global lte iot starter kit hardware user...

52
Copyright © 2018 Avnet, Inc. AVNET, “Reach Further” and Avnet logo are registered trademarks of Avnet, Inc. All other brands are the property of their respective owners. LIT# Global LTE IoT Starter Kit Hardware User Guide Version 1.4

Upload: others

Post on 05-Apr-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Copyright © 2018 Avnet, Inc. AVNET, “Reach Further” and Avnet logo are registered

trademarks of Avnet, Inc. All other brands are the property of their respective owners.

LIT#

Global LTE IoT Starter Kit Hardware User Guide Version 1.4

Page 2: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 2

Document Control

Document Version: 1.4

Document Date: 02/10/2018

Document Author: Peter Fenn

Document Classification: Public

Document Distribution: Public

Prior Version History

Version Date Comment

1.0 07/05/2017 Initial Release

1.1 11/02/2017 Certification info added (pg 47-48)

1.2 12/04/2017 Section 4.5 cellular operating frequency bands amended

1.3 12/05/2017 Cellular operating frequency bands updated

1.4 02/10/2017 - Kit Contents diagram added - Block Diagram updated - URL for kit purchase updated - Light Sensor cautionary note added - Force USB Boot details added - Additional GPIOs and notes on usage added - Detailed info added to certification section - Modem-mode use case removed - Starter SIM details and supported countries updated - Intro to LTE IoT Breakout Carrier plus use of Click modules for prototyping

Page 3: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 3

Contents

Terminology ..................................................................................................................... 7

1 Introduction ............................................................................................................... 8

1.1 Kit Info ................................................................................................................................. 9

1.2 Items Included in the Kit....................................................................................................... 9

2 Block Diagram and Features .................................................................................. 10

2.1 List of Features .................................................................................................................. 10

2.1.1 LTE System Board ..................................................................................................... 10

2.1.2 WNC M18QWG Global Module .................................................................................. 10

2.1.3 Pulse Electronics LTE + GNSS Antennas ................................................................... 10

2.1.4 Expansion Interfaces for System-Level Prototyping .................................................... 10

2.2 LTE IoT System Board Block Diagram ............................................................................... 12

2.3 Location of Key Components ............................................................................................. 13

3 LTE System Board Functional Description ............