geotechnical report proposed modular science and …

80
Construction Material Testing/Inspection Environmental Geotechnical Engineering Services Orange County 17782 Georgetown Lane Huntington Beach, California 92647 Tele: (714) 375-3830 Fax: (714) 375-3831 San Bernardino County 14163 Arrow Boulevard Fontana, California 92335 Tele: (909) 284-9200 Fax: (714) 284-9201 GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND MUSIC STRUCTURES FOUNTAIN VALLEY SCHOOL DISTRICT TALBERT MIDDLE SCHOOL 9101 BARBHAM DRIVE HUNTINGTON BEACH, CA AESCO PROJECT NO. 20210155-G0471 Prepared for: Fountain Valley School District 10055 Slater Avenue Fountain Valley, CA 92708 Attention: Mr. Joe Hastie Prepared By: AESCO 17782 Georgetown Lane Huntington Beach, California 92648 Adam Chamaa, P.E., Manager March 15, 2021

Upload: others

Post on 30-Oct-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Construction Material Testing/Inspection Environmental Geotechnical Engineering Services

Orange County 17782 Georgetown Lane

Huntington Beach, California 92647

Tele: (714) 375-3830

Fax: (714) 375-3831

San Bernardino County 14163 Arrow Boulevard

Fontana, California 92335

Tele: (909) 284-9200

Fax: (714) 284-9201

GEOTECHNICAL REPORT

PROPOSED MODULAR SCIENCE AND MUSIC STRUCTURES

FOUNTAIN VALLEY SCHOOL DISTRICT

TALBERT MIDDLE SCHOOL

9101 BARBHAM DRIVE

HUNTINGTON BEACH, CA

AESCO PROJECT NO. 20210155-G0471

Prepared for:

Fountain Valley School District

10055 Slater Avenue

Fountain Valley, CA 92708

Attention: Mr. Joe Hastie

Prepared By:

AESCO

17782 Georgetown Lane

Huntington Beach, California 92648

Adam Chamaa, P.E., Manager

March 15, 2021

Page 2: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Construction Material Testing/Inspection Environmental Geotechnical Engineering Services

Orange County 17782 Georgetown Lane

Huntington Beach, California 92647

Tele: (714) 375-3830

Fax: (714) 375-3831

San Bernardino County 14163 Arrow Boulevard

Fontana, California 92335

Tele: (909) 284-9200

Fax: (909) 284-9201

March 15, 2021

Mr. Joe Hastie

Fountain Valley School District

Maintenance & Operations Director

10055 Slater Avenue

Fountain Valley, CA 92708

Subject: Geotechnical Report

Proposed Modular Science and Music Buildings

Talbert Middle School

9101 Brabham Drive

Huntington Beach, California

AESCO Project No. 20210155-G0471

Dear Mr. Hastie:

AESCO is pleased to provide you the geotechnical report for the proposed two new modular

structures to be constructed at the Talbert Middle School campus. The Music Room will be

located at the northeast side of the campus and the other two modular Science Buildings

structures will be located at the west side of the campus.

AESCO will be happy to assist you further on this project by furnishing any Construction

Materials Testing and Inspection Services you may require during the construction phase of the

project. We are a full service-testing laboratory and inspection service and can supply the full

range of testing and inspection services such as soils, concrete, asphalt, steel, welding, etc. that

may be necessary for construction of this project.

Page 3: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

Construction Material Testing/Inspection Environmental Geotechnical Engineering Services

Please do not hesitate to contact us if you have any questions or if we may be of any additional

assistance. We look forward to assisting you during the construction of the proposed facility.

Sincerely,

AESCO

Debra L. Perez Adam Chamaa, MSCE, P.E., G.E.

Project Manager Senior Project Engineer

Andrew Stone, C.E.G. Russell J. Scharlin, P.E., G.E.

Project Geologist Senior Geotechnical Engineer

Debra.Perez
Adam
Debra.Perez
Adam Geotech Exp 12-31-21
Debra.Perez
russ signature
Debra.Perez
Andy Stone Signature
Page 4: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TABLE OF CONTENTS Project No. 20210155-G0471

AESCO i

Section 1 Introduction ..................................................................................................................... 1-1

Section 2 Field Investigation and Laboratory Testing ................................................................. 2-1

2.1 Field Investigation ................................................................................... 2-1

2.2 Laboratory Testing ................................................................................... 2-1

Section 3 Site Conditions ............................................................................................................... 3-1

3.1 Regional Geologic Setting ....................................................................... 3-1 3.1.1 Regional Geology ........................................................................ 3-1

3.1.2 Site Geology................................................................................. 3-1 3.1.3 Faulting and Surface Rupture ...................................................... 3-1

3.2 Site and Subsurface Conditions ............................................................... 3-2

Section 4 Conclusions and Recommendations ............................................................................ 4-1

4.1 Seismic Design......................................................................................... 4-1 4.1.1 Seismic Consideration ................................................................. 4-1 4.1.2 Ground Shaking ........................................................................... 4-1

4.1.3 Seiches ......................................................................................... 4-2 4.1.4 Tsunamis ...................................................................................... 4-2

4.2 Seismic Analysis ...................................................................................... 4-2 4.2.1 Historic Earthquakes .................................................................... 4-2

4.2.2 Probabilistic Fault Model ............................................................. 4-3 4.2.3 Design-Basis Earthquake ............................................................. 4-4

4.3 Liquefaction Potential .............................................................................. 4-4

4.4 Foundation Recommendations................................................................. 4-5 4.4.1 Stem Wall Foundations ................................................................ 4-5

4.5 Fire Lane Design and Construction Recommendations........................... 4-6 4.5.1 Fire Lane Site Preparation and Construction ............................... 4-7

4.6 Building Site Preparation and Earthwork ................................................ 4-9

4.7 Soil Corrosivity ...................................................................................... 4-10 4.8 Utility Trenches ..................................................................................... 4-12 4.9 Construction Procedures ........................................................................ 4-12 4.10 Construction Observations and Field Testing ........................................ 4-13

4.11 Foundation Plan Review ........................................................................ 4-13

Section 4 General Conditions ........................................................................................................ 5-1

5.1 Limitations ............................................................................................... 5-1

Page 5: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TABLE OF CONTENTS Project No. 20210155-G0471

AESCO ii

Appendix

Site Plans (Figures 1 and 1.1)

Log of Borings N-1 through N-4 and B-3 and B-4

Laboratory Test Data

Geologic Map

Topographic Map

California Fault Map

Estimation of Peak Acceleration

Seismic Analysis

Liquefaction Hazard Map

Liquefaction Analysis

Typical Geogrid Product Specification and Installation

References

Page 6: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION ONE Introduction

AESCO 1-1

1. Section 1 ONE Introduction

Geotechnical Report

Proposed Modular Science and Music Structures

Talbert Middle School

8778 El Lago Avenue

Fountain Valley, CA

This report, authorized by Fountain Valley School District, presents the results of a geotechnical

investigation performed by AESCO for the proposed three new small modular structures to be

constructed at Talbert Middle School campus. The two Science Buildings will be located on the

west side of the campus and the Music Room will be located on the northeast side of the campus.

The layouts of the proposed improvements are shown on the Site Plan based on a Site Plan by

Nyberg Architects, dated March 15, 2021, Figure 1. AESCO previously completed a

geotechnical investigation at this site as reported in our report dated February 3, 2019 (updated

March 1, 2019). The location of the science buildings has changed and the location of the music

building has remained. Therefore; 4 new borings were drilled near the location of the new

science buildings. Additionally, a new fire lane will be constructed on the west side of the

proposed science structures.

The purpose of this study was to provide geotechnical input for design of the new improvements.

The scope of our services included the following:

➢ Coordinating site access for the field investigation;

➢ Engineer attending site meetings;

➢ Obtaining utility clearances for the field investigation;

➢ Performing geotechnical drilling and sampling at the site;

➢ Performing laboratory testing of representative samples;

➢ Performing a liquefaction analysis;

➢ Conducting a seismic hazards screening;

➢ Performing engineering analyses; and

➢ Preparing this report.

This report summarizes our findings and presents geotechnical recommendations for design of

the new improvements.

Page 7: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION TWO Field Investigation and Laboratory Testing

AESCO 2-1

2. Section 2 TW O Field Investigation and Laborato ry Testing

2.1 FIELD INVESTIGATION

A field investigation was conducted at the site on March 1, 2021, to obtain information on the

subsurface conditions. Four borings (N-1 through N-4) were drilled near the locations of the

proposed science structures. Boring N-1 was drilled with an 8-inch diameter hollow stem auger

to a depth of 30 feet where drilling was converted to rotary wash and extended to a depth of 70

feet below the existing ground surface. Borings N-2 through N-4 were drilled with a hollow

stem auger drill rig to a depth of 10 feet. For sampling with the hollow stem drilling, the hollow

stems were removed and the samples were collected at the bottom of the open hole. Additionally,

bag samples (N-5 through N-7) were collected for R-Value testing for the proposed fire lane.

The approximate locations of the borings are shown on the Site Plan (Figure 1.1). The soil

borings were supervised and logged by our Senior Geotechnical Engineer. Borings B-3 and B-4

from AESCO’s previous report are included within this report for the proposed music building

which hasn’t changed location. AESCO personnel logged the borings and visually classified and

collected samples of the subsurface materials encountered in the borings. The borings were

backfilled with bentonite and cuttings. The Logs of borings N-1 through N-4 as well as B-3 and

B-4 are presented in the attached Appendix.

Drive samples were taken in the borings using either a rimmed Standard Penetration Test (SPT)

sampler without liners or a Modified California (MC) sampler. The sampler was driven 18

inches into the bottom of the borehole using a 140-pound hammer falling a distance of 30 inches.

The MC sampler barrel was lined with stainless steel liners to collect relatively undisturbed soil

samples. All of the samples were sealed and packaged to help preserve the natural moisture

content and to protect them from further disturbance.

2.2 LABORATORY TESTING

All testing was performed in accordance with ASTM Standards and California Test Methods.

Laboratory testing performed in our Huntington Beach, California geotechnical laboratory

consisted of water content (ASTM D4959), direct shear (ASTM D3080), Atterberg Limits

(ASTM D4318), dry density (ASTM D2937), expansion index (ASTM D4829), washed sieve

analysis (ASTM D1140), and R-Value (ASTM D2844). Results of the laboratory tests are

summarized on the Boring Logs and are included in the attached Appendix. Chemical analyses,

including pH (ASTM D1293), soluble sulfates (CT417) and soluble chlorides (CT422) were also

performed. Results are presented in Section 4.7.

Page 8: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION THREE Site Conditions

AESCO 3-1

3. Section 3 THR EE Site Conditions

3.1 REGIONAL GEOLOGIC SETTING

3.1.1 Regional Geology

The project site is located on a coastal plain, within the southern portion of the Los Angeles

basin, in the Peninsular Ranges geomorphic province. This province extends from the Los

Angeles basin southeast to Baja California, and from the Pacific Ocean eastward to the

Coachella Valley and Colorado Desert. The province is characterized by a series of northwest

trending valleys, hills and mountains controlled by faults associated with the San Andreas and

other major fault systems. The site is underlain by alluvial sediments hundreds of feet thick

deposited by the Santa Ana River and its tributaries.

3.1.2 Site Geology

The USGS Open File Report 99-172, Version 2.0-2004 for the Preliminary Santa Ana 30’ x 60’

Quadrangle assigns the soil materials underlying the site as young alluvial fan deposits

(Holocene and late Pleistocene). These materials are described generally as unconsolidated

gravel, sand and silt mixtures. Our exploration at the site encountered alluvium comprised of

very soft to very stiff sandy silts, clayey silts, fat clays, and silty clays and loose to medium

dense silty sands, clayey sands and sands/silty sands.

3.1.3 Faulting and Surface Rupture

All of southern California is seismically active. The region is crossed by a network of regional

faults and local faults. This faulting and seismicity is dominated by the San Andreas fault

system. The San Andreas separates continental crust to the east and oceanic crust to the west.

Other major northwest-trending fault zones within the region include the San Jacinto, Elsinore-

Whittier and the Newport-Inglewood. A suspected branch of the Newport-Inglewood Fault

Zone, considered capable of surface rupture, trends northwest roughly 1.2 miles southwest of the

site. Numerous recent studies provide good evidence for the presence of a low angle blind thrust

fault at a depth of several kilometers southwest of the site. This fault is estimated to underlie the

San Joaquin Hills and extending north to Seal Beach. The potential for ground rupture on this

thrust fault is considered low, as the fault has not been postulated to intersect the ground surface.

The site itself is not situated within an Alquist-Priolo (AP) earthquake fault zone. The potential

for surface fault rupture on the site is considered low.

Page 9: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION THREE Site Conditions

AESCO 3-2

3.2 SITE AND SUBSURFACE CONDITIONS

The proposed improvements are located at the northeast and west sides of the campus. Both

locations are in vacant areas covered with grass and are relatively flat. Existing underground

utilities are present within the site boundary.

The material encountered in boring N-1 sandy silt to a depth of 3 feet, medium dense silty sand

to a depth of 7 feet, very soft to soft sandy clay with silt to a depth of 13 feet, medium stiff sandy

silt with clay to a depth of 15 feet, very soft to medium stiff clay to a depth of 33 feet, medium

stiff to stiff sandy silt with clay to a depth of 35 feet, medium stiff to stiff clay to a depth of 48

feet, loose to medium dense sand to a depth 55 feet, loose sand/silty sand to a depth of 65 feet,

and medium dense sand to the total depth drilled of 70 feet below the existing ground surface.

The material encountered in boring N-2 consisted of sandy clay with silt to a depth of 3 feet,

medium dense silty sand to a depth of 5 feet and soft to medium stiff sandy clay with silt to the

total depth drilled of 10 feet. The material encountered in boring N-3 consisted of sandy clay

with silt to a depth of 3 feet, medium dense silty sand to a depth of 5 feet, medium stiff sandy

silt with clay to a depth of 7 feet, and soft to medium stiff sandy clay with silt to the total depth

drilled of 10 feet. The material encountered in boring N-4 consisted of sandy clay with silt to a

depth of 3 feet, medium dense silty sand to a depth of 5 feet, and soft to stiff sandy clay with silt

to the total depth drilled of 10 feet.

R-Value samples0 collected from N-6 at 3 to 5 feet (silty sand) and N-7 at 0 to 3 feet (sandy

clay) yielded a result of 51 and 14, respectively, by exudation.

Groundwater was not encountered within any of the borings. Historical high groundwater in the

project vicinity is approximately 3 feet below the existing ground surface (CGS, 1997). The

depth to groundwater may fluctuate, depending on rainfall and possible groundwater recharge or

pumping activity in the site vicinity. For design and construction purposes, the groundwater

should be assumed to be near the ground surface due to possible perched water in the sandy

material layers.

Page 10: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-1

4. ectio Conclusions and R ecommendations

4.1 SEISMIC DESIGN

A seismic hazards screening was performed for this site to evaluate potential seismic hazards.

The seismic hazards screening consisted of reviewing available data published by the California

Geological Survey (CGS), the 2019 California Building Code (CBC), the California Structural

Engineers Association, and the 2018 International Building Code (IBC). The site is located in

the United States Geological Survey (USGS) Newport Beach Quadrangle. Data reviewed

yielded the following Seismic Parameters:

Site Class D

Spectral Response ‘Ss’ 1.383g

Spectral Response ‘SMs’ null

Spectral Response ‘S1’ 0.500g

Spectral Response ‘SM1’ null

The computer program (EQFAULT, Version 3.00b) and data published by the USGS, were

reviewed. Results of the fault search are presented in the Appendix. The search indicates that the

Newport Inglewood Connected, alt 2 fault is approximately 2.09 kilometers from the site.

4.1.1 Seismic Consideration

The CGS (CDMG, 2000-003) does not delineate this site as being within an Alquist-Priolo

Earthquake Fault Zone.

The site is in situated within a region associated with high seismicity and in proximity to several

active faults. The occurrence of earthquakes that may occur during the lifetime of the project

cannot be predicted reliably. However, it is probable that the project site will experience at least

one major earthquake during the life span of the project. Therefore, the project designers should

consider the hazards associated with seismic events.

Seismic hazards can be divided into two general categories; hazards due to ground rupture and

hazards due to ground shaking.

4.1.2 Ground Shaking

Strong to severe ground shaking will be experienced in the project area if a large magnitude

earthquake occurs on one of the nearby faults. The number or frequency of large magnitude

earthquakes that may occur during the life of the project cannot be predicted reliably. However,

Page 11: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-2

it is probable the project area will experience at least one major earthquake during the next 50

years. The potential hazards or adverse effects of ground shaking would depend on several

factors that include the severity of ground shaking, the nature, depth, and extent of the seismic

event; the type of structure involved, and the local topography. Based on the effects of local

historical earthquakes, building foundations may fail resulting in excessive building settlement or

collapse, underground tanks or buried utilities may be prone to uplift or failure; and access

roadways may become blocked or impassable. In addition, broken utilities may result in fires,

inhibit or contaminate water supplies and cut off services to the site.

Potential hazards resulting from the secondary effect of ground shaking include: liquefaction,

lateral spreading, ground fissures, sieches, and tsunamis.

4.1.3 Seiches

Seiches result from periodic oscillation of an enclosed, or partially enclosed, body of water

which occurs during or immediately following earthquake activity. The site is not situated near

an enclosed, or partially enclosed, body of water, and the potential for flooding of the site due to

a seiche is considered low.

4.1.4 Tsunamis

A tsunami is a wave or series of waves caused by the displacement of a large volume of a body

of water, usually an ocean, but can be a large lake. Earthquakes, volcanic eruptions, landslides,

meteorite impacts, and other displacement events all have the potential to generate a tsunami.

The site is situated at an elevation of about 5 feet above sea level and is approximately 2.2 miles

from the ocean and is not in proximity to a large lake. The site is situated about one mile from

the mapped limits of the general tsunami inundation area, and adjacent to the possibly impacted

Talbert Channel as shown on the California Emergency Management Agency-California

Geological Survey Tsunami Inundation Maps. The potential for a tsunami to impact the site is

considered moderate.

4.2 SEISMIC ANALYSIS

4.2.1 Historic Earthquakes

Historically, the San Andreas Fault Zone Complex has rendered many earthquakes of the

magnitude range of 5.0Mw or greater (‘Mw’ is the Moment Magnitude as defined by the USGS)

in the last 200 years. Since the recording of seismic events began in the mid-18th century, at

least 50 major earthquakes (> 5.0Mw) have occurred within 62.1 miles (100km) of the subject

Page 12: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-3

site (Blake, 2000a). These major quakes have been estimated to be in the range of 5.0Mw to

7.0Mw. Each of these major quakes has rendered light to moderate damage to buildings and

roads. For reference purposes, a summary of the significant (>6.0Mw) earthquakes that affected

the site are provided below.

