gijs van der schot simone wanningen

26
Gijs van der Schot Simone Wanningen

Upload: kiefer

Post on 15-Jan-2016

50 views

Category:

Documents


0 download

DESCRIPTION

Gijs van der Schot Simone Wanningen. Bacteriophages. Bacteriophages. Bacteriophages. Host cell lysis. Large double stranded DNA phages: Employ an invariable holin Make use of endolysin Single stranded nucleic acid bacteriophages: Expression of single gene No muralytic enzyme needed - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Gijs van der Schot Simone Wanningen

Gijs van der Schot

Simone Wanningen

Page 2: Gijs van der Schot Simone Wanningen

Bacteriophages

Page 3: Gijs van der Schot Simone Wanningen

Bacteriophages

Page 4: Gijs van der Schot Simone Wanningen

Bacteriophages

Page 5: Gijs van der Schot Simone Wanningen

Host cell lysis

• Large double stranded DNA phages:– Employ an invariable holin– Make use of endolysin

• Single stranded nucleic acid bacteriophages:– Expression of single gene– No muralytic enzyme needed

– Example: Gene E from Microviridae ΦX174

Page 6: Gijs van der Schot Simone Wanningen

Gene E from ΦX174

• Encodes a membrane protein of 91 residues• α-helical shape• Causes lysis of several Gram-negative hosts

• Protein E causes lysis by inhibiting MraY

Page 7: Gijs van der Schot Simone Wanningen

MraY

out

inA AA E KMUDP

A AA E KM

Lipid I

MraY

UDPG

Lipid IIMurG

G

A AA E KM

AA AEK M

G

Lipid II

A AA E KM

G

A AA E KM

G

Page 8: Gijs van der Schot Simone Wanningen

MraY and E

out

inA AA E KMUDP

A AA E KM

Lipid I

MraY

UDPG

Lipid IIMurG

G

A AA E KM

AA AEK M

G

Lipid II

A AA E KM

G

A AA E KM

G

Page 9: Gijs van der Schot Simone Wanningen

MraY and E

out

inA AA E KMUDP

A AA E KM

Lipid I

MraY

UDPG

Lipid IIMurG

G

A AA E KM

AA AEK M

G

Lipid II

A AA E KM

G

A AA E KM

G

Page 10: Gijs van der Schot Simone Wanningen

MraY catalyzes formation of Lipid I

Phytol Phosphate

Page 11: Gijs van der Schot Simone Wanningen

Mechanism Inhibition MraY (I)

• Mutations in MraY lead to E-resistance

• MraY from Bacillus suptilis is resistant (BSMraY)

Page 12: Gijs van der Schot Simone Wanningen

Mechanism Inhibition MraY (II)

• Two models explaining Inhibition:– E affects functioning MraY directly– E affects functioning MraY indirectly

(i.e. assembly heteromultimeric complex)

• Epep fragment contains 37 N-terminal residues:– Lysis of membrane containing overexpressed MraY– No lysis in detergent-solubilized membranes

Page 13: Gijs van der Schot Simone Wanningen

In this article/study:

• First purifiction of full-length E-protein• Characterization of the ability of E-protein to inhibit MraY

Page 14: Gijs van der Schot Simone Wanningen

Overproduction of E6his

• Induction E allele lethal

Page 15: Gijs van der Schot Simone Wanningen

Overproduction of E6his

• Induction E allele and BsMraY overcomes lethality

Page 16: Gijs van der Schot Simone Wanningen

Purification of E6his

• Yield of extracted protein: 54uM, 84% pure

Page 17: Gijs van der Schot Simone Wanningen

Quantification of E6his in vivo

• Previous indirect in vivo approaches:

– ~100-300 molecules/cell

– ~1000 molecules/cell

• This study used purified E6his

– ~500 molecules/cell

• We think:– ~750

molecules/cell

Page 18: Gijs van der Schot Simone Wanningen

Fluorescent analysis of MraY

Substrates used:– UDP-MurNAc-pentapeptide-DNS

– Phytol-P

• Fluorescent labeled product:– Phytol-P-P-MurNAc-pentapeptide-DNS

Page 19: Gijs van der Schot Simone Wanningen

Michaelis-Menten kinetics

V0 = Initial reaction rate

VMax = Maximum rate

KM = Michaels constant[S] = substrate concentration

Page 20: Gijs van der Schot Simone Wanningen

Determination of Km values

Al-Dabbagh et al. (ref 27):C55-P – 0.2 mM

UM5 – 0,94 mM

E resistance is not due to an altered substrate affinity

Page 21: Gijs van der Schot Simone Wanningen

E-mediated inhibition of MraY (I)

• E inhibits MraY specifically when both are present in same membrane

Page 23: Gijs van der Schot Simone Wanningen

E-mediated inhibition of MraY (II)

Km parameters for both substrates unchanged in presence of E

Vmax in both substrates decreased in presence of E

E is a non-competitive inhibitor of MraY with respect to both lipid and sugar-nucleotide substrates

– Ki averages of 0,53 +/- 0,12 uM

Page 24: Gijs van der Schot Simone Wanningen

Sensitivity of MraY mutant alleles

• Ability of E to inhibit the MraY proteins form the 5 mutant alleles

• 5 mutants in 3 classes:– MraYG186S and MraYV291M

– MraYp170L and MraY∆L172

– MraYF288L

• Matches classes of apparent affinities

Page 25: Gijs van der Schot Simone Wanningen

Conclusions

• Overproduction of protein E achieved– Possible to do structural and biophysical characterization of E

• E acts as a non-competitive inhibitor with respect to both lipid and sugar-nucleotide substrates of MraY

Page 26: Gijs van der Schot Simone Wanningen

New model: Inhibition by direct binding

• Interaction of one TMD of E and TMD 5 and 9 of MraY• Non-competitive binding results in conformational change