.cr.usgs.gov/designmaps/us/report.php?template=minimal&latitude...

Page 123: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Equation (16-37):

Equation (16-38):

Equation (16-39):

Equation (16-40):

SMS = FaSS = 1.000 x 0.253 = 0.253 g

SM1 = FvS1 = 1.000 x 0.079 = 0.079 g

Section 1613.3.4 — Design spectral response acceleration parameters

SDS = ⅔ SMS = ⅔ x 0.253 = 0.169 g

SD1 = ⅔ SM1 = ⅔ x 0.079 = 0.052 g

Page 3 of 4Design Maps Detailed Report

10/15/2015http://ehp1-earthquake.cr.usgs.gov/designmaps/us/report.php?template=minimal&latitude...

Page 124: GEOTECHNICAL DESIGN REPORT - Maine.gov · GEOTECHNICAL DESIGN REPORT ... The objectives of our work were to ... Coordinated and observed GZA’s subsurface exploration program

Section 1613.3.5 — Determination of seismic design category

TABLE 1613.3.5(1)SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

VALUE OF SDS

RISK CATEGORY

I or II III IV

SDS < 0.167g A A A

0.167g ≤ SDS < 0.33g B B C

0.33g ≤ SDS < 0.50g C C D

0.50g ≤ SDS D D D

For Risk Category = I and SDS = 0.169 g, Seismic Design Category = B

TABLE 1613.3.5(2)SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF SD1

RISK CATEGORY

I or II III IV

SD1 < 0.067g A A A

0.067g ≤ SD1 < 0.133g B B C

0.133g ≤ SD1 < 0.20g C C D

0.20g ≤ SD1 D D D

For Risk Category = I and SD1 = 0.052 g, Seismic Design Category = A

Note: When S1 is greater than or equal to 0.75g, the Seismic Design Category is E for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category ≡ “the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)” = B

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 1613.3.1(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf

2. Figure 1613.3.1(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf

Page 4 of 4Design Maps Detailed Report

10/15/2015http://ehp1-earthquake.cr.usgs.gov/designmaps/us/report.php?template=minimal&latitude...