Date Quake Moment

Magnitude (Mw)

Approximate

Distance

(kilometers)

03/11/1933 6.30 7.1

07/11/1855 6.30 48.1

05/15/1910 6.00 52.7

12/16/1858 7.00 56.0

12/19/1880 6.00 75.1

07/23/1923 6.25 75.3

07/30/1894 6.00 76.8

01/17/1994 6.70 79.0

07/22/1899 6.50 81.3

12/08/1812 7.00 82.0

04/21/9183 6.80 89.9

04/04/1893 6.00 90.1

02/09/1971 6.40 90.4

12/25/1899 6.40 90.5

11/22/1800 6.50 97.9

09/20/1907 6.00 98.7

A complete printout of the published cataloged quakes within 100 kilometers of the subject site

is included at the end of this appendix.

4.2.2 Probabilistic Fault Model

Site coordinates are N33.6807 latitude and W117.9692 longitude. Based upon our subsurface

investigation, and blow count data, the soil profile is classified as D for the upper 100 feet in

accordance with the 2016 California Building Code (CBC) Table 1613A.5.2.

There are several active or potentially active faults within southern California that could affect

the site in terms of ground shaking. Of these the Newport Inglewood Connected alt 2 Fault Zone

Page 13: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-4

(2.09 kilometers from the site), the Newport Inglewood Connected alt 1 Fault Zone (2.22

kilometers from the site), the Newport-Inglewood, alt 1 Fault Zone (2.22 kilometers from the

site), and the San Joaquin Hills Fault Zone (3.65 kilometers from the site) are the most

prominent due to the proximity and seismic potential (USGS website).

4.2.3 Design-Basis Earthquake

Maximum acceleration was determined through the USGS website and yielded a PGA of 0.600g

utilizing a hazard level of 2 percent probability of exceedance over 50 years as determined by the

USGS website. (See Appendix).

4.3 LIQUEFACTION POTENTIAL

Liquefaction is a mode of ground failure that results from the generation of high pore water

pressures during earthquake ground shaking, causing loss of shear strength. Liquefaction is

typically a hazard where loose sandy soils exist below groundwater. The CGS has designated

certain areas within southern California as potential liquefaction hazard zones. These are areas

considered at a risk of liquefaction-related ground failure during a seismic event, based upon

mapped surficial deposits and the presence of a relatively shallow water table. Materials

encountered at the project site generally consist of loose to medium dense granular material and

very soft to stiff cohesive soil. The project site is located within a potential liquefaction hazard

zone as designated by the CGS (1997). Groundwater was not encountered within the borings

but saturated material was encountered below a depth of 3 to 5 feet beneath the existing ground

surface. Based on regional data, groundwater is anticipated to occur at a depth of approximately

3 feet below the existing ground surface (CGS, 1997). Liquefaction analysis for the site was

performed in accordance with the DMG Special Publication 117 and is attached. The

liquefaction study utilized the software “LiquefyPro” by CivilTech Software and calculated

liquefaction assuming a high depth to groundwater of 3 feet below the existing ground surface.

This analysis was based on the soils data from the exploratory boring logs and laboratory test

results and was analyzed in accordance with standard practice of a depth of 50 feet. Maximum

acceleration was calculated using the PGA of 0.600g utilizing a hazard level of 2 percent

probability of exceedance over 50 years as determined by the USGS website. In accordance

with conventional practice, liquefaction potential was calculated from a depth of 0 to 50 feet

below the ground surface. The factor of safety was less than 1.3 between a depth of 3.8 feet and

7.9 feet, 13.0 feet and 17.95 feet, 33.05 feet and 38.0 feet, and below 48.05 feet where the factor

of safety ranged between 0.21 and 0.83, 0.13 and 0.25, 0.16 and 0.26, and 0.12. Based on our

analysis and test results we have concluded that the potential for liquefaction at the site is high.

Page 14: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-5

Based on calculation results, seismically-induced settlement of saturated and dry sand is

estimated to be 3.60 inches and differential settlement is estimated to be between 1.80 and 2.37

inches. The liquefaction analysis is presented in the Appendix.

4.4 FOUNDATION RECOMMENDATIONS

Based on the results of our investigation, the proposed modular structures may be supported on

the planned stem wall foundation system. The entire footprint of the proposed structures and 5

feet beyond, where possible, should be overexcavated to a depth of 5 feet below existing grade

and backfilled as described below in Section 4.4.1. The recommended over-excavation and

backfill will densify the soil in the upper five feet and reduce the potential for liquefaction

settlement.

4.4.1 Stem Wall Foundations

The stem wall foundation system is planned to be placed at a depth of 3 feet below adjacent

finished grade around the exterior of the buildings and 1 foot below the base of the 1½-foot deep

interior crawl space beneath each modular structure. A design bearing pressure of 1500 psf is

recommended for continuous stem wall footings, with a minimum footing width of 18 inches.

To reduce the potential for total and differential liquefaction induced settlement (calculated at

about 2 inches), the upper 5 feet below the existing surface should be over-excavated. AESCO

predicts that the differential settlement will be reduced accetable levels applying this method.

The excavation should extend 5 feet beyond the footprint of the slab (where possible). Geogrid,

such as Tensar BX 1100 or equivalent, should be placed at the bottom and sides of the

excavation. It is recommended that a minimum 2-foot overlap of sheets is provided during

installation. The specification and installation guidelines for BX 1100 Biaxial geogrids are

included in the Appendix. The bottom 2 feet of the excavation should be backfilled with crushed

aggregate base material. The geogrid should also be placed horizontally at a depth of 4 feet and

3 feet below the exterior grade. The upper 3 feet of the excavation should then be backfilled

with engineered fill, compacted to at least 95 percent relative compaction as determined by

ASTM D1557 to the ground surface. Additional subgrade requirements are presented in Section

4.6, “Building Site Preparation and Earthwork.” Outside slabs (side-walks, drives, etc.) should

be constructed with expansion joints placed at maximum 12 foot spacing each way to minimize

cracking due to shrinkage and expansion of the concrete.

Page 15: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-6

4.5 FIRE LANE DESIGN AND CONSTRUCTION RECOMMENDATIONS

Conventional pavement design is typically based on the number of cumulative 18-kip equivalent

axle loads for the design life of the road. An access road that will only have occasional light

loads, except for the potential fire truck, will result in the fire truck loading governing the design

thickness, which is not a typical controlling condition.

Based on the typical design approach for a flexible pavement, the thickness, T, required for the

pavement section is:

T = .0032 T.I. (100-R)/ Gf

Where,

T = Pavement Thickness, in feet

T.I. = Traffic Index

R = R-Value of underlying material = use 5 for existing subgrade soils

Gf = Gravel Factor = 1.1 for crushed aggregate base

= 2.5 for asphalt concrete (Traffic Index < 5)

The Traffic Index, T.I., is defined as:

T.I. = 9.0 (ESAL x LDF/ 106)0.119

Where,

ESAL = Total number of cumulative 18-kip Equivalent Single Axle Loads

LDF = Lane Distribution Factor = 1 for a single lane

A fire truck is generally considered to apply H20 loading, which is a standard bridge loading

criterion. It has an 8,000-lb front axle and either a 24,000-lb rear axle or two 16,000-lb rear

axles spaced 4 feet apart. Based on AASHTO load tables, for tandem axle loading, one standard

H20 loading is equivalent to about 0.874 ESALs, while the single axle loading condition is

equivalent to about 3.79 ESALs. For this project, the single axle condition is assumed, which

matches the typical design fire truck, using an ESAL of 4 for each pass. The unknown is how

many trips will the fire truck make, assuming at least one in order to check the design. The

required thickness has been conservatively computed for a minimum of one trip and a maximum

of one trip per year for 20 years. The flexible pavement should consist of asphalt concrete

surfacing over aggregate base. The results are given below:

Page 16: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-7

No. of Fire Truck

Trips Traffic Index, T.I.

Computed

Minimum Thickness

of Asphalt Concrete,

Inches

Computed

Minimum Thickness

of Base, Inches

1 1.74 2 3

20 2.48 2 4

Based on these calculations, it is recommended that the fire lane be constructed with a minimum

of 6 inches of crushed aggregate base covered with 3 inches of asphalt concrete to account for

some additional light loads. Site preparation and earthwork recommendations are discussed in

the following section.

4.5.1 Fire Lane Site Preparation and Construction

The vegetation and other deleterious matter should be removed from the surface of the fire lane

extension area. The top 10 inches of the existing subgrade should then be scarified and

recompacted to a minimum of 95 percent of maximum dry density per ASTM D-1557. This

procedure is recommended to maintain a continuous surface prior to placement of the new

roadway. The aggregate base should consist of 6-inch thick Class II material (CAB, as described

below). The aggregate base shall be compacted to a minimum of 95 percent per ASTM D-1557.

The asphalt concrete surfacing should be compacted to a minimum of 95 percent compaction per

ASTM D-1557.

The material for the base should comply with Class II crushed aggregate base requirements and

should be free from organic matter and other deleterious substances,and shall be of such nature

that it can be compacted readily under watering and rolling to form a firm, stable base. The base

should be compacted to a minimum of 95 percent per ASTM D1557. The crushed aggregate

base may not include material processed from reclaimed asphaltic concrete, concrete, lean

concrete base, cement treated base or a combination of any of these materials.

The aggregate shall conform to the grading and quality requirements shown in the following

tables. At the option of the Contractor, the grading for either the 37.5-mm maximum or 19-mm

maximum shall be used; except that once a grading is selected, the grading shall not be changed

without the Engineer's written approval.

Page 17: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-8

AGGREGATE GRADING REQUIREMENTS

Percentage Passing

37.5-mm Maximum 19-mm Maximum

Sieve Sizes

Operating

Range

Contract

Compliance

Operating

Range

Contract

Compliance

50-mm 100 100 — —

37.5-mm 90-100 87-100 — —

25-mm — — 100 100

19-mm 50-85 45-90 90-100 87-100

4.75-mm 25-45 20-50 35-60 30-65

600-µm 10-25 6-29 10-30 5-35

75-µm 2-9 0-12 2-9 0-12

QUALITY REQUIREMENTS

Test Operating

Range

Contract

Compliance

Resistance (R-value) — 78 Min.

Sand Equivalent 25 Min. 22 Min.

Durability Index — 35 Min.

After the subgrade has been compacted and approved by the Geotechnical Engineer, the

Contractor can start his compaction operations. No base should be placed on any area of the

subgrade or other lifts which have not been accepted by the Geotechnical Engineer. Any soft

spots, where the Contractor believes he may have difficulty in obtaining the desired compaction,

shall be removed and replaced with compacted backfill as described herein.

Engineered fill should be used to raise the grade, as necessary, to reach final subgrade level, and

also compacted to a minimum of 95 percent per ASTM D-1557. Engineered fill should be

placed in maximum 8-inch thick loose lifts. Engineered fill should consist of soils with a

maximum particle size of 3 inches, at least 80 percent passing the ¾-inch sieve and with an

expansion index not greater than 20. Fill materials should be free of construction debris, roots,

organic matter, rubble, contaminated soils, and any other unsuitable or deleterious material as

determined by the Soil Engineer. The on-site soils appear to be suitable for use as compacted

fill. We recommend that if imported fill material is used, it be reviewed for acceptability by the

Soil Engineer prior to importing it to the site for use as engineered fill.

The contractor shall use sheepsfoot-type compaction equipment to compact the subgrade soils

and “vibratory” compaction equipment of sufficient mass needed for achieving compaction of

Page 18: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-9

the base material. The vibratory frequency of the compaction equipment shall be adjustable. For

engineered fill, compaction equipment should be appropriate for the characteristics of the

material.

The Geotechnical Engineer or his representative shall be on the site during all working hours and

will accept or reject a lift within two hours after testing. No material will be added to any lift

that has not been accepted by the Geotechnical Engineer.

Compaction of aggregate base shall be done with the fill material sufficiently moist so that

bulking will be eliminated. Generally, when "free water" appears on the fill surface, the material

can be compacted to the proper density.

The borrow source shall be checked and tested for compliance with the material specifications.

Initial acceptance of fill in the borrow source does not mean general acceptance of the entire pit

since the material in the pit can change.

The materials shall then be compacted in lifts to the average density specified. In obtaining the

average density of any lift, the lift will be rejected if any density is greater than 2 percent below

the specified average. Compacted lift thickness can start at 8 inches. Adjustments to lift

thickness will depend upon the progress of compaction.

4.6 BUILDING SITE PREPARATION AND EARTHWORK

All building grading and site preparation should be observed by experienced personnel reporting

to the project Geotechnical Engineer. Our field monitoring services are an essential continuation

of our prior studies to confirm and correlate the findings and our prior recommendations with the

actual subsurface conditions exposed during construction, and to confirm that suitable fill soils

are placed and properly compacted.

The building sites should be cleared of vegetation, asphalt, debris, the concrete slab, organic

matter, abandoned utility lines, contaminated soils (if any), and unsuitable material. Any

undocumented fill encountered during site preparation, not consistent with the material

encountered in the borings, should be excavated to the depth of the fill and to a horizontal

distance equal to the depth of excavation. A representative of AESCO should confirm the depth

of fill at the time of construction. As a minimum, the upper five feet below the existing surface

should be over-excavated and backfilled as described in Section 4.4.1, “Stem Wall Foundations.”

The compacted material should be at moisture contents 2 to 4 percent above optimum moisture.

The bottom of the excavation shall be inspected by the Geotechnical Engineer to confirm

Page 19: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-10

competent soil is reached. The side slopes of shallow excavations should be cut at a gradient no

steeper than 1:1 (horizontal to vertical). Excavations should not extend below an imaginary

1.5:1 inclined plane projecting below the bottom edge of adjacent existing foundations and/or

utilities unless properly shored or specifically analyzed further. All excavations should be

observed by AESCO to confirm that all unsuitable material is removed from beneath the planned

construction prior to placing fill.

The bottom of all excavations to receive aggregate base and compacted fill should be scarified to

a depth of 6 inches, moisture conditioned to at least optimum water content, and compacted as

described above. Excavations below the final grade level should be properly backfilled using

approved fill material. The backfill and any additional fill should be placed in loose lifts less

than 8 inches thick, moisture conditioned to 0 to 4 percent above optimum water content and

compacted as directed above. Engineered fill should consist of soils with a maximum particle

size of 3 inches, at least 80 percent passing the ¾-inch sieve and with an expansion index not

greater than 20. Fill materials should be free of construction debris, roots, organic matter,

rubble, contaminated soils, and any other unsuitable or deleterious material as determined by the

Geotechnical Engineer. We recommend that any imported fill material used shall be analyzed

for acceptability by the Geotechnical Engineer prior to importing it to the site for use as

engineered fill.

A representative of the Geotechnical Engineer should observe all footing and slab subgrade

surfaces and confirm that the exposed materials are firm. If loose, spongy, soft or other

unacceptable materials, including undocumented fill, are encountered in the subgrade they

should be removed to firm materials as determined by the Geotechnical Engineer’s

representative and replaced with either concrete or compacted engineered fill.

4.7 SOIL CORROSIVITY

The results of pH, soluble chloride, and soluble sulfate laboratory tests on a sample of the near

surface soils are summarized in the following tables:

Page 20: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-11

Soil Test Test Results Corrosion Potential

Soluble Sulfates (per CA 417)

1260 ppm Moderate sulfate attack on

concrete.

Soluble Chlorides (per CA 422)

798 ppm Extreme corrosive potential to

buried ferrous metals

pH 8.1 Mild to moderate corrosion potential to buried ferrous

metals

Boring N-1

Soil Test Test Results Corrosion Potential

Soluble Sulfates (per CA 417)

2400 ppm Severe sulfate attack on

concrete.

Soluble Chlorides (per CA 422)

4602 ppm Extreme corrosive potential to

buried ferrous metals

pH 8.9 Severe corrosion potential to

buried ferrous metals

Boring B-4

Concrete should be designed in accordance with the 2019 CBC, ACI 318 Section 4.3, Table

19.3.2.1 (2017). As the potential for sulfate attack on concrete appears severe Type V Portland

cement may be used with a 0.45 recommendation regarding maximum water to cement ratio for

the purpose of sulfate attack abatement. The minimum compressive strength of concrete shall be

4,500 psi at 28 days and maximum slump during placement shall be five inches. A qualified

inspector, under the supervision of a professional engineer, shall inspect the concrete placement.

The test results indicate that the on-site soils can be classified as extremely corrosive potential to

buried metallic structures (e.g. pipes). As a minimum, buried metal piping should be protected

with suitable coatings, wrappings, or seals. As an alternative, utility piping may be buried in

PVC lined trenches and backfilled with clean sand. The width of the trenches should be a

minimum of three times the diameter of the pipes. A corrosion consultant should be retained if a

more detailed evaluation or a protection system is desired. AESCO recommends that additional

corrosivity evaluation shall be performed during grading operations and for any imported fill to

ensure that corrosivity characteristics have not changed.

Page 21: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-12

4.8 UTILITY TRENCHES

It is anticipated that the on-site soils will provide suitable support for underground utilities and

piping that may be installed. Any soft and/or unsuitable material encountered at the bottom of

excavations for such facilities should be removed and be replaced with an adequate bedding

material. A non-expansive granular material with a sand equivalent greater than 30 should be

used for bedding and shading of utilities.

On-site material should be suitable for backfill of utility and pipe trenches from one foot above

the top of the pipe to the final ground surface, provided the material is free of organic matter,

deleterious substances, and contamination. Trench backfill should be mechanically placed and

compacted in maximum 8-inch lifts to at least 90 percent of the maximum dry density as

determined by ASTM Test Method D 1557 (i.e. 90 percent relative compaction) at 1 to 2 percent

above optimum moisture content. Where trenches are placed beneath slabs or footings the

backfill shall satisfy the gradation and expansion index requirements of engineered fill (see

Section 4.6). Trenches in the footprint of the pavement shall be backfilled and compacted to a

minimum of 90 percent. Flooding or jetting for placement and compaction of backfill is not

recommended.

4.9 CONSTRUCTION PROCEDURES

The upper soils at the site are fine grained materials composed of a significant amount of fine

materials. These soils are subject to extreme changes in shear strength with varying moisture

conditions and, if construction is initiated during wetter seasons of the year, it may be very

difficult to move equipment about the site. Also, once the soil becomes saturated, compaction

operations can be seriously hampered by a tendency of the fine material to "pump".

Consequently, it is recommended that adequate site drainage be established prior to and

continued during and following construction operations to prevent ponding of water on or

adjacent to the construction area and subsequent saturation of the soil. Compaction operations

may be expedited by using light compaction equipment and thin lifts of soil. Rolling only as

necessary to obtain compaction is advisable because further repetitive loading may cause the

subgrade to "pump". Once the soil begins to "pump", it generally becomes necessary to undercut

the poor soil, waste it and replace it with controlled fill.

Compaction operations and installation of the foundations should be supervised by the

Geotechnical Engineer. All foundation excavations should be inspected to verify cleaning and

bearing stratum. Concrete should be placed in foundation excavations as soon as practical after

Page 22: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FOUR Conclusions and Recommendations

AESCO 4-13

forming and final clean-up have been approved to avoid prolonged exposure of the bearing

stratum and possible disturbance due to standing water, desiccation or construction operations.

4.10 CONSTRUCTION OBSERVATIONS AND FIELD TESTING

As Geotechnical Engineer of Record, construction observation and field testing services are an

essential continuation of this geotechnical study to confirm and correlate our findings and

recommendations with the actual subsurface conditions exposed during construction. As such, to

maintain the status of geotechnical engineer of record, AESCO should be present to observe and

provide testing during the following construction activities:

➢ Placement of all fill and backfill

➢ Backfilling of utility trenches

➢ Concrete placement of slab and foundation

➢ Foundation reinforcement

➢ Geogrid placement

4.11 FOUNDATION PLAN REVIEW

It is essential that foundation and grading plans be reviewed by this office for conformance with

the recommendations of this report.

Page 23: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

Project No. 20210155-G0471

SECTION FIVE General Conditions

AESCO 5-1

5. Section 4 FOUR General Conditions

5.1 LIMITATIONS

It must be recognized that conclusions reached in this report are based on conditions, which exist

at the boring location. In any subsoil investigation, it is necessary to assume that the subsoil

conditions between boring(s) do not change significantly. The number of the borings, locations,

and spacing are chosen as per the client’s direction and available budget. Note that the boring(s)

were placed as close to the location of the proposed structure(s) as possible. The boring

locations are approximate and surveying is beyond the scope of our work. Consequently, careful

observations must be made during construction to detect significant deviations of actual

conditions throughout the construction area from those inferred from the exploratory borings.

In the event that significant changes in design loads or structural characteristics are made,

AESCO should be retained to review our original design recommendations and their

applicability to the revised design plans. In this way, any required supplemental

recommendations can be made in a timely manner.

Should any unusual conditions be encountered during construction, this office should be notified

immediately so that further investigations and supplemental recommendations can be made.

Geotechnical observations and testing should be provided on a continuous basis during grading,

excavation, and installation of the foundations. If parties other than AESCO are engaged to

provide geotechnical services during construction they will be required to assume the full

responsibility for the geotechnical phase of the project by adhering to the recommendations of

this report.

Page 24: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

SITE PLAN

Page 25: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …
Page 26: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

LOGS OF BORINGS N-1 through N-4

and B-3 and B-4

Page 27: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

MAJOR DIVISION GRAPHICSYMBOL

LETTERSYMBOL TYPICAL DESCRIPTIONS

GW

GP

GM

GC

SW

SP

SM

SC

ML

CL

OL

MH

CH

OH

PT

COARSEGRAINED

SOILS

MORE THAN50% BY

WEIGHT OFMATERIAL IS

LARGERTHAN 200

SIEVE

GRAVEL ANDGRAVELLY

SOILS

MORE THAN50% OF COARSE

FRACTIONRETAINED ON

NO. 4 SIEVE

SAND ANDSANDY SOILS

CLEAN GRAVEL(LITTLE OR NO

FINES)

GRAVEL WITHFINES

(APPRECIABLE AMOUNT OF

FINES)

FINE GRAINEDSOILS

SILTS ANDCLAYS

LIQUID LIMIT<50

LIQUID LIMIT>50

MORE THAN50% BY

WEIGHT OFMATERIAL IS

SMALLERTHAN 200

SIEVE

HIGHLY ORGANIC SOILS

MORE THAN50% OF COARSE

FRACTIONPASSING NO. 4

SIEVE

SILTS ANDCLAYS

CLEAN SAND(LITTLE OR NO

FINES)

SANDS WITHFINE

(APPRECIABLE AMOUNT OF

FINES)

WELL GRADED GRAVELS, GRAVELSAND MIXTURES, LITTLE OR NOFINES

POORLY GRADED GRAVELS, GRAVELSAND MIXTURES, LITTLE OR NOFINES

SILTY GRAVELS, GRAVEL SAND SILTMIXTURE

CLAYEY GRAVELS, GRAVEL SANDCLAY MIXTURES

WELL GRADED SANDS, GRAVELLYSANDS, LITTLE OR NO FINES

POORLY GRADED SANDS, GRAVELLYSANDS, LITTLE OR NO FINES

SILTY SANDS, SAND-SILT MIXTURES

CLAYEY SANDS, SAND-CLAYMIXTURES

INORGANIC SILTS AND VERY FINESANDS, ROCK FLOUR, SILTY ORCLAYEY FINE SANDS OR CLAYEYSILTS WITH SLIGHT PLASTICITY

INORGANIC CLAYS OF LOW TOMEDIUM PLASTICITY, GRAVELLYCLAYS, SANDY CLAYS, SILTY CLAYS,LEAN CLAYS

ORGANIC SILTS AND ORGANIC SILTYCLAYS OF LOW PLASTICITY

INORGANIC SILTS, MICACEOUS ORDIATOMACEOUS FINE SAND ORSILTY SOILS

INORGANIC CLAYS OF HIGHPLATICITY, FAT CLAYS

ORGANIC CLAYS OF MEDIUM TOHIGH PLASTICITY, ORGANIC SILTS

PEAT, SWAMP SOILS WITH HIGHORGANIC CONTENTS

AESCO

UNIFIED SOIL CLASSIFICATION SYSTEM

C California Modified SampleSplit Spoon Sample (SPT) Ground Water Level

Hand Auger SampleN SPT Blows/ftP Penetrometer TSF

KEY

Page 28: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

Project: Location: WATER: Not Encountered

Client: FVSD DRILLING:

Date: 03/01/21 Project No. Hollow Stem AugerTESTS DESCRIPTION OF STRATUM

SOIL DEPTH N= MOISTURE DRY LIQUID PLASTIC PLASTICITY PASSING EXPANSION

SYMBOL (FT) T= CONTENT DENSITY LIMITS LIMITS INDEX Strain 200 SIEVE COHESION ANGLE INDEX Elevation= 5 ft. AMSL

P= % PCF % % % TSF % % PSF Deg

3

5

7

8

10

13

15

18

20

23

25

28

30

33

35

38

40

43

45

48

50

TUBE SAMPLE Ground Water Level Hydrostatic Ground Water Level N= SPT, BLOWS/FT REMARKS: AUGER SAMPLE T= THD,BLOWS/FT NP: Non Plastic Materials

C CALIFORNIA MODIFIED SAMPLER P= HAND PEN.,TSF * Remolded Samples SPLIT SPOON Blow Counts Corrected for California Modified

NO RECOVERY CL SM SP (0.6 multiplIer). Auto-Hammer. 8" HAS

Brown sandy CLAY (CL), very soft to soft,

saturated, w/silt

Approximate Division of Soil Type

Gray CLAY (CL), stiff, saturated, w/silt

No sample recovery at 5'

Gray CLAY (CL), soft, saturated, w/silt

97.1

87.8

96.9

N=2

34.2

51.2

27

61.2

N=8

N=6

31

3

N=4 41.8

27

38.5

40.8

N=15

N=13

Very soft to soft at 23'

Gray sandy SILT (ML) medium stiff to stiff,

saturated, w/clay4

Brown SAND (SP), medium dense, saturated,

medium grained25.7 3.1

Medium stiff at 43'

Soft to medium stiff at 28'

Logger:

LOG OF BORING NO. N - 1

FIELD DATA

Unconfined Comp. DIRECT SHEAR

LABORATORY DATA

20210155-G0471

Talbert Middle School

New Science Buildings

9101 Brabham Drive

Fountain Valley, CA

Gray sandy SILT (ML), medium stiff, saturated,

w/clay54.1

57.1

23.8N=12

N=2

32.4N=6

N=3

023.1

Brown sandy CLAY (CL), moist, w/silt, moist89.1

Brown silty SAND (SM), medium dense, wet, w/red

patches

22

28*

29.2 47 25

24

Page 29: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

Project: Location: WATER: Not Encountered

Client: FVSD DRILLING:

Date: 03/01/21 Project No. Hollow Stem AugerTESTS DESCRIPTION OF STRATUM

SOIL DEPTH N= MOISTURE DRY LIQUID PLASTIC PLASTICITY PASSING EXPANSION

SYMBOL (FT) T= CONTENT DENSITY LIMITS LIMITS INDEX Strain 200 SIEVE COHESION ANGLE INDEX Elevation: 3,070 ft. AMSL

P= % PCF % % % TSF % % PSF Deg

53

55

58

60

63

65

68

70

TUBE SAMPLE Ground Water Level Hydrostatic Ground Water Level N= SPT, BLOWS/FT REMARKS: AUGER SAMPLE T= THD,BLOWS/FT NP: Non Plastic Materials

C CALIFORNIA MODIFIED SAMPLER P= HAND PEN.,TSF * Remolded Samples SPLIT SPOON Blow Counts Corrected for California Modified

NO RECOVERY SP SP/SM (0.6 multiplIer). Auto-Hammer. 8" HAS

Gray-brown SAND (SP), medium dense, saturated

Approximate Division of Soil Type

Boring Terminated at 70 Feet

N=13 23.7

Gray at 63'

3.7

N=5 20.1

Brown SAND/silty SAND (SP/SM), loose, saturated

N=9 28.1 8.9

Loose at 43'

Brown SAND (SP), medium dense, saturated,

medium grained

N=9 25.1

FIELD DATA LABORATORY DATA

Unconfined Comp.

LOG OF BORING NO. N - 1 (cont.)

Talbert Middle School

New Science Buildings

9101 Brabham Drive

Fountain Valley, CA

Logger:

20210155-G0471

DIRECT SHEAR

Page 30: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

Project: Location: WATER: Not Encountered

Client: FVSD DRILLING:

Date: 03/01/21 Project No. Hollow Stem AugerTESTS DESCRIPTION OF STRATUM

SOIL DEPTH N= MOISTURE DRY LIQUID PLASTIC PLASTICITY PASSING EXPANSION

SYMBOL (FT) T= CONTENT DENSITY LIMITS LIMITS INDEX Strain 200 SIEVE COHESION ANGLE INDEX Elevation= 5 ft. AMSL

P= % PCF % % % TSF % % PSF Deg

3

5

7

8

10

TUBE SAMPLE Ground Water Level Hydrostatic Ground Water Level N= SPT, BLOWS/FT REMARKS: AUGER SAMPLE T= THD,BLOWS/FT NP: Non Plastic Materials

C CALIFORNIA MODIFIED SAMPLER P= HAND PEN.,TSF * Remolded Samples SPLIT SPOON Blow Counts Corrected for California Modified

NO RECOVERY CL SM (0.6 multiplIer). Auto-Hammer. 8" HAS

Approximate Division of Soil Type

Boring Terminated at 10 Feet

Brown sandy CLAY (CL), soft to medium stiff,

saturated, w/silt

N=3 39.4 Dark gray, soft at 8'

29* Dark brown silty SAND (SM), medium dense, wet

C N=4 33.6 72.6 94.3

Brown sandy CLAY (CL), wet, w/silt

N=14 25.7 43.5 0

FIELD DATA LABORATORY DATA

Unconfined Comp. DIRECT SHEAR

34.0 56.0

LOG OF BORING NO. N-2

Talbert Middle School

New Science Buildings

9101 Brabham Drive

Fountain Valley, CA

Logger:

20210155-G0471

Page 31: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

Project: Location: WATER: Not Encountered

Client: FVSD DRILLING:

Date: 03/01/21 Project No. Hollow Stem AugerTESTS DESCRIPTION OF STRATUM

SOIL DEPTH N= MOISTURE DRY LIQUID PLASTIC PLASTICITY PASSING EXPANSION

SYMBOL (FT) T= CONTENT DENSITY LIMITS LIMITS INDEX Strain 200 SIEVE COHESION ANGLE INDEX Elevation= 5 ft. AMSL

P= % PCF % % % TSF % % PSF Deg

3

5

7

8

10

TUBE SAMPLE Ground Water Level Hydrostatic Ground Water Level N= SPT, BLOWS/FT REMARKS: AUGER SAMPLE T= THD,BLOWS/FT NP: Non Plastic Materials

C CALIFORNIA MODIFIED SAMPLER P= HAND PEN.,TSF * Remolded Samples SPLIT SPOON Blow Counts Corrected for California Modified

NO RECOVERY CL SM ML (0.6 multiplIer). Auto-Hammer. 8" HAS

Dark gray sandy CLAY (CL), soft to medium stiff,

saturated, w/silt

Approximate Division of Soil Type

Boring Terminated at 10 Feet

Dark gray sandy SILT (ML), medium stiff,

saturated, w/clay

N=4 49.7

29* Brown silty SAND (SM), medium dense, moist

CN=5

P=1.539.8 84.5 93.1

Brown sandy CLAY (CL), moist, w/silt

N=16 27.8 23.9 0

FIELD DATA LABORATORY DATA

Unconfined Comp. DIRECT SHEAR

27.8 91.1 61

LOG OF BORING NO. N-3

Talbert Middle School

New Science Buildings

9101 Brabham Drive

Fountain Valley, CA

Logger:

20210155-G0471

Page 32: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

Project: Location: WATER: Not Encountered

Client: FVSD DRILLING:

Date: 03/01/21 Project No. Hollow Stem AugerTESTS DESCRIPTION OF STRATUM

SOIL DEPTH N= MOISTURE DRY LIQUID PLASTIC PLASTICITY PASSING EXPANSION

SYMBOL (FT) T= CONTENT DENSITY LIMITS LIMITS INDEX Strain 200 SIEVE COHESION ANGLE INDEX Elevation= 5 ft. AMSL

P= % PCF % % % TSF % % PSF Deg

3

5

7

8

10

TUBE SAMPLE Ground Water Level Hydrostatic Ground Water Level N= SPT, BLOWS/FT REMARKS: AUGER SAMPLE T= THD,BLOWS/FT NP: Non Plastic Materials

C CALIFORNIA MODIFIED SAMPLER P= HAND PEN.,TSF * Remolded Samples SPLIT SPOON Blow Counts Corrected for California Modified

NO RECOVERY CL SM (0.6 multiplIer). Auto-Hammer. 8" HAS

Approximate Division of Soil Type

Boring Terminated at 10 Feet

Dark gray sandy CLAY (CL), soft to medium stiff,

saturated, w/silt

Medium stiff to stiff at 8'

N=8 46.4

29* Brown silty SAND (SM), medium dense, wet

C N=4 48.2 74.4 99.2

Brown sandy CLAY (CL), wet, w/silt

N=17 26.7 0

FIELD DATA LABORATORY DATA

Unconfined Comp. DIRECT SHEAR

33.8 94.6

LOG OF BORING NO. N-4

Talbert Middle School

New Science Buildings

9101 Brabham Drive

Fountain Valley, CA

Logger:

20210155-G0471

Page 33: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

Project: Location: WATER: Encountered at 5 Feet

Client: DRILLING:

Date: 01/02/19 Project No. Hollow Stem Auger

TESTS DESCRIPTION OF STRATUM

SOIL DEPTH N= MOISTURE DRY LIQUID PLASTIC PLASTICITY PASSING EXPANSION AMSL = 5 feet

SYMBOL (FT) T= CONTENT DENSITY LIMITS LIMITS INDEX Strain 200 SIEVE COHESION ANGLE INDEX

P= % PCF % % % TSF % % PSF Deg

3

5

7

8

10

13

15

TUBE SAMPLE Ground Water Level Hydrostatic Ground Water Level N= SPT, BLOWS/FT REMARKS: AUGER SAMPLE T= THD,BLOWS/FT NP: Non Plastic Materials

C CALIFORNIA MODIFIED SAMPLER P= HAND PEN.,TSF * Remolded Samples SPLIT SPOON Blow Counts Corrected for California Modified

NO RECOVERY SM SC CH and CL ML (0.6 multipiler)

LOG OF BORING NO. B - 3

Talbert Middle School 9101 Brabham Drive

Huntington Beach, CA

Fountain Valley School District Logger:

20181855-F1970 FIELD DATA LABORATORY DATA

Unconfined Comp. DIRECT SHEAR

35.2 38 23 15 73.2 53 Brown sandy CLAY (CL), wet, w/silt

C N=8 33.8 99.4 Brown clayey SAND (SC), loose, saturated, w/silt

N=2 63.2 61 29 32 93.4Brown-gray fat CLAY (CH), very soft to soft,

saturated, w/silt and sand

CN=5

P=1.039.4 85.6

Brown-gray silty CLAY (CL), medium stiff,

saturated, w/sand

N=8 29.4 41 29 12 90.2Dark gray clayey SILT (ML), medium stiff to stiff,

saturated, w/sand

Boring Terminated at 15 Feet

Approximate Division of Soil Type

Page 34: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

Project: Location: WATER: Encountered at 3 Feet

Client: DRILLING:

Date: 01/02/19 Project No. Hollow Stem Auger

TESTS DESCRIPTION OF STRATUM

SOIL DEPTH N= MOISTURE DRY LIQUID PLASTIC PLASTICITY PASSING EXPANSION AMSL = 5 feet

SYMBOL (FT) T= CONTENT DENSITY LIMITS LIMITS INDEX Strain 200 SIEVE COHESION ANGLE INDEX

P= % PCF % % % TSF % % PSF Deg

3

5

6

8

10

13

15

TUBE SAMPLE Ground Water Level Hydrostatic Ground Water Level N= SPT, BLOWS/FT REMARKS: AUGER SAMPLE T= THD,BLOWS/FT NP: Non Plastic Materials

C CALIFORNIA MODIFIED SAMPLER P= HAND PEN.,TSF * Remolded Samples SPLIT SPOON Blow Counts Corrected for California Modified

NO RECOVERY SM SP/SM ML CH (0.6 multipiler)

LOG OF BORING NO. B - 4

Talbert Middle School 9101 Brabham Drive

Huntington Beach, CA

Fountain Valley School District Logger:

20181855-F1970 FIELD DATA LABORATORY DATA

Unconfined Comp. DIRECT SHEAR

23.8

C N=23 29.4 97.3 0 30Brown SAND/silty SAND (SP/SM), medium dense,

saturated

Brown silty SAND (SM), wet, w/organics

Brown-gray sandy SILT (ML), medium stiff to stiff,

saturated, w/clay

CN=1

P=1.042.9 82.2 66 28 38 91.9 Brown fat silty CLAY (CH), soft, saturated, w/sand

N=8 37.7 39 27 12 88.9Gray, green and orange clayey SILT (ML), medium

stiff to stiff, saturated, mottled, w/sand

Boring Terminated at 15 Feet

Approximate Division of Soil Type

N=8 50.2

Page 35: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

LABORATORY TEST DATA

Page 36: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

Sh

ear

Str

ess (

ps

f)

Normal Stress (psf)

Project No: Boring No: Depth (ft): 3-5'

W int = gd (pcf)= C (psf) = f (deg) =

Remolded (Y/N):

20210155-G0471

Y

N-1

23.8%

Site/Client: Talbert Middle School

90.0 0 28

Soil Type: SM

Orange County17782 Georgetown LaneHuntington Beach, California 92647Tele: (714) 375-3830Fax: (714)375-3831

San Bernardino County14163 Arrow BoulevardFontana, California 92335Tele:(909) 284-9200Fax:(909) 284-9201

ASTM D3080Direct Shear Results

Page 37: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

Sh

ear

Str

ess (

ps

f)

Normal Stress (psf)

Project No: Boring No: Depth (ft): 3-5'

W int = gd (pcf)= C (psf) = f (deg) =

Remolded (Y/N):

20210155-G0471

Y

N-2

25.7%

Site/Client: Talbert Middle School

90.0 0 29

Soil Type: SM

Orange County17782 Georgetown LaneHuntington Beach, California 92647Tele: (714) 375-3830Fax: (714)375-3831

San Bernardino County14163 Arrow BoulevardFontana, California 92335Tele:(909) 284-9200Fax:(909) 284-9201

ASTM D3080Direct Shear Results

Page 38: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

SEISMIC DESIGN DATA

Page 39: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

��������� ����� ����� ������

���� ��� �� ������ ���� ���

����� !"#$$��%&'((�%&#�)&�*�$+,-.//0* ��'�12 345)!#)+!()*��&'367.08983:%7;�!#!5$�3;()+#!5$�<==-8>?9>=3@//A-.8.00//2�!� ���������BC�����DE�2�,#+)6($�F�G� �)&�2(&51�)! HIJKL�DF#,M6�!�+( N OP%#!�6��,, JL�Q�IR�S��R�NT� U��5� 2�,& #T!#() ���V� �IJW���X�Y�������ZQ����� ����Y�����Y[� ��� �IJW���X�Y�������ZQ����� �����Y[� �XRRL�����������C�V ���L��Y�Q��Y ������R����R�������\�RX��� �XRRL�����������C�V ���L��Y�Q��Y ������R����R�������\�RX�� �XRRL�����������C�V ]X����� �� ���Y� ���\�RX������ ����YH�� �XRRL�����������C�V ]X����� �� ���Y� ���\�RX������ ����YH�NT� U��5� 2�,& #T!#()�I �XRRL�����������C�V �� ���Y� ����������S� �XRRL�����������C�V ������R�Q�������Q���������� ����Y\ �XRRL�����������C�V ������R�Q�������Q���������� ����YE_H ��D �IJ_������X�Y����R�������E_H ��� ������R�Q�������Q�������E_HE_H� ��DD �����Y�Q��Y������X�Y����R�������ab V b���L�����Y���� ����������Y�� ����Y Wa ���V� E��c�c�R� ����� L�������Y���X�Y�������Z��� ����Y[ �d ����e ������YX��Q���L��f��YZ�g���c�c�R��S�Q�h���Y��������S��� [ ������R����R������� � ����K ������YY�������� �������R�������\�RX��Z��� ����Y[�Wa ��� E��c�c�R� ����� L�������Y���X�Y�������Z��� ����Y[��d ���CC ������YX��Q���L��f��YZ�g���c�c�R��S�Q�h���Y��������S��� [ ������R����R���������� ��KK� ������YY�������� �������R�������\�RX��Z��� ����Y[E_HY ��Ve� ������YY�������� �������R�������\�RX��ZE��_��X�YH���R�������[IW ��e� �����Y\�RX��Q����� ���QQ�������� ���������Y IW� ��e�V �����Y\�RX��Q����� ���QQ��������������Y�Q�

Page 40: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

��������� ����� ����� ������

���� ��� �� ������ ���� ���

�������� !��"������#����������� ����$����� %�& ���� &�"��'�$��&��������(��)��)*+���$�� ��� �� ��$������&,��� � ,������ ��� �&�"��-��"��&�"��-#���� ���,���-�.���������"��� ����$����� %�&���"������� ��,"$���&�, �$����"��$,���#����- ����#�����"�������%����,�����������/�����������$'���#��������#�� ���,���-( ,���&�"��-��$���"���&�"��-&-�������� �������"���� �$���#� ����" ���)��)*+�$���������$�������, ��#��� ��#�����������"������ �,�$0,$������# ,��������������#� ����" (��'����/����������$1��%"�$�������#��"$�#��������(����� ,& ���,��#����� ���$��$�#������2,���$�# ,�����#� ����" ����������������$���"-�������� ,"� �#��� �� ���$������'�$�$&-��� %�& ����� �� �#�����#��������#������ %�& ���� ,���"""��&�"��-��� ���#��� ,��, ��� ��#����,��,��#��� %�& ���$�� ������"-�����'�"&-�����'������&,�"$�����$�&�$�� �� ��� �&"�#��&,�"$�����$������'�"��$��������������#�����&,�"$��� ���$� ���&�$&-"����,$��"�����,$�"������������ ������� ,"� �#��� %�& ����

Page 41: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

GEOLOGIC MAP

Page 42: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

REGIONAL GEOLOGIC MAP Figure 2

N

Site Location

LEGEND

Qw - Wash deposits (late Holocene)

Qyf - Young alluvial fan deposits (Holocene and late Pleistocene)

Qya - Young axial channel deposits (Holocene and late Pleistocene)

Qypt - Young peat deposits (Holocene and late Pleistocene)

Qop - Old Paralic deposits, undivided (late to middle Pleistocene)

Scale: 1 inch = 2900 feet

Date: 3-15-2021

Fountain Valley School District

Site Name: Talbert Middle School Modular BuildingsProject No. : 20210155-G0471

Site Address: 9101 Brabham Drive, Fountain Valley, CA

Page 43: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

TOPOGRAPHIC MAP

Page 44: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TOPOGRAPHIC MAP Figure 3

N

Scale: 1 inch = 2040 feet~

Site Location

Fountain Valley School District

Date: 3-15-2021

Site Name: Talbert Middle School Modular BuildingsProject No. : 20210155-G0471

Site Address: 9101 Brabham Drive, Fountain Valley, CA

Page 45: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

CALIFORNIA FAULT MAP

Page 46: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

SITE

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

-400 -300 -200 -100 0 100 200 300 400 500 600

CALIFORNIA FAULT MAPTest Run

Page 47: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

ESTIMATION OF PEAK ACCELERATION

Page 48: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

��������� ����� ����� ������

���� ��� �� ������ ���� ���

����� !"#$$��%&'((�%&#�)&�*�$+,-.//0* ��'�12 345)!#)+!()*��&'367.08983:%7;�!#!5$�3;()+#!5$�<==-8>?9>=3@//A-.8.00//2�!� ���������BC�����DE�2�,#+)6($�F�G� �)&�2(&51�)! HIJKL�DF#,M6�!�+( N OP%#!�6��,, JL�Q�IR�S��R�NT� U��5� 2�,& #T!#() ���V� �IJW���X�Y�������ZQ����� ����Y�����Y[� ��� �IJW���X�Y�������ZQ����� �����Y[� �XRRL�����������C�V ���L��Y�Q��Y ������R����R�������\�RX��� �XRRL�����������C�V ���L��Y�Q��Y ������R����R�������\�RX�� �XRRL�����������C�V ]X����� �� ���Y� ���\�RX������ ����YH�� �XRRL�����������C�V ]X����� �� ���Y� ���\�RX������ ����YH�NT� U��5� 2�,& #T!#()�I �XRRL�����������C�V �� ���Y� ����������S� �XRRL�����������C�V ������R�Q�������Q���������� ����Y\ �XRRL�����������C�V ������R�Q�������Q���������� ����YE_H ��D �IJ_������X�Y����R�������E_H ��� ������R�Q�������Q�������E_HE_H� ��DD �����Y�Q��Y������X�Y����R�������ab V b���L�����Y���� ����������Y�� ����Y Wa ���V� E��c�c�R� ����� L�������Y���X�Y�������Z��� ����Y[ �d ����e ������YX��Q���L��f��YZ�g���c�c�R��S�Q�h���Y��������S��� [ ������R����R������� � ����K ������YY�������� �������R�������\�RX��Z��� ����Y[�Wa ��� E��c�c�R� ����� L�������Y���X�Y�������Z��� ����Y[��d ���CC ������YX��Q���L��f��YZ�g���c�c�R��S�Q�h���Y��������S��� [ ������R����R���������� ��KK� ������YY�������� �������R�������\�RX��Z��� ����Y[E_HY ��Ve� ������YY�������� �������R�������\�RX��ZE��_��X�YH���R�������[IW ��e� �����Y\�RX��Q����� ���QQ�������� ���������Y IW� ��e�V �����Y\�RX��Q����� ���QQ��������������Y�Q�

Page 49: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

��������� ����� ����� ������

���� ��� �� ������ ���� ���

�������� !��"������#����������� ����$����� %�& ���� &�"��'�$��&��������(��)��)*+���$�� ��� �� ��$������&,��� � ,������ ��� �&�"��-��"��&�"��-#���� ���,���-�.���������"��� ����$����� %�&���"������� ��,"$���&�, �$����"��$,���#����- ����#�����"�������%����,�����������/�����������$'���#��������#�� ���,���-( ,���&�"��-��$���"���&�"��-&-�������� �������"���� �$���#� ����" ���)��)*+�$���������$�������, ��#��� ��#�����������"������ �,�$0,$������# ,��������������#� ����" (��'����/����������$1��%"�$�������#��"$�#��������(����� ,& ���,��#����� ���$��$�#������2,���$�# ,�����#� ����" ����������������$���"-�������� ,"� �#��� �� ���$������'�$�$&-��� %�& ����� �� �#�����#��������#������ %�& ���� ,���"""��&�"��-��� ���#��� ,��, ��� ��#����,��,��#��� %�& ���$�� ������"-�����'�"&-�����'������&,�"$�����$�&�$�� �� ��� �&"�#��&,�"$�����$������'�"��$��������������#�����&,�"$��� ���$� ���&�$&-"����,$��"�����,$�"������������ ������� ,"� �#��� %�& ����

Page 50: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

SEISMIC ANALYSIS

Page 51: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

2/4/2019 2008 National Seismic Hazard Maps - Source Parameters

https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/view_fault.cfm?cfault_id=127_alt2 1/2

2008 National Seismic Hazard Maps - SourceParameters

New Search

Fault Name State

Newport Inglewood Connected alt 2 California

GEOMETRY

Dip (degrees) 90

Dip direction V

Sense of slip strike slip

Rupture top (km) 0

Rupture bottom (km) 11

Rake (degrees) 180

Length (km) 208

MODEL VALUES

Slip Rate 1.3

Probability of activity 1

  ELLSWORTH HANKS

Minimum magnitude 6.5 6.5

Maximum magnitude 7.50 7.50

b-value 0.8 0.8

Fault Model Deformation Char Rate1 GR-a-value1 Weight

U.S. Geological Survey - Earthquake Hazards Program

Page 52: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

2/4/2019 2008 National Seismic Hazard Maps - Source Parameters

https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/view_fault.cfm?cfault_id=127_alt2 2/2

Model

Stitched 2.4 3.81e-04 / 3.81e-04 1.885 / 1.885 0.50

1 1st Value is based on Ellsworth relation and 2nd value is based on Hanks and Bakunrelation

Comments

Rose Canyon; Newport-Inglewood (O�shore); Newport-Inglewood, alt 2

Selected References

Working Group on California Earthquake Probabilities, 1995, Seismic hazards insouthern California—Probable earthquakes, 1994 to 2024: Bulletin of theSeismological Society of America, v. 85, no. 2, p. 379-439.

Page 53: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

2/5/2019 2008 National Seismic Hazard Maps - Source Parameters

https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_results.cfm 1/5

2008 National Seismic Hazard Maps - Source Parameters

New Search

Distance inKilometers

Name State  

PrefSlipRate(mm/yr)

Dip(degrees)  

DipDir  

SlipSense 

RuptureTop(km)          

RuptureBottom(km)          

Length(km)

2.09 Newport Inglewood Connected alt 2 CA 1.3 90 Vstrikeslip

0 11 208

2.22 Newport Inglewood Connected alt 1 CA 1.3 89strikeslip

0 11 208

2.22 Newport-Inglewood, alt 1 CA 1 88strikeslip

0 15 65

3.65 San Joaquin Hills CA 0.5 23 SW thrust 2 13 27

11.12 Newport-Inglewood (O�shore) CA 1.5 90 Vstrikeslip

0 10 66

19.70 Palos Verdes Connected CA 3 90 Vstrikeslip

0 10 285

19.70 Palos Verdes CA 3 90 Vstrikeslip

0 14 99

21.42 Puente Hills (Coyote Hills) CA 0.7 26 N thrust 2.8 15 17

27.92 Puente Hills (Santa Fe Springs) CA 0.7 29 N thrust 2.8 15 11

29.61 Elsinore;W CA 2.5 75 NEstrikeslip

0 14 46

29.61 Elsinore;W+GI+T+J CA n/a 84 NEstrikeslip

0 16 199

29.61 Elsinore;W+GI+T+J+CM CA n/a 84 NEstrikeslip

0 16 241

29.61 Elsinore;W+GI CA n/a 81 NEstrikeslip

0 14 83

29.61 Elsinore;W+GI+T CA n/a 84 NEstrikeslip

0 14 124

35.14 Puente Hills (LA) CA 0.7 27 N thrust 2.1 15 22

38.71 Elsinore;GI+T CA 5 90 Vstrikeslip

0 14 78

38.71 Elsinore;GI+T+J+CM CA n/a 86 NEstrikeslip

0 16 195

38.71 Elsinore;GI+T+J CA n/a 86 NEstrikeslip

0 17 153

38.71 Elsinore;GI CA 5 90 Vstrikeslip

0 13 37

U.S. Geological Survey - Earthquake Hazards Program

Page 54: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

2/5/2019 2008 National Seismic Hazard Maps - Source Parameters

https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_results.cfm 2/5

38.79 Chino, alt 2 CA 1 65 SW strikeslip

0 14 29

38.84 Chino, alt 1 CA 1 50 SWstrikeslip

0 9 24

40.63 San Jose CA 0.5 74 NWstrikeslip

0 15 20

44.70 Coronado Bank CA 3 90 Vstrikeslip

0 9 186

44.70 Elysian Park (Upper) CA 1.3 50 NE reverse 3 15 20

50.76 Raymond CA 1.5 79 Nstrikeslip

0 16 22

51.99 Sierra Madre CA 2 53 N reverse 0 14 57

51.99 Sierra Madre Connected CA 2 51 reverse 0 14 76

52.83 Verdugo CA 0.5 55 NE reverse 0 15 29

53.75 Elsinore;T+J+CM CA n/a 85 NEstrikeslip

0 16 169

53.75 Elsinore;T CA 5 90 Vstrikeslip

0 14 52

53.75 Elsinore;T+J CA n/a 86 NEstrikeslip

0 17 127

54.06 Cucamonga CA 5 45 N thrust 0 8 28

54.35 Hollywood CA 1 70 Nstrikeslip

0 17 17

55.20 Clamshell-Sawpit CA 0.5 50 NW reverse 0 14 16

55.80 Santa Monica Connected alt 2 CA 2.4 44strikeslip

0.8 11 93

59.49 Santa Monica Connected alt 1 CA 2.6 51strikeslip

0 16 79

59.49 Santa Monica, alt 1 CA 1 75 Nstrikeslip

0 18 14

64.38 Malibu Coast, alt 1 CA 0.3 75 Nstrikeslip

0 8 38

64.38 Malibu Coast, alt 2 CA 0.3 74 Nstrikeslip

0 16 38

65.86 Anacapa-Dume, alt 2 CA 3 41 N thrust 1.2 12 65

72.84 Sierra Madre (San Fernando) CA 2 45 N thrust 0 13 18

75.18 Anacapa-Dume, alt 1 CA 3 45 N thrust 0 16 51

75.62 San Jacinto;SBV+SJV+A+CC CA n/a 90 Vstrikeslip

0 16 181

75.62 San Jacinto;SBV CA 6 90 Vstrikeslip

0 16 45

Page 55: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

2/5/2019 2008 National Seismic Hazard Maps - Source Parameters

https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_results.cfm 3/5

75.62 San Jacinto;SBV+SJV CA n/a 90 V strikeslip

0 16 88

75.62 San Jacinto;SBV+SJV+A CA n/a 90 Vstrikeslip

0 16 134

75.62 San Jacinto;SBV+SJV+A+C CA n/a 90 Vstrikeslip

0 17 181

75.62 San Jacinto;SBV+SJV+A+CC+B CA n/a 90 Vstrikeslip

0.1 15 215

75.62 San Jacinto;SBV+SJV+A+CC+B+SM CA n/a 90 Vstrikeslip

0.1 15 241

76.32 San Gabriel CA 1 61 Nstrikeslip

0 15 71

77.29 San Jacinto;SJV+A+CC+B CA n/a 90 Vstrikeslip

0.1 15 170

77.29 San Jacinto;SJV+A+CC+B+SM CA n/a 90 Vstrikeslip

0.1 15 196

77.29 San Jacinto;SJV+A+CC CA n/a 90 Vstrikeslip

0 16 136

77.29 San Jacinto;SJV+A CA n/a 90 Vstrikeslip

0 17 89

77.29 San Jacinto;SJV+A+C CA n/a 90 Vstrikeslip

0 17 136

77.29 San Jacinto;SJV CA 18 90 Vstrikeslip

0 16 43

79.38 Northridge CA 1.5 35 S thrust 7.4 17 33

80.00 Rose Canyon CA 1.5 90 Vstrikeslip

0 8 70

80.40 S. San Andreas;PK+CH+CC+BB+NM+SM CA n/a 90 Vstrikeslip

0.1 13 342

80.40 S. San Andreas;BB+NM+SM+NSB+SSB CA n/a 90 Vstrikeslip

0 14 263

80.40S. SanAndreas;CH+CC+BB+NM+SM+NSB+SSB+BG+CO

CA n/a 86strikeslip

0.1 13 512

80.40 S. San Andreas;BB+NM+SM+NSB+SSB+BG CA n/a 84strikeslip

0 14 321

80.40 S. San Andreas;BB+NM+SM+NSB+SSB+BG+CO CA n/a 85strikeslip

0.1 13 390

80.40 S. San Andreas;CH+CC+BB+NM+SM+NSB CA n/a 90 Vstrikeslip

0 14 341

80.40 S. San Andreas;CH+CC+BB+NM+SM+NSB+SSB CA n/a 90 Vstrikeslip

0 14 384

80.40 S. San Andreas;CH+CC+BB+NM+SM+NSB+SSB+BG CA n/a 86strikeslip

0 14 442

Page 56: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

2/5/2019 2008 National Seismic Hazard Maps - Source Parameters

https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_results.cfm 4/5

80.40 S. San Andreas;NM+SM CA n/a 90 V strikeslip

0 14 134

80.40 S. San Andreas;NM+SM+NSB CA n/a 90 Vstrikeslip

0 13 170

80.40 S. San Andreas;NM+SM+NSB+SSB CA n/a 90 Vstrikeslip

0 13 213

80.40 S. San Andreas;NM+SM+NSB+SSB+BG CA n/a 83strikeslip

0 14 271

80.40 S. San Andreas;NM+SM+NSB+SSB+BG+CO CA n/a 84strikeslip

0.1 13 340

80.40 S. San Andreas;BB+NM+SM CA n/a 90 Vstrikeslip

0 14 184

80.40 S. San Andreas;SM CA 29 90 Vstrikeslip

0 13 98

80.40 S. San Andreas;PK+CH+CC+BB+NM+SM+NSB CA n/a 90 Vstrikeslip

0.1 13 377

80.40 S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB CA n/a 90 Vstrikeslip

0.1 13 421

80.40S. SanAndreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG

CA n/a 86strikeslip

0.1 13 479

80.40S. SanAndreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO

CA n/a 86strikeslip

0.1 13 548

80.40 S. San Andreas;BB+NM+SM+NSB CA n/a 90 Vstrikeslip

0 14 220

80.40 S. San Andreas;SM+NSB CA n/a 90 Vstrikeslip

0 13 133

80.40 S. San Andreas;SM+NSB+SSB CA n/a 90 Vstrikeslip

0 13 176

80.40 S. San Andreas;SM+NSB+SSB+BG CA n/a 81strikeslip

0 13 234

80.40 S. San Andreas;SM+NSB+SSB+BG+CO CA n/a 83strikeslip

0.1 13 303

80.40 S. San Andreas;CH+CC+BB+NM+SM CA n/a 90 Vstrikeslip

0 14 306

80.40 S. San Andreas;CC+BB+NM+SM CA n/a 90 Vstrikeslip

0 14 243

80.40 S. San Andreas;CC+BB+NM+SM+NSB CA n/a 90 Vstrikeslip

0 14 279

80.40 S. San Andreas;CC+BB+NM+SM+NSB+SSB CA n/a 90 Vstrikeslip

0 14 322

80.40 S. San Andreas;CC+BB+NM+SM+NSB+SSB+BG CA n/a 85strikeslip

0 14 380

80.40 S. San Andreas;CC+BB+NM+SM+NSB+SSB+BG+CO CA n/a 86 strikeslip

0.1 13 449

Page 57: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

2/5/2019 2008 National Seismic Hazard Maps - Source Parameters

https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_results.cfm 5/5

80.44 S. San Andreas;NSB+SSB CA n/a 90 Vstrikeslip

0 13 79

80.44 S. San Andreas;NSB+SSB+BG CA n/a 75strikeslip

0 14 136

80.44 S. San Andreas;NSB CA 22 90 Vstrikeslip

0 13 35

80.44 S. San Andreas;NSB+SSB+BG+CO CA n/a 79strikeslip

0.2 12 206

82.99 San Jacinto;A CA 9 90 Vstrikeslip

0 17 71

82.99 San Jacinto;A+CC+B CA n/a 90 Vstrikeslip

0.1 15 152

82.99 San Jacinto;A+CC+B+SM CA n/a 90 Vstrikeslip

0.1 15 178

82.99 San Jacinto;A+CC CA n/a 90 Vstrikeslip

0 16 118

82.99 San Jacinto;A+C CA n/a 90 Vstrikeslip

0 17 118

84.02 Cleghorn CA 3 90 Vstrikeslip

0 16 25

86.19 Santa Susana, alt 1 CA 5 55 N reverse 0 16 27

86.45 S. San Andreas;SSB CA 16 90 Vstrikeslip

0 13 43

86.45 S. San Andreas;SSB+BG CA n/a 71strikeslip

0 13 101

86.45 S. San Andreas;SSB+BG+CO CA n/a 77strikeslip

0.2 12 170

95.69 North Frontal (West) CA 1 49 S reverse 0 16 50

96.43 Simi-Santa Rosa CA 1 60strikeslip

1 12 39

96.84 Elsinore;J+CM CA 3 84 NEstrikeslip

0 17 118

96.84 Elsinore;J CA 3 84 NEstrikeslip

0 19 75

97.69 Holser, alt 1 CA 0.4 58 S reverse 0 19 20

Page 58: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT

************************* * * * E Q S E A R C H * * * * Version 3.00 * * * *************************

ESTIMATION OF PEAK ACCELERATION FROM CALIFORNIA EARTHQUAKE CATALOGS

JOB NUMBER: 20181855-F1970 DATE: 02-05-2019

JOB NAME: Talbert School

EARTHQUAKE-CATALOG-FILE NAME: ALLQUAKE.DAT

MAGNITUDE RANGE: MINIMUM MAGNITUDE: 4.00 MAXIMUM MAGNITUDE: 9.00

SITE COORDINATES: SITE LATITUDE: 33.6807 SITE LONGITUDE: 117.9692

SEARCH DATES: START DATE: 1800 END DATE: 2019

SEARCH RADIUS: 62.1 mi 99.9 km

ATTENUATION RELATION: 14) Campbell & Bozorgnia (1997 Rev.) - Alluvium UNCERTAINTY (M=Median, S=Sigma): S Number of Sigmas: 1.0 ASSUMED SOURCE TYPE: DS [SS=Strike-slip, DS=Reverse-slip, BT=Blind-thrust] SCOND: 0 Depth Source: A Basement Depth: 5.00 km Campbell SSR: 0 Campbell SHR: 0 COMPUTE PEAK HORIZONTAL ACCELERATION

MINIMUM DEPTH VALUE (km): 3.0

Page 1

Page 59: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 1 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------DMG |33.6650|117.9790|10/20/1961|214240.7| 7.2| 4.00| 0.194 |VIII| 1.2( 2.0)DMG |33.6800|117.9930|11/20/1961| 85334.7| 4.4| 4.00| 0.192 |VIII| 1.4( 2.2)DMG |33.6590|117.9810|10/20/1961|20 714.5| 6.1| 4.00| 0.188 |VIII| 1.6( 2.6)DMG |33.6540|117.9940|10/20/1961|194950.5| 4.6| 4.30| 0.214 |VIII| 2.3( 3.7)DMG |33.6710|118.0120|10/20/1961|223534.2| 5.6| 4.10| 0.183 |VIII| 2.5( 4.1)MGI |33.7000|117.9000|07/08/1902| 945 0.0| 0.0| 4.00| 0.140 |VIII| 4.2( 6.7)DMG |33.6170|117.9670|03/11/1933| 154 7.8| 0.0| 6.30| 0.673 | XI | 4.4( 7.1)DMG |33.6830|118.0500|03/11/1933|1250 0.0| 0.0| 4.40| 0.172 |VIII| 4.6( 7.5)DMG |33.6830|118.0500|03/11/1933| 658 3.0| 0.0| 5.50| 0.381 | X | 4.6( 7.5)DMG |33.7500|118.0000|11/16/1934|2126 0.0| 0.0| 4.00| 0.124 | VII| 5.1( 8.2)DMG |33.6170|118.0170|03/14/1933|19 150.0| 0.0| 5.10| 0.254 | IX | 5.2( 8.3)DMG |33.6170|118.0170|10/02/1933|1326 1.0| 0.0| 4.00| 0.123 | VII| 5.2( 8.3)DMG |33.6170|118.0170|03/15/1933|111332.0| 0.0| 4.90| 0.221 | IX | 5.2( 8.3)DMG |33.6170|118.0330|05/21/1938| 944 0.0| 0.0| 4.00| 0.114 | VII| 5.7( 9.2)DMG |33.7000|118.0670|03/11/1933| 51022.0| 0.0| 5.10| 0.237 | IX | 5.8( 9.3)DMG |33.7000|118.0670|07/20/1940| 4 113.0| 0.0| 4.00| 0.113 | VII| 5.8( 9.3)DMG |33.7000|118.0670|03/11/1933| 85457.0| 0.0| 5.10| 0.237 | IX | 5.8( 9.3)DMG |33.7000|118.0670|02/08/1940|165617.0| 0.0| 4.00| 0.113 | VII| 5.8( 9.3)GSP |33.6200|117.9000|04/07/1989|200730.2| 13.0| 4.50| 0.159 |VIII| 5.8( 9.3)DMG |33.6000|118.0000|03/11/1933| 231 0.0| 0.0| 4.40| 0.147 |VIII| 5.8( 9.4)DMG |33.6000|118.0000|03/11/1933| 217 0.0| 0.0| 4.50| 0.158 |VIII| 5.8( 9.4)DMG |33.6000|118.0170|12/25/1935|1715 0.0| 0.0| 4.50| 0.150 |VIII| 6.2( 10.0 )DMG |33.5750|117.9830|03/11/1933| 518 4.0| 0.0| 5.20| 0.211 |VIII| 7.3( 11.8)DMG |33.5670|117.9830|07/07/1937|1112 0.0| 0.0| 4.00| 0.084 | VII| 7.9( 12.7)DMG |33.5670|117.9830|04/17/1934|1833 0.0| 0.0| 4.00| 0.084 | VII| 7.9( 12.7)DMG |33.7500|118.0830|03/11/1933| 837 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/16/1933|1529 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 8 8 0.0| 0.0| 4.50| 0.120 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 911 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933|1825 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1129 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/13/1933|131828.0| 0.0| 5.30| 0.209 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 832 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 513 0.0| 0.0| 4.70| 0.137 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 515 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1138 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 521 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 751 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1025 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 555 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1357 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 618 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)

Page 2

Page 60: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT DMG |33.7500|118.0830|03/11/1933|2231 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 635 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|2240 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|23 5 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 759 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933| 034 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933| 448 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933| 546 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/14/1933| 036 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 910 0.0| 0.0| 5.10| 0.180 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933| 740 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 2 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------DMG |33.7500|118.0830|03/11/1933| 926 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933|15 2 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933|1651 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|11 0 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|04/02/1933|1536 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933|2128 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933|2354 0.0| 0.0| 4.50| 0.120 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/13/1933| 343 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1147 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/13/1933| 617 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 436 0.0| 0.0| 4.60| 0.129 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/13/1933|1532 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 440 0.0| 0.0| 4.70| 0.137 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/13/1933|1929 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/14/1933|1219 0.0| 0.0| 4.50| 0.120 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/25/1933|1346 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/14/1933|2242 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 553 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/15/1933| 432 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933|1738 0.0| 0.0| 4.50| 0.120 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 611 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/16/1933|1456 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 2 9 0.0| 0.0| 5.00| 0.167 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/16/1933|1530 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/17/1933|1651 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/18/1933|2052 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/19/1933|2123 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/20/1933|1358 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/21/1933| 326 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/23/1933| 840 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933| 616 0.0| 0.0| 4.60| 0.129 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 252 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/30/1933|1225 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/31/1933|1049 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|04/01/1933| 642 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|04/02/1933| 8 0 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 3 9 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 311 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)

Page 3

Page 61: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT DMG |33.7500|118.0830|03/11/1933| 323 0.0| 0.0| 5.00| 0.167 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 336 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/13/1933| 432 0.0| 0.0| 4.70| 0.137 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 347 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933| 027 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 439 0.0| 0.0| 4.90| 0.157 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 227 0.0| 0.0| 4.60| 0.129 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 230 0.0| 0.0| 5.10| 0.180 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/23/1933|1831 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933| 6 1 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 257 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/15/1933| 2 8 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1653 0.0| 0.0| 4.80| 0.147 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/15/1933| 540 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 2 4 0.0| 0.0| 4.90| 0.157 |VIII| 8.1( 13.0)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 3 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------DMG |33.7500|118.0830|03/11/1933| 2 5 0.0| 0.0| 4.30| 0.103 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|22 0 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|2232 0.0| 0.0| 4.10| 0.088 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 211 0.0| 0.0| 4.40| 0.112 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 216 0.0| 0.0| 4.80| 0.147 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 259 0.0| 0.0| 4.60| 0.129 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 222 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1944 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1045 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 524 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 3 5 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 339 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/12/1933| 835 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 258 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1956 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933| 210 0.0| 0.0| 4.60| 0.129 |VIII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1141 0.0| 0.0| 4.20| 0.095 | VII| 8.1( 13.0)DMG |33.7500|118.0830|03/11/1933|1547 0.0| 0.0| 4.00| 0.081 | VII| 8.1( 13.0)DMG |33.7330|118.1000|03/11/1933|15 9 0.0| 0.0| 4.40| 0.108 | VII| 8.3( 13.4)DMG |33.7330|118.1000|03/11/1933|1350 0.0| 0.0| 4.40| 0.108 | VII| 8.3( 13.4)DMG |33.7330|118.1000|03/11/1933|1447 0.0| 0.0| 4.40| 0.108 | VII| 8.3( 13.4)DMG |33.8000|118.0000|10/21/1913| 938 0.0| 0.0| 4.00| 0.078 | VII| 8.4( 13.5)MGI |33.8000|117.9000|05/22/1902| 740 0.0| 0.0| 4.30| 0.090 | VII| 9.1( 14.7)DMG |33.6170|118.1170|01/20/1934|2117 0.0| 0.0| 4.50| 0.100 | VII| 9.6( 15.4)DMG |33.5610|118.0580|01/15/1937|183547.0| 10.0| 4.00| 0.066 | VI | 9.7( 15.6)DMG |33.7670|118.1170|11/04/1939|2141 0.0| 0.0| 4.00| 0.061 | VI | 10.4( 16.7)DMG |33.7500|118.1330|03/11/1933|11 4 0.0| 0.0| 4.60| 0.097 | VII| 10.5( 17.0)DMG |33.7670|117.8170|08/22/1936| 521 0.0| 0.0| 4.00| 0.060 | VI | 10.6( 17.0)DMG |33.7830|118.1330|01/13/1940| 749 7.0| 0.0| 4.00| 0.053 | VI | 11.8( 18.9)DMG |33.7830|118.1330|10/02/1933| 91017.6| 0.0| 5.40| 0.155 |VIII| 11.8( 18.9)DMG |33.7830|118.1330|11/20/1933|1032 0.0| 0.0| 4.00| 0.053 | VI | 11.8( 18.9)DMG |33.7500|118.1670|05/16/1933|205855.0| 0.0| 4.00| 0.050 | VI | 12.3( 19.8)MGI |33.8000|117.8000|05/19/1917| 635 0.0| 0.0| 4.00| 0.048 | VI | 12.7( 20.5)MGI |33.8000|117.8000|11/09/1926|1535 0.0| 0.0| 4.60| 0.077 | VII| 12.7( 20.5)

Page 4

Page 62: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT MGI |33.8000|117.8000|11/04/1926|2238 0.0| 0.0| 4.60| 0.077 | VII| 12.7( 20.5)MGI |33.8000|117.8000|05/20/1917| 945 0.0| 0.0| 4.00| 0.048 | VI | 12.7( 20.5)MGI |33.8000|117.8000|11/10/1926|1723 0.0| 0.0| 4.60| 0.077 | VII| 12.7( 20.5)MGI |33.8000|117.8000|05/19/1917| 719 0.0| 0.0| 4.00| 0.048 | VI | 12.7( 20.5)MGI |33.8000|117.8000|11/07/1926|1948 0.0| 0.0| 4.60| 0.077 | VII| 12.7( 20.5)DMG |33.7500|118.1830|08/04/1933| 41748.0| 0.0| 4.00| 0.046 | VI | 13.2( 21.2)DMG |33.5450|117.8070|10/27/1969|1316 2.3| 6.5| 4.50| 0.068 | VI | 13.2( 21.3)PAS |33.5080|118.0710|11/20/1988| 53928.7| 6.0| 4.50| 0.067 | VI | 13.3( 21.4)DMG |33.5170|118.1000|03/22/1941| 82240.0| 0.0| 4.00| 0.044 | VI | 13.6( 21.8)DMG |33.6330|118.2000|11/01/1940|20 046.0| 0.0| 4.00| 0.044 | VI | 13.7( 22.0)DMG |33.6300|118.2000|09/13/1929|132338.2| 0.0| 4.00| 0.043 | VI | 13.7( 22.1)DMG |33.7830|118.2000|12/27/1939|192849.0| 0.0| 4.70| 0.067 | VI | 15.0( 24.2)PAS |33.4710|118.0610|02/27/1984|101815.0| 6.0| 4.00| 0.037 | V | 15.4( 24.8)PAS |33.5380|118.2070|05/25/1982|134430.3| 13.7| 4.10| 0.036 | V | 16.8( 27.1)DMG |33.9000|118.1000|07/08/1929|1646 6.7| 13.0| 4.70| 0.058 | VI | 16.9( 27.2)GSP |33.8060|117.7150|03/07/2000|002028.2| 11.0| 4.00| 0.033 | V | 17.0( 27.3)DMG |33.8170|118.2170|10/22/1941| 65718.5| 0.0| 4.90| 0.067 | VI | 17.1( 27.4)DMG |33.7590|118.2530|08/31/1938| 31814.2| 10.0| 4.50| 0.048 | VI | 17.2( 27.6)DMG |33.8540|117.7520|10/04/1961| 22131.6| 4.3| 4.10| 0.035 | V | 17.3( 27.8)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 4 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------DMG |33.7830|118.2500|11/14/1941| 84136.3| 0.0| 5.40| 0.096 | VII| 17.6( 28.3)GSP |33.9325|117.9158|03/29/2014|040942.2| 5.1| 5.10| 0.075 | VII| 17.6( 28.4)DMG |33.8670|118.2000|11/13/1933|2128 0.0| 0.0| 4.00| 0.029 | V | 18.5( 29.7)GSP |33.9040|117.7910|08/08/2012|163322.1| 10.0| 4.50| 0.044 | VI | 18.5( 29.8)GSP |33.9050|117.7920|08/08/2012|062334.1| 10.0| 4.50| 0.043 | VI | 18.5( 29.8)GSP |33.9090|117.7920|06/14/2012|031715.7| 9.0| 4.00| 0.029 | V | 18.8( 30.2)GSP |33.9070|117.7880|08/29/2012|203100.3| 9.0| 4.10| 0.031 | V | 18.8( 30.2)DMG |33.8670|118.2170|06/19/1944| 0 333.0| 0.0| 4.50| 0.042 | V | 19.2( 30.9)DMG |33.8670|118.2170|06/19/1944| 3 6 7.0| 0.0| 4.40| 0.038 | V | 19.2( 30.9)GSP |33.9170|117.7760|09/03/2002|070851.9| 12.0| 4.80| 0.051 | VI | 19.7( 31.7)GSP |33.9613|117.8923|03/29/2014|213245.9| 9.3| 4.14| 0.030 | V | 19.9( 32.0)MGI |33.9000|118.2000|10/08/1927|1914 0.0| 0.0| 4.60| 0.042 | VI | 20.1( 32.4)PAS |33.9650|117.8860|01/01/1976|172012.9| 6.2| 4.20| 0.030 | V | 20.2( 32.5)DMG |33.9670|118.0500|01/30/1941| 13446.9| 0.0| 4.10| 0.028 | V | 20.3( 32.7)DMG |33.5000|118.2500|06/18/1920|10 8 0.0| 0.0| 4.50| 0.038 | V | 20.4( 32.8)MGI |33.8000|118.3000|12/31/1928|1045 0.0| 0.0| 4.00| 0.025 | V | 20.7( 33.3)DMG |33.8000|118.3000|11/03/1931|16 5 0.0| 0.0| 4.00| 0.025 | V | 20.7( 33.3)DMG |33.8500|118.2670|03/11/1933|1425 0.0| 0.0| 5.00| 0.056 | VI | 20.7( 33.3)DMG |33.8500|118.2670|03/11/1933| 629 0.0| 0.0| 4.40| 0.035 | V | 20.7( 33.3)DMG |33.9500|118.1330|10/25/1933| 7 046.0| 0.0| 4.30| 0.032 | V | 20.8( 33.5)DMG |33.9960|117.9750|06/15/1967| 458 5.5| 10.0| 4.10| 0.025 | V | 21.8( 35.0)MGI |34.0000|118.0000|05/05/1929| 735 0.0| 0.0| 4.00| 0.023 | IV | 22.1( 35.6)MGI |34.0000|118.0000|05/05/1929| 1 7 0.0| 0.0| 4.60| 0.037 | V | 22.1( 35.6)MGI |34.0000|118.0000|12/25/1903|1745 0.0| 0.0| 5.00| 0.051 | VI | 22.1( 35.6)GSG |33.9530|117.7610|07/29/2008|184215.7| 14.0| 5.30| 0.065 | VI | 22.3( 35.8)DMG |33.9390|118.2050|01/11/1950|214135.0| 0.4| 4.10| 0.024 | V | 22.4( 36.0)GSP |33.9920|118.0820|03/16/2010|110400.2| 18.0| 4.40| 0.031 | V | 22.4( 36.1)MGI |33.8000|117.6000|04/22/1918|2115 0.0| 0.0| 5.00| 0.049 | VI | 22.7( 36.6)DMG |33.8000|117.6000|09/16/1903|1210 0.0| 0.0| 4.00| 0.022 | IV | 22.7( 36.6)GSP |33.9550|117.7460|12/14/2001|120135.5| 13.0| 4.00| 0.022 | IV | 22.9( 36.8)

Page 5

Page 63: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT GSP |33.6583|118.3722|05/15/2013|200006.2| 1.1| 4.08| 0.023 | IV | 23.2( 37.3)DMG |33.5430|118.3400|09/14/1963| 35116.2| 2.2| 4.20| 0.025 | V | 23.3( 37.6)GSP |33.9510|117.7090|01/05/1998|181406.5| 11.0| 4.30| 0.026 | V | 23.9( 38.5)DMG |33.6820|117.5530|07/05/1938|18 655.7| 10.0| 4.50| 0.031 | V | 23.9( 38.5)GSP |33.9220|118.2700|10/28/2001|162745.6| 21.0| 4.00| 0.020 | IV | 24.0( 38.6)DMG |33.3670|118.1500|04/16/1942| 72833.0| 0.0| 4.00| 0.020 | IV | 24.0( 38.7)DMG |33.8830|118.3170|03/11/1933|1457 0.0| 0.0| 4.90| 0.041 | V | 24.4( 39.2)DMG |33.6330|118.4000|10/17/1934| 938 0.0| 0.0| 4.00| 0.019 | IV | 25.0( 40.2)DMG |33.6630|118.4130|01/08/1967| 738 5.3| 17.7| 4.00| 0.019 | IV | 25.5( 41.1)MGI |34.0000|118.2000|02/13/1917|13 5 0.0| 0.0| 4.60| 0.030 | V | 25.7( 41.4)MGI |34.0000|118.2000|06/26/1917|2130 0.0| 0.0| 4.60| 0.030 | V | 25.7( 41.4)MGI |34.0000|118.2000|06/26/1917|2115 0.0| 0.0| 4.60| 0.030 | V | 25.7( 41.4)MGI |34.0000|118.2000|06/26/1917|2120 0.0| 0.0| 4.60| 0.030 | V | 25.7( 41.4)MGI |34.0000|118.2000|06/26/1917| 424 0.0| 0.0| 4.00| 0.019 | IV | 25.7( 41.4)PAS |34.0060|117.7390|02/18/1989| 717 4.8| 3.3| 4.30| 0.023 | IV | 26.0( 41.9)DMG |33.7170|117.5170|06/19/1935|1117 0.0| 0.0| 4.00| 0.018 | IV | 26.1( 42.0)DMG |33.6990|117.5110|05/31/1938| 83455.4| 10.0| 5.50| 0.060 | VI | 26.3( 42.4)GSP |34.0200|118.1800|06/12/1989|172225.5| 16.0| 4.10| 0.019 | IV | 26.4( 42.4)PAS |34.0500|118.0870|10/01/1987|155953.5| 10.4| 4.00| 0.018 | IV | 26.4( 42.4)PAS |34.0490|118.1010|10/01/1987|144541.5| 13.6| 4.70| 0.031 | V | 26.5( 42.7)PAS |34.0520|118.0900|10/01/1987|151231.8| 10.8| 4.70| 0.031 | V | 26.6( 42.7)DMG |33.7830|118.4170|10/12/1940| 024 0.0| 0.0| 4.00| 0.018 | IV | 26.7( 42.9)DMG |33.7830|118.4170|11/01/1940| 725 3.0| 0.0| 4.00| 0.018 | IV | 26.7( 42.9)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 5 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------DMG |33.7830|118.4170|10/14/1940|205111.0| 0.0| 4.00| 0.018 | IV | 26.7( 42.9)DMG |33.7830|118.4170|11/02/1940| 25826.0| 0.0| 4.00| 0.018 | IV | 26.7( 42.9)DMG |33.7170|117.5070|08/06/1938|22 056.0| 10.0| 4.00| 0.018 | IV | 26.7( 42.9)MGI |34.0000|117.7000|12/03/1929| 9 5 0.0| 0.0| 4.00| 0.017 | IV | 26.9( 43.3)GSP |34.0300|118.1800|06/12/1989|165718.4| 16.0| 4.40| 0.024 | V | 27.0( 43.4)PAS |34.0610|118.0790|10/01/1987|144220.0| 9.5| 5.90| 0.080 | VII| 27.0( 43.4)DMG |33.7250|117.4980|01/03/1956| 02548.9| 13.7| 4.70| 0.030 | V | 27.2( 43.8)PAS |34.0600|118.1000|10/01/1987|1449 5.9| 11.7| 4.70| 0.030 | V | 27.2( 43.8)T-A |34.0000|118.2500|05/04/1857| 6 0 0.0| 0.0| 4.30| 0.022 | IV | 27.3( 43.9)T-A |34.0000|118.2500|03/21/1880|1425 0.0| 0.0| 4.30| 0.022 | IV | 27.3( 43.9)T-A |34.0000|118.2500|09/23/1827| 0 0 0.0| 0.0| 5.00| 0.038 | V | 27.3( 43.9)T-A |34.0000|118.2500|03/26/1860| 0 0 0.0| 0.0| 5.00| 0.038 | V | 27.3( 43.9)T-A |34.0000|118.2500|01/17/1857| 1 0 0.0| 0.0| 4.30| 0.022 | IV | 27.3( 43.9)T-A |34.0000|118.2500|05/02/1856| 810 0.0| 0.0| 4.30| 0.022 | IV | 27.3( 43.9)T-A |34.0000|118.2500|01/10/1856| 0 0 0.0| 0.0| 5.00| 0.038 | V | 27.3( 43.9)GSP |33.9380|118.3360|05/18/2009|033936.3| 13.0| 4.70| 0.030 | V | 27.5( 44.3)PAS |34.0770|118.0470|02/11/1988|152555.7| 12.5| 4.70| 0.029 | V | 27.7( 44.6)PAS |34.0730|118.0980|10/04/1987|105938.2| 8.2| 5.30| 0.047 | VI | 28.1( 45.2)PAS |34.0760|118.0900|10/01/1987|1448 3.1| 11.7| 4.10| 0.018 | IV | 28.2( 45.3)DMG |33.9830|118.3000|02/11/1940|192410.0| 0.0| 4.00| 0.016 | IV | 28.2( 45.4)DMG |33.7670|118.4500|10/11/1940| 55712.3| 0.0| 4.70| 0.029 | V | 28.2( 45.4)DMG |33.7480|117.4790|06/22/1971|104119.0| 8.0| 4.20| 0.019 | IV | 28.5( 45.9)DMG |33.6320|118.4670|01/08/1967| 73730.4| 11.4| 4.00| 0.016 | IV | 28.8( 46.3)DMG |33.9500|117.5830|04/11/1941| 12024.0| 0.0| 4.00| 0.016 | IV | 28.9( 46.5)MGI |34.1000|118.0000|01/27/1930|2026 0.0| 0.0| 4.60| 0.025 | V | 29.0( 46.7)DMG |33.7330|117.4670|10/26/1954|162226.0| 0.0| 4.10| 0.017 | IV | 29.1( 46.8)

Page 6

Page 64: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT MGI |34.0000|118.3000|06/30/1920| 350 0.0| 0.0| 4.00| 0.016 | IV | 29.1( 46.8)MGI |34.0000|118.3000|06/22/1920|2035 0.0| 0.0| 4.00| 0.016 | IV | 29.1( 46.8)MGI |34.0000|118.3000|09/03/1905| 540 0.0| 0.0| 5.30| 0.045 | VI | 29.1( 46.8)GSP |33.7330|117.4660|09/02/2007|172914.0| 2.0| 4.70| 0.027 | V | 29.1( 46.9)MGI |34.1000|118.1000|07/11/1855| 415 0.0| 0.0| 6.30| 0.096 | VII| 29.9( 48.1)DMG |33.7700|118.4800|04/24/1931|182754.8| 0.0| 4.40| 0.021 | IV | 30.0( 48.2)DMG |34.1000|117.8000|03/31/1931|2033 0.0| 0.0| 4.00| 0.015 | IV | 30.5( 49.1)DMG |33.9030|118.4310|11/29/1938|192115.8| 10.0| 4.00| 0.015 | IV | 30.6( 49.3)MGI |33.8000|118.5000|06/18/1915|15 5 0.0| 0.0| 4.00| 0.014 | IV | 31.6( 50.8)MGI |34.1000|118.2000|05/02/1916|1432 0.0| 0.0| 4.00| 0.014 | III| 31.8( 51.2)MGI |34.1000|118.2000|01/27/1860| 830 0.0| 0.0| 4.30| 0.018 | IV | 31.8( 51.2)MGI |34.1000|118.2000|04/21/1921|1538 0.0| 0.0| 4.00| 0.014 | III| 31.8( 51.2)MGI |34.0800|118.2600|07/16/1920|18 8 0.0| 0.0| 5.00| 0.030 | V | 32.2( 51.8)DMG |33.7000|117.4000|05/15/1910|1547 0.0| 0.0| 6.00| 0.066 | VI | 32.7( 52.7)DMG |33.7000|117.4000|04/11/1910| 757 0.0| 0.0| 5.00| 0.030 | V | 32.7( 52.7)DMG |33.7000|117.4000|05/13/1910| 620 0.0| 0.0| 5.00| 0.030 | V | 32.7( 52.7)GSP |34.1100|117.7200|04/17/1990|223227.2| 4.0| 4.60| 0.021 | IV | 32.9( 52.9)MGI |34.0000|118.4000|10/01/1930| 040 0.0| 0.0| 4.60| 0.021 | IV | 33.1( 53.3)MGI |34.0000|118.4000|01/29/1927|2324 0.0| 0.0| 4.00| 0.013 | III| 33.1( 53.3)MGI |34.0000|118.4000|02/07/1927| 429 0.0| 0.0| 4.60| 0.021 | IV | 33.1( 53.3)MGI |34.0000|118.4000|02/22/1920|1610 0.0| 0.0| 4.60| 0.021 | IV | 33.1( 53.3)DMG |34.1000|117.6830|01/18/1934| 214 0.0| 0.0| 4.00| 0.013 | III| 33.3( 53.5)DMG |34.1000|117.6830|01/09/1934|1410 0.0| 0.0| 4.50| 0.019 | IV | 33.3( 53.5)PAS |34.1490|118.1350|12/03/1988|113826.4| 13.3| 4.90| 0.026 | V | 33.7( 54.2)DMG |34.0000|118.4170|12/07/1938| 338 0.0| 0.0| 4.00| 0.013 | III| 33.8( 54.5)DMG |33.8330|117.4000|06/05/1940| 82727.0| 0.0| 4.00| 0.012 | III| 34.3( 55.2)MGI |34.1000|118.3000|07/26/1920|1215 0.0| 0.0| 4.00| 0.012 | III| 34.6( 55.7)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 6 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------MGI |34.1000|118.3000|07/16/1920|2127 0.0| 0.0| 4.60| 0.020 | IV | 34.6( 55.7)MGI |34.1000|118.3000|07/16/1920|2022 0.0| 0.0| 4.60| 0.020 | IV | 34.6( 55.7)MGI |34.1000|118.3000|07/16/1920|2130 0.0| 0.0| 4.60| 0.020 | IV | 34.6( 55.7)GSP |34.1300|117.7000|03/01/1990|003457.1| 4.0| 4.00| 0.012 | III| 34.6( 55.7)MGI |34.0000|117.5000|12/16/1858|10 0 0.0| 0.0| 7.00| 0.131 |VIII| 34.8( 56.0)DMG |34.0000|117.5000|07/03/1908|1255 0.0| 0.0| 4.00| 0.012 | III| 34.8( 56.0)PAS |34.1360|117.7090|06/26/1988|15 458.5| 7.9| 4.60| 0.020 | IV | 34.8( 56.0)GSP |34.1400|117.7000|02/28/1990|234336.6| 5.0| 5.20| 0.031 | V | 35.3( 56.7)GSP |34.1500|117.7200|03/01/1990|032303.0| 11.0| 4.70| 0.021 | IV | 35.4( 57.0)GSP |34.0590|118.3870|09/09/2001|235918.0| 4.0| 4.20| 0.014 | IV | 35.4( 57.0)GSP |34.1400|117.6900|03/02/1990|172625.4| 6.0| 4.60| 0.019 | IV | 35.5( 57.2)T-A |34.1700|118.1700|03/07/1888|1554 0.0| 0.0| 4.30| 0.015 | IV | 35.7( 57.4)MGI |34.2000|118.0000|01/09/1921| 530 0.0| 0.0| 4.60| 0.019 | IV | 35.9( 57.8)DMG |34.2000|117.9000|07/13/1935|105416.5| 0.0| 4.70| 0.020 | IV | 36.1( 58.0)DMG |34.2000|117.9000|08/28/1889| 215 0.0| 0.0| 5.50| 0.039 | V | 36.1( 58.0)MGI |34.0000|118.5000|06/23/1920|1220 0.0| 0.0| 4.00| 0.011 | III| 37.6( 60.5)DMG |34.0000|118.5000|06/22/1920| 248 0.0| 0.0| 4.90| 0.022 | IV | 37.6( 60.5)DMG |34.0000|118.5000|11/08/1914|1140 0.0| 0.0| 4.50| 0.016 | IV | 37.6( 60.5)DMG |34.0000|118.5000|03/06/1918|1820 0.0| 0.0| 4.00| 0.011 | III| 37.6( 60.5)DMG |34.0000|118.5000|08/04/1927|1224 0.0| 0.0| 5.00| 0.024 | V | 37.6( 60.5)MGI |34.0000|118.5000|11/19/1918|2018 0.0| 0.0| 5.00| 0.024 | V | 37.6( 60.5)MGI |34.0000|118.5000|03/08/1918|1230 0.0| 0.0| 4.00| 0.011 | III| 37.6( 60.5)

Page 7

Page 65: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT T-A |34.0000|117.4200|04/12/1888|1315 0.0| 0.0| 4.30| 0.013 | III| 38.4( 61.9)T-A |34.0000|117.4200|09/10/1920|1415 0.0| 0.0| 4.30| 0.013 | III| 38.4( 61.9)DMG |33.9330|117.3670|10/24/1943| 02921.0| 0.0| 4.00| 0.010 | III| 38.7( 62.3)GSP |34.2500|117.9900|06/28/1991|170055.5| 9.0| 4.30| 0.013 | III| 39.3( 63.3)MGI |34.0000|117.4000|05/22/1907| 652 0.0| 0.0| 4.60| 0.016 | IV | 39.4( 63.4)DMG |34.1270|117.5210|12/27/1938|10 928.6| 10.0| 4.00| 0.010 | III| 40.1( 64.5)GSP |34.2620|118.0020|06/28/1991|144354.5| 11.0| 5.40| 0.031 | V | 40.2( 64.7)DMG |34.1400|117.5150|01/01/1965| 8 418.0| 5.9| 4.40| 0.013 | III| 41.0( 66.0)DMG |34.1830|117.5830|10/03/1948| 24628.0| 0.0| 4.00| 0.010 | III| 41.1( 66.2)PAS |33.9190|118.6270|01/19/1989| 65328.8| 11.9| 5.00| 0.021 | IV | 41.2( 66.2)DMG |34.1160|117.4750|06/28/1960|20 048.0| 12.0| 4.10| 0.010 | III| 41.3( 66.5)GSP |34.0958|118.4912|06/02/2014|023643.9| 4.3| 4.16| 0.011 | III| 41.4( 66.7)DMG |34.1240|117.4800|05/15/1955|17 326.0| 7.6| 4.00| 0.009 | III| 41.5( 66.8)DMG |34.1670|117.5330|03/01/1948| 81213.0| 0.0| 4.70| 0.016 | IV | 41.9( 67.4)DMG |34.1830|117.5480|09/01/1937|163533.5| 10.0| 4.50| 0.014 | IV | 42.2( 68.0)DMG |33.9500|118.6320|08/31/1930| 04036.0| 0.0| 5.20| 0.024 | V | 42.3( 68.1)GSP |34.1390|117.4650|03/09/2008|092232.1| 3.0| 4.00| 0.009 | III| 42.8( 68.9)DMG |34.0330|117.3500|04/18/1940|184343.9| 0.0| 4.40| 0.012 | III| 43.0( 69.3)DMG |34.1120|117.4260|03/19/1937| 12338.4| 10.0| 4.00| 0.009 | III| 43.1( 69.3)GSP |34.1340|118.4862|03/17/2014|132536.9| 9.2| 4.39| 0.012 | III| 43.1( 69.3)GSP |34.1250|117.4380|01/06/2005|143527.7| 4.0| 4.40| 0.012 | III| 43.2( 69.5)PAS |34.1350|117.4480|01/08/1983| 71930.4| 4.6| 4.10| 0.010 | III| 43.3( 69.7)PAS |33.9330|118.6690|10/17/1979|205237.3| 5.5| 4.20| 0.010 | III| 43.8( 70.4)GSP |34.1430|117.4425|01/15/2014|093518.9| 2.9| 4.43| 0.012 | III| 43.9( 70.7)DMG |34.1320|117.4260|04/15/1965|20 833.3| 5.5| 4.50| 0.013 | III| 44.0( 70.9)DMG |34.2110|117.5300|09/01/1937|1348 8.2| 10.0| 4.50| 0.013 | III| 44.4( 71.5)PAS |34.2110|117.5300|10/19/1979|122237.8| 4.9| 4.10| 0.009 | III| 44.4( 71.5)DMG |34.0330|117.3170|09/03/1935| 647 0.0| 0.0| 4.50| 0.013 | III| 44.6( 71.8)PAS |33.9440|118.6810|01/01/1979|231438.9| 11.3| 5.00| 0.019 | IV | 44.7( 71.9)PAS |33.0330|117.9440|02/22/1983| 21830.4| 10.0| 4.30| 0.011 | III| 44.7( 72.0)DMG |34.2000|117.5000|06/14/1892|1325 0.0| 0.0| 4.90| 0.017 | IV | 44.8( 72.1)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 7 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------DMG |33.7380|117.1870|04/27/1962| 91232.1| 5.7| 4.10| 0.009 | III| 45.1( 72.6)DMG |34.0000|117.2830|11/07/1939|1852 8.4| 0.0| 4.70| 0.015 | IV | 45.1( 72.6)DMG |33.9960|117.2700|02/17/1952|123658.3| 16.0| 4.50| 0.012 | III| 45.6( 73.4)USG |34.1390|117.3860|02/21/1987|231530.1| 2.6| 4.07| 0.009 | III| 46.0( 74.1)USG |33.0170|117.8170|07/14/1986| 11112.6| 10.0| 4.12| 0.009 | III| 46.7( 75.1)USG |33.0170|117.8170|07/16/1986|1247 3.7| 10.0| 4.11| 0.009 | III| 46.7( 75.1)DMG |33.9000|117.2000|12/19/1880| 0 0 0.0| 0.0| 6.00| 0.040 | V | 46.7( 75.1)DMG |34.0000|117.2500|07/23/1923| 73026.0| 0.0| 6.25| 0.049 | VI | 46.8( 75.3)DMG |34.0000|117.2500|11/01/1932| 445 0.0| 0.0| 4.00| 0.008 | III| 46.8( 75.3)DMG |34.2170|117.4670|03/25/1941|234341.0| 0.0| 4.00| 0.008 | III| 46.9( 75.4)DMG |34.1180|117.3410|09/22/1951| 82239.1| 11.9| 4.30| 0.010 | III| 47.0( 75.6)GSP |34.1910|117.4132|12/30/2015|014857.3| 7.0| 4.40| 0.011 | III| 47.5( 76.4)DMG |34.1270|117.3380|02/23/1936|222042.7| 10.0| 4.50| 0.012 | III| 47.5( 76.5)DMG |34.2700|117.5400|09/12/1970|143053.0| 8.0| 5.40| 0.024 | V | 47.5( 76.5)DMG |34.3000|117.6000|07/30/1894| 512 0.0| 0.0| 6.00| 0.039 | V | 47.7( 76.8)GSP |34.2310|118.4750|03/20/1994|212012.3| 13.0| 5.30| 0.022 | IV | 47.8( 76.9)PAS |34.0230|117.2450|10/02/1985|234412.4| 15.2| 4.80| 0.015 | IV | 47.8( 76.9)DMG |34.2810|117.5520|09/13/1970| 44748.6| 8.0| 4.40| 0.011 | III| 47.8( 77.0)

Page 8

Page 66: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT DMG |34.2670|117.5180|09/12/1970|141011.2| 8.0| 4.10| 0.008 | III| 48.0( 77.3)MGI |34.1000|117.3000|11/22/1911| 257 0.0| 0.0| 4.00| 0.008 | II | 48.1( 77.3)MGI |34.1000|117.3000|12/27/1901|11 0 0.0| 0.0| 4.60| 0.012 | III| 48.1( 77.3)DMG |34.1000|117.3000|02/16/1931|1327 0.0| 0.0| 4.00| 0.008 | II | 48.1( 77.3)MGI |34.1000|117.3000|07/15/1905|2041 0.0| 0.0| 5.30| 0.022 | IV | 48.1( 77.3)DMG |34.1400|117.3390|02/26/1936| 93327.6| 10.0| 4.00| 0.008 | II | 48.1( 77.3)GSP |34.0470|117.2550|02/21/2000|134943.1| 15.0| 4.50| 0.011 | III| 48.1( 77.4)GSP |34.1070|117.3040|01/09/2009|034946.3| 14.0| 4.50| 0.011 | III| 48.2( 77.5)GSP |34.2150|118.5100|01/19/1994|140914.8| 17.0| 4.50| 0.011 | III| 48.2( 77.5)PAS |32.9900|117.8490|07/13/1986|14 133.0| 12.0| 4.60| 0.012 | III| 48.2( 77.5)GSP |34.1900|117.3900|12/28/1989|094108.1| 15.0| 4.50| 0.011 | III| 48.3( 77.8)GSP |34.2450|118.4710|01/18/1994|155144.9| 12.0| 4.00| 0.008 | II | 48.4( 77.9)DMG |34.2000|117.4000|07/22/1899| 046 0.0| 0.0| 5.50| 0.025 | V | 48.5( 78.0)PAS |32.9860|117.8440|10/01/1986|201218.6| 6.0| 4.00| 0.008 | II | 48.5( 78.1)GSP |34.2840|118.4040|01/14/2001|022614.1| 8.0| 4.30| 0.010 | III| 48.5( 78.1)GSP |34.0240|117.2300|03/11/1998|121851.8| 14.0| 4.50| 0.011 | III| 48.6( 78.1)GSP |34.2930|118.3890|12/06/1994|034834.5| 9.0| 4.50| 0.011 | III| 48.6( 78.3)DMG |34.3040|117.5700|05/05/1969|16 2 9.6| 8.8| 4.40| 0.010 | III| 48.7( 78.4)GSP |34.2890|118.4030|01/14/2001|025053.7| 8.0| 4.00| 0.007 | II | 48.8( 78.5)GSP |32.9850|117.8180|06/21/1995|211736.2| 6.0| 4.30| 0.010 | III| 48.8( 78.6)DMG |34.2680|118.4450|08/30/1964|225737.1| 15.4| 4.00| 0.007 | II | 48.8( 78.6)GSP |34.2130|118.5370|01/17/1994|123055.4| 18.0| 6.70| 0.065 | VI | 49.1( 79.0)DMG |34.0430|117.2280|04/03/1939| 25044.7| 10.0| 4.00| 0.007 | II | 49.3( 79.3)PAS |32.9710|117.8700|07/13/1986|1347 8.2| 6.0| 5.30| 0.021 | IV | 49.3( 79.4)GSP |34.1680|117.3370|06/28/1997|214525.1| 9.0| 4.20| 0.009 | III| 49.4( 79.5)T-A |34.0800|117.2500|10/07/1869| 0 0 0.0| 0.0| 4.30| 0.009 | III| 49.6( 79.8)DMG |34.3350|118.3310|02/09/1971|155820.7| 14.2| 4.80| 0.014 | IV | 49.7( 80.0)GSP |34.3120|118.3930|05/25/1994|125657.1| 7.0| 4.40| 0.010 | III| 49.9( 80.3)GSP |32.9700|117.8100|04/04/1990|085439.3| 6.0| 4.00| 0.007 | II | 49.9( 80.3)DMG |33.7000|117.1000|06/11/1902| 245 0.0| 0.0| 4.50| 0.011 | III| 49.9( 80.4)GSP |34.3110|118.3980|06/15/1994|055948.6| 7.0| 4.20| 0.009 | III| 50.0( 80.4)DMG |34.3390|118.3320|02/09/1971|141612.9| 11.1| 4.10| 0.008 | II | 50.0( 80.4)PAS |32.9700|117.8030|07/14/1986| 03246.2| 10.0| 4.00| 0.007 | II | 50.0( 80.5)GSB |34.2990|118.4280|01/23/1994|085508.7| 6.0| 4.20| 0.008 | III| 50.1( 80.7)T-A |34.1700|117.3200|12/02/1859|2210 0.0| 0.0| 4.30| 0.009 | III| 50.2( 80.9)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 8 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------GSP |34.2990|118.4390|02/03/1994|162335.4| 8.0| 4.20| 0.008 | III| 50.5( 81.2)GSP |34.0050|117.1800|02/13/2010|213906.6| 8.0| 4.10| 0.008 | II | 50.5( 81.3)DMG |34.3000|117.5000|07/22/1899|2032 0.0| 0.0| 6.50| 0.054 | VI | 50.5( 81.3)DMG |34.4000|117.8000|02/24/1946| 6 752.0| 0.0| 4.10| 0.008 | II | 50.6( 81.4)GSP |34.2870|118.4660|01/19/1994|071406.2| 11.0| 4.00| 0.007 | II | 50.6( 81.4)DMG |34.3610|118.3060|02/09/1971|141021.5| 5.0| 4.70| 0.012 | III| 50.8( 81.7)GSP |34.2920|118.4660|01/19/1994|144635.2| 6.0| 4.00| 0.007 | II | 50.9( 81.9)GSP |34.2970|118.4580|01/21/1994|185344.6| 7.0| 4.30| 0.009 | III| 50.9( 82.0)GSP |34.3010|118.4520|01/21/1994|185244.2| 7.0| 4.30| 0.009 | III| 51.0( 82.0)DMG |34.3700|117.6500|12/08/1812|15 0 0.0| 0.0| 7.00| 0.079 | VII| 51.0( 82.0)DMG |34.2960|118.4640|03/30/1971| 85443.3| 2.6| 4.10| 0.008 | II | 51.1( 82.2)GSP |34.2910|118.4760|02/06/1994|131926.9| 11.0| 4.10| 0.008 | II | 51.2( 82.3)GSP |34.2280|118.5730|01/17/1994|175608.2| 19.0| 4.60| 0.011 | III| 51.2( 82.4)GSP |34.3740|117.6490|08/20/1998|234958.4| 9.0| 4.40| 0.010 | III| 51.3( 82.5)

Page 9

Page 67: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT DMG |34.3700|118.3020|02/10/1971| 31212.0| 0.8| 4.00| 0.007 | II | 51.3( 82.5)GSB |34.3000|118.4660|01/21/1994|183915.3| 10.0| 4.70| 0.012 | III| 51.3( 82.6)DMG |34.3680|118.3140|04/25/1971|1448 6.5| -2.0| 4.00| 0.007 | II | 51.4( 82.7)PAS |32.9450|117.8310|07/29/1986| 81741.8| 10.0| 4.10| 0.008 | II | 51.4( 82.7)DMG |34.3080|118.4540|02/09/1971|144346.7| 6.2| 5.20| 0.018 | IV | 51.4( 82.8)GSP |34.2610|118.5340|01/17/1994|123939.8| 14.0| 4.50| 0.010 | III| 51.5( 82.9)GSP |34.2540|118.5450|01/17/1994|130627.9| 0.0| 4.60| 0.011 | III| 51.5( 82.9)PAS |32.9450|117.8060|09/07/1984|11 313.4| 6.0| 4.30| 0.009 | III| 51.7( 83.1)GSP |34.3110|118.4560|01/17/1994|193534.3| 2.0| 4.00| 0.007 | II | 51.7( 83.2)GSP |34.3040|118.4730|01/17/1994|150703.2| 2.0| 4.20| 0.008 | III| 51.8( 83.4)GSP |34.3170|118.4550|01/17/1994|132644.7| 2.0| 4.70| 0.012 | III| 52.0( 83.7)GSP |34.2180|118.6070|01/18/1994|113509.9| 12.0| 4.20| 0.008 | III| 52.1( 83.8)DMG |34.2730|118.5320|06/21/1971|16 1 8.5| 4.1| 4.00| 0.007 | II | 52.1( 83.8)PAS |32.9330|117.8410|07/29/1986| 81741.6| 10.0| 4.30| 0.009 | III| 52.1( 83.9)GSB |34.3100|118.4740|01/21/1994|184228.8| 7.0| 4.20| 0.008 | III| 52.2( 84.0)DMG |34.2860|118.5150|03/31/1971|145222.5| 2.1| 4.60| 0.011 | III| 52.2( 84.0)GSP |34.3850|117.6350|10/16/2007|085344.1| 8.0| 4.20| 0.008 | III| 52.2( 84.1)PAS |32.9470|117.7360|01/15/1989|153955.2| 6.0| 4.20| 0.008 | III| 52.4( 84.3)GSP |34.3310|118.4420|01/17/1994|141430.3| 1.0| 4.50| 0.010 | III| 52.4( 84.4)MGI |34.2000|117.3000|04/13/1913|1045 0.0| 0.0| 4.00| 0.007 | II | 52.5( 84.5)DMG |34.2840|118.5280|04/02/1971| 54025.0| 3.0| 4.00| 0.007 | II | 52.5( 84.5)MGI |34.1000|117.2000|04/23/1923|2113 0.0| 0.0| 4.00| 0.007 | II | 52.7( 84.9)DMG |34.3570|118.4060|02/09/1971|141950.2| 11.8| 4.00| 0.007 | II | 53.0( 85.2)T-A |33.5000|117.0700|12/29/1880| 7 0 0.0| 0.0| 4.30| 0.008 | III| 53.2( 85.6)GSP |34.2740|118.5630|01/27/1994|171958.8| 14.0| 4.60| 0.011 | III| 53.2( 85.7)DMG |34.2650|118.5770|04/15/1971|111432.0| 4.2| 4.20| 0.008 | II | 53.3( 85.7)GSP |34.2690|118.5760|01/17/1994|125546.8| 16.0| 4.10| 0.007 | II | 53.4( 86.0)DMG |34.3870|118.3640|02/09/1971|143917.8| -1.6| 4.00| 0.007 | II | 53.7( 86.5)GSG |34.3340|118.4840|01/17/1994|223152.1| 10.0| 4.20| 0.008 | II | 53.9( 86.7)GSP |34.3390|118.4750|09/01/2011|204708.0| 7.0| 4.20| 0.008 | II | 53.9( 86.7)GSP |32.9000|118.0070|06/20/2009|010030.6| 14.0| 4.10| 0.007 | II | 53.9( 86.8)DMG |34.3530|118.4560|03/07/1971| 13340.5| 3.3| 4.50| 0.010 | III| 54.1( 87.1)DMG |34.3960|118.3660|02/10/1971|173855.1| 6.2| 4.20| 0.008 | II | 54.4( 87.5)DMG |34.4110|118.3290|02/10/1971| 5 636.0| 4.7| 4.30| 0.008 | III| 54.5( 87.6)GSP |33.9530|117.0760|09/14/2011|144451.0| 16.0| 4.10| 0.007 | II | 54.6( 87.8)GSB |34.3010|118.5650|01/17/1994|204602.4| 9.0| 5.20| 0.017 | IV | 54.7( 88.1)DMG |34.3560|118.4740|03/25/1971|2254 9.9| 4.6| 4.20| 0.007 | II | 54.8( 88.3)GSP |34.3570|118.4800|02/25/1994|125912.6| 1.0| 4.10| 0.007 | II | 55.1( 88.6)GSP |34.2780|118.6110|01/29/1994|121656.4| 2.0| 4.30| 0.008 | III| 55.2( 88.9)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 9 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------GSP |34.3050|118.5790|01/29/1994|112036.0| 1.0| 5.10| 0.015 | IV | 55.5( 89.3)GSB |34.3190|118.5580|01/18/1994|132444.1| 1.0| 4.50| 0.009 | III| 55.5( 89.3)DMG |34.3610|118.4870|02/10/1971|143526.7| 4.4| 4.20| 0.007 | II | 55.5( 89.4)DMG |34.3920|118.4270|02/21/1971| 71511.7| 7.2| 4.50| 0.009 | III| 55.7( 89.6)DMG |34.1000|118.8000|05/10/1911|1340 0.0| 0.0| 4.00| 0.006 | II | 55.7( 89.7)PAS |34.3800|118.4590|08/12/1977| 21926.1| 9.5| 4.50| 0.009 | III| 55.8( 89.8)DMG |33.7500|117.0000|04/21/1918|223225.0| 0.0| 6.80| 0.059 | VI | 55.9( 89.9)DMG |33.7500|117.0000|06/06/1918|2232 0.0| 0.0| 5.00| 0.014 | IV | 55.9( 89.9)DMG |34.3990|118.4190|02/10/1971|134953.7| 9.7| 4.30| 0.008 | II | 55.9( 89.9)DMG |34.3840|118.4550|02/10/1971|113134.6| 6.0| 4.20| 0.007 | II | 55.9( 90.0)

Page 10

Page 68: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT DMG |34.3000|118.6000|04/04/1893|1940 0.0| 0.0| 6.00| 0.031 | V | 56.0( 90.1)GSB |34.2850|118.6240|01/17/1994|135602.4| 19.0| 4.70| 0.011 | III| 56.1( 90.3)DMG |34.4110|118.4010|02/09/1971|14 541.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 1 8.0| 8.0| 5.80| 0.026 | V | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 838.0| 8.0| 4.50| 0.009 | III| 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 745.0| 8.0| 4.50| 0.009 | III| 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 8 7.0| 8.0| 4.20| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 230.0| 8.0| 4.30| 0.008 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 150.0| 8.0| 4.50| 0.009 | III| 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 853.0| 8.0| 4.60| 0.010 | III| 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 346.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 446.0| 8.0| 4.20| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 439.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 244.0| 8.0| 5.80| 0.026 | V | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 2 3.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 434.0| 8.0| 4.20| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 710.0| 8.0| 4.00| 0.006 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 041.8| 8.4| 6.40| 0.043 | VI | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|141028.0| 8.0| 5.30| 0.018 | IV | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 4 7.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 133.0| 8.0| 4.20| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 231.0| 8.0| 4.70| 0.011 | III| 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 444.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 154.0| 8.0| 4.20| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 8 4.0| 8.0| 4.00| 0.006 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 730.0| 8.0| 4.00| 0.006 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 550.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 159.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 325.0| 8.0| 4.40| 0.008 | III| 56.1( 90.4)DMG |34.4110|118.4010|02/09/1971|14 140.0| 8.0| 4.10| 0.007 | II | 56.1( 90.4)DMG |33.8000|117.0000|12/25/1899|1225 0.0| 0.0| 6.40| 0.042 | VI | 56.2( 90.5)DMG |34.3970|118.4390|02/21/1971| 55052.6| 6.9| 4.70| 0.011 | III| 56.3( 90.6)GSP |34.3740|118.4950|01/28/1994|200953.4| 0.0| 4.20| 0.007 | II | 56.5( 91.0)DMG |34.4310|118.3690|08/14/1974|144555.2| 8.2| 4.20| 0.007 | II | 56.6( 91.1)GSB |34.3450|118.5520|01/24/1994|041518.8| 6.0| 4.80| 0.012 | III| 56.7( 91.3)GSP |34.3000|118.6200|08/09/2007|075849.0| 4.0| 4.40| 0.008 | III| 56.7( 91.3)GSP |33.9320|117.0230|01/16/2010|120325.7| 13.0| 4.30| 0.008 | II | 57.0( 91.7)DMG |33.5000|117.0000|08/08/1925|1013 0.0| 0.0| 4.50| 0.009 | III| 57.1( 91.9)DMG |34.3990|118.4730|03/09/1974| 05431.9| 24.4| 4.70| 0.010 | III| 57.4( 92.3)DMG |34.4260|118.4140|02/10/1971| 518 7.2| 5.8| 4.50| 0.009 | III| 57.4( 92.4)DMG |34.4330|118.3980|02/09/1971|144017.4| -2.0| 4.10| 0.006 | II | 57.4( 92.4)DMG |34.4280|118.4130|04/01/1971|15 3 3.6| 8.0| 4.10| 0.006 | II | 57.5( 92.5)DMG |34.0170|117.0500|02/19/1940|12 655.7| 0.0| 4.60| 0.010 | III| 57.6( 92.7)

------------------------- EARTHQUAKE SEARCH RESULTS -------------------------

Page 10 ------------------------------------------------------------------------------- | | | | TIME | | | SITE |SITE| APPROX.FILE| LAT. | LONG. | DATE | (UTC) |DEPTH|QUAKE| ACC. | MM | DISTANCECODE| NORTH | WEST | | H M Sec| (km)| MAG.| g |INT.| mi [km]----+-------+--------+----------+--------+-----+-----+-------+----+------------GSB |34.3600|118.5710|01/19/1994|044048.0| 2.0| 4.50| 0.009 | III| 58.2( 93.6)DMG |32.8670|118.2500|02/13/1952|151337.0| 0.0| 4.70| 0.010 | III| 58.5( 94.1)GSB |34.3330|118.6230|01/18/1994|072356.0| 14.0| 4.30| 0.007 | II | 58.6( 94.2)GSP |34.0690|118.8820|05/02/2009|011113.7| 14.0| 4.40| 0.008 | III| 58.8( 94.6)GSP |34.3790|118.5610|01/18/1994|152346.9| 7.0| 4.80| 0.011 | III| 58.9( 94.8)GSP |34.3790|118.5630|01/18/1994|003935.0| 7.0| 4.40| 0.008 | II | 59.0( 94.9)

Page 11

Page 69: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT DMG |34.4460|118.4360|02/10/1971|185441.7| 8.1| 4.20| 0.007 | II | 59.2( 95.3)DMG |34.5190|118.1980|08/23/1952|10 9 7.1| 13.1| 5.00| 0.013 | III| 59.3( 95.5)PAS |34.4630|118.4090|09/24/1977|212824.3| 5.0| 4.20| 0.007 | II | 59.6( 95.9)DMG |34.3440|118.6360|02/09/1971|143436.1| -2.0| 4.90| 0.012 | III| 59.6( 95.9)DMG |34.4570|118.4270|02/09/1971|161926.5| -1.0| 4.20| 0.007 | II | 59.6( 96.0)GSP |34.0540|117.0300|06/27/2005|221733.6| 12.0| 4.00| 0.006 | II | 59.7( 96.1)DMG |34.0000|117.0000|06/30/1923| 022 0.0| 0.0| 4.50| 0.008 | III| 59.8( 96.2)GSP |34.3620|118.6150|03/20/1996|073759.8| 13.0| 4.10| 0.006 | II | 59.8( 96.3)GSB |34.3580|118.6220|01/18/1994|040126.8| 1.0| 4.50| 0.008 | III| 59.9( 96.3)GSP |34.0490|118.9150|02/19/1995|212418.1| 15.0| 4.30| 0.007 | II | 59.9( 96.4)DMG |33.7100|116.9250|09/23/1963|144152.6| 16.5| 5.00| 0.013 | III| 60.0( 96.6)GSP |34.3590|118.6290|01/24/1994|055024.3| 12.0| 4.30| 0.007 | II | 60.2( 96.8)GSP |34.3630|118.6270|01/24/1994|055421.1| 10.0| 4.20| 0.007 | II | 60.3( 97.0)PAS |33.6300|119.0200|10/23/1981|172816.9| 12.0| 4.60| 0.009 | III| 60.5( 97.3)GSG |34.4080|118.5590|01/17/1994|200205.4| 0.0| 4.00| 0.006 | II | 60.5( 97.4)PAS |34.3470|118.6560|04/08/1976|152138.1| 14.5| 4.60| 0.009 | III| 60.5( 97.4)GSB |34.3430|118.6660|01/17/1994|234925.4| 8.0| 4.30| 0.007 | II | 60.7( 97.6)GSP |34.3740|118.6220|01/17/1994|155410.8| 12.0| 4.80| 0.010 | III| 60.7( 97.7)GSP |34.3780|118.6180|01/19/1994|211144.9| 11.0| 5.10| 0.013 | III| 60.8( 97.8)DMG |33.0000|117.3000|11/22/1800|2130 0.0| 0.0| 6.50| 0.041 | V | 60.8( 97.9)GSP |34.0580|117.0100|06/16/2005|205326.0| 11.0| 4.90| 0.011 | III| 60.8( 97.9)GSG |34.3040|118.7220|01/17/1994|221922.3| 10.0| 4.00| 0.005 | II | 60.9( 98.0)GSP |34.3680|118.6370|01/17/1994|194353.4| 13.0| 4.10| 0.006 | II | 60.9( 98.0)GSP |34.3260|118.6980|01/17/1994|233330.7| 9.0| 5.60| 0.020 | IV | 61.0( 98.2)DMG |34.3800|118.6230|10/29/1936|223536.1| 10.0| 4.00| 0.005 | II | 61.1( 98.3)GSP |34.1920|117.0950|04/06/1994|190104.1| 7.0| 4.80| 0.010 | III| 61.3( 98.6)GSP |34.3610|118.6570|01/29/2002|055328.9| 14.0| 4.20| 0.006 | II | 61.3( 98.6)DMG |32.8000|117.8330|01/24/1942|214148.0| 0.0| 4.00| 0.005 | II | 61.3( 98.7)DMG |34.2000|117.1000|09/20/1907| 154 0.0| 0.0| 6.00| 0.027 | V | 61.4( 98.7)GSP |34.3040|118.7370|01/19/1994|091310.9| 13.0| 4.10| 0.006 | II | 61.5( 99.0)GSP |34.3970|118.6090|07/22/1999|095724.0| 11.0| 4.00| 0.005 | II | 61.5( 99.0)DMG |34.5650|118.1130|02/28/1969| 45612.4| 5.3| 4.30| 0.007 | II | 61.6( 99.1)DMG |34.0170|118.9670|04/16/1948|222624.0| 0.0| 4.70| 0.009 | III| 61.7( 99.4)DMG |33.5000|116.9170|11/04/1935| 355 0.0| 0.0| 4.50| 0.008 | III| 61.8( 99.4)DMG |33.2670|117.0170|06/07/1935|1633 0.0| 0.0| 4.00| 0.005 | II | 61.8( 99.5)GSP |34.3770|118.6490|04/27/1997|110928.4| 15.0| 4.80| 0.010 | III| 61.8( 99.5)MGI |33.8000|116.9000|04/29/1918| 2 0 0.0| 0.0| 4.00| 0.005 | II | 61.9( 99.7)MGI |33.8000|116.9000|12/18/1920|1726 0.0| 0.0| 4.00| 0.005 | II | 61.9( 99.7)MGI |33.8000|116.9000|06/14/1918|1024 0.0| 0.0| 4.00| 0.005 | II | 61.9( 99.7)MGI |33.8000|116.9000|04/23/1918|1415 0.0| 0.0| 4.00| 0.005 | II | 61.9( 99.7)

*******************************************************************************

-END OF SEARCH- 523 EARTHQUAKES FOUND WITHIN THE SPECIFIED SEARCH AREA.

TIME PERIOD OF SEARCH: 1800 TO 2019

LENGTH OF SEARCH TIME: 220 years

THE EARTHQUAKE CLOSEST TO THE SITE IS ABOUT 1.2 MILES (2.0 km) AWAY.

LARGEST EARTHQUAKE MAGNITUDE FOUND IN THE SEARCH RADIUS: 7.0

LARGEST EARTHQUAKE SITE ACCELERATION FROM THIS SEARCH: 0.673 g

Page 12

Page 70: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

TEST.OUT COEFFICIENTS FOR GUTENBERG & RICHTER RECURRENCE RELATION: a-value= 3.485 b-value= 0.789 beta-value= 1.816

------------------------------------TABLE OF MAGNITUDES AND EXCEEDANCES:------------------------------------

Earthquake | Number of Times | Cumulative Magnitude | Exceeded | No. / Year -----------+-----------------+------------ 4.0 | 523 | 2.37727 4.5 | 197 | 0.89545 5.0 | 67 | 0.30455 5.5 | 24 | 0.10909 6.0 | 16 | 0.07273 6.5 | 6 | 0.02727 7.0 | 2 | 0.00909

Page 13

Page 71: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

LIQUEFACTION HAZARD MAP

Page 72: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

LIQUEFACTION ANALYSIS

Page 73: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …
Page 74: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

liq good ac dp0 ******************************************************************************************************* LIQUEFACTION ANALYSIS CALCULATION SHEET Copyright by CivilTech Software www.civiltech.com (425) 453-6488 Fax (425) 453-5848 ******************************************************************************************************* Licensed to , 3/15/2021 9:22:04 PM

Input File Name: J:\2021\20210155-G0471 FVSD Talbert MS Modular-Science add Borings 9101 Brabham Drive, Fountain Valley, CA\geo\liq good ac dp.liq Title: Talbert Middle School Science Bldgs. Subtitle: 20210155-G0471

Surface Elev.= Hole No.=B-3 Depth of Hole= 50.0 ft Water Table during Earthquake= 3.0 ft Water Table during In-Situ Testing= 3.0 ft Max. Acceleration= 0.6 g Earthquake Magnitude= 7.5

Input Data: Surface Elev.= Hole No.=B-3 Depth of Hole=50.0 ft Water Table during Earthquake= 3.0 ft Water Table during In-Situ Testing= 3.0 ft Max. Acceleration=0.6 g Earthquake Magnitude=7.5

1. SPT or BPT Calculation. 2. Settlement Analysis Method: Tokimatsu / Seed 3. Fines Correction for Liquefaction: Idriss/Seed (SPT only) 4. Fine Correction for Settlement: During Liquefaction* 5. Settlement Calculation in: Liq. zone only 6. Hammer Energy Ratio, Ce = 1.25 7. Borehole Diameter, Cb= 1.15 8. Sampling Method, Cs= 1.2 9. User request factor of safety (apply to CSR) , User= 1.3 Plot one CSR curve (fs1=User) 10. Use Curve Smoothing: Yes* * Recommended Options

In-Situ Test Data: Depth SPT gamma Fines ft pcf % ____________________________________ 0.0 0.0 100.0 NoLiq 3.0 12.0 125.0 23.1 8.0 4.0 125.0 NoLiq 13.0 2.0 120.0 54.1 18.0 6.0 100.0 NoLiq 23.0 3.0 130.0 NoLiq 28.0 2.0 120.0 NoLiq 33.0 4.0 127.8 87.8 38.0 8.0 135.0 NoLiq 43.0 18.0 110.0 NoLiq 48.0 6.0 110.0 3.1

Page 1

Page 75: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

liq good ac dp ____________________________________

Output Results: Settlement of saturated sands=3.60 in. Settlement of dry sands=0.00 in. Total settlement of saturated and dry sands=3.60 in. Differential Settlement=1.798 to 2.373 in.

Depth CRRm CSRfs F.S. S_sat. S_dry S_all ft in. in. in. _______________________________________________________ 0.00 0.07 0.51 5.00 3.60 0.00 3.60 1.00 2.00 0.51 5.00 3.60 0.00 3.60 2.00 2.00 0.50 5.00 3.60 0.00 3.60 3.00 2.00 0.50 5.00 3.60 0.00 3.60 4.00 0.39 0.58 0.67* 3.58 0.00 3.58 5.00 0.29 0.63 0.46* 3.45 0.00 3.45 6.00 0.23 0.67 0.35* 3.30 0.00 3.30 7.00 0.19 0.71 0.27* 3.12 0.00 3.12 8.00 2.00 0.73 5.00 2.89 0.00 2.89 9.00 2.00 0.75 5.00 2.89 0.00 2.89 10.00 2.00 0.77 5.00 2.89 0.00 2.89 11.00 2.00 0.79 5.00 2.89 0.00 2.89 12.00 2.00 0.80 5.00 2.89 0.00 2.89 13.00 0.11 0.81 0.13* 2.89 0.00 2.89 14.00 0.13 0.82 0.16* 2.60 0.00 2.60 15.00 0.16 0.83 0.19* 2.35 0.00 2.35 16.00 0.18 0.84 0.21* 2.12 0.00 2.12 17.00 0.20 0.85 0.23* 1.92 0.00 1.92 18.00 2.00 0.87 5.00 1.73 0.00 1.73 19.00 2.00 0.88 5.00 1.73 0.00 1.73 20.00 2.00 0.88 5.00 1.73 0.00 1.73 21.00 2.00 0.89 5.00 1.73 0.00 1.73 22.00 2.00 0.89 5.00 1.73 0.00 1.73 23.00 2.00 0.89 5.00 1.73 0.00 1.73 24.00 2.00 0.89 5.00 1.73 0.00 1.73 25.00 2.00 0.89 5.00 1.73 0.00 1.73 26.00 2.00 0.89 5.00 1.73 0.00 1.73 27.00 2.00 0.89 5.00 1.73 0.00 1.73 28.00 2.00 0.89 5.00 1.73 0.00 1.73 29.00 2.00 0.89 5.00 1.73 0.00 1.73 30.00 2.00 0.89 5.00 1.73 0.00 1.73 31.00 2.00 0.89 5.00 1.73 0.00 1.73 32.00 2.00 0.88 5.00 1.73 0.00 1.73 33.00 2.00 0.87 5.00 1.73 0.00 1.73 34.00 0.16 0.87 0.18* 1.50 0.00 1.50 35.00 0.17 0.86 0.20* 1.27 0.00 1.27 36.00 0.19 0.85 0.22* 1.06 0.00 1.06 37.00 0.20 0.84 0.24* 0.86 0.00 0.86 38.00 0.22 0.83 0.26* 0.67 0.00 0.67 39.00 2.00 0.83 5.00 0.66 0.00 0.66 40.00 2.00 0.82 5.00 0.66 0.00 0.66 41.00 2.00 0.81 5.00 0.66 0.00 0.66 42.00 2.00 0.81 5.00 0.66 0.00 0.66 43.00 2.00 0.80 5.00 0.66 0.00 0.66 44.00 2.00 0.80 5.00 0.66 0.00 0.66 45.00 2.00 0.79 5.00 0.66 0.00 0.66 46.00 2.00 0.78 5.00 0.66 0.00 0.66 47.00 2.00 0.78 5.00 0.66 0.00 0.66 48.00 2.00 0.77 5.00 0.66 0.00 0.66 49.00 0.09 0.77 0.12* 0.34 0.00 0.34 50.00 0.09 0.76 0.12* 0.00 0.00 0.00 _______________________________________________________ * F.S.<1, Liquefaction Potential Zone (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)

Page 2

Page 76: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

liq good ac dp Units Depth = ft, Stress or Pressure = tsf (atm), Unit Weight = pcf, Settlement = in. ____________________________________________________________________________________ CRRm Cyclic resistance ratio from soils CSRfs Cyclic stress ratio induced by a given earthquake (with user request factor of safety) F.S. Factor of Safety against liquefaction, F.S.=CRRm/CSRfs S_sat Settlement from saturated sands S_dry Settlement from dry sands S_all Total settlement from saturated and dry sands NoLiq No-Liquefy Soils

Page 3

Page 77: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

TYPICAL GEOGRID PRODUCT SPECIFICATION AND INSTALLATION

Page 78: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …
Page 79: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

APPENDIX

REFERENCES

Page 80: GEOTECHNICAL REPORT PROPOSED MODULAR SCIENCE AND …

AESCO

REFERENCES

Southern California Earthquake Center (SCEC), 1999, Recommended Procedures for

Implementation of DMG Special Publication 117 Guidelines for Analyzing and

Mitigating Liquefaction in California, published March 1999.

California Geologic Survey (CGS), (Previously California Division of Mines and Geology),

Special Publication 42, Fault Rupture Hazard Zones (Alquist Priolo Earthquake Fault

Zones), 2000.

United States Geological Survey (USGS), Geologic Map of the San Bernardino and Santa Ana

30’ x 60’ Quadrangles, D.M. Morton, 2006.

Note 49, Guidelines for Evaluating the Hazard of Surface Fault Rupture, prepared by the

California Geological Survey, revised May, 2002

United States Geological Survey (USGS) websites:

http://geohazards.usgs.gov/cfusion/hazfaults_search/hf_search_res.cfm?hazmap=2007

http://earthquake.usgs.gov/designmaps/us/application.php

http://www.conservation.ca.gov/cgs/shzp/Pages/Index.aspx

California Emergency Management Agency, Hazard Mitigation Portal website:

http://myhazards.calema.ca.gov/Default.aspx

California Division of Mines and Geology, Bulletin 204, Geologic Map of Orange County,

California, Showing Mines and Mineral Deposits, P.K. Morton and R.V. Miller, 1981.

California Geological Survey (CGS), Earthquake Zones of Required Investigation, Newport

Beach Quadrangle, last update April 15, 1998

California Geological Survey (CGS), Tsunami Inundation Map for Emergency Planning,

Newport Beach Quadrangle, State of California, County of Orange, March 15, 2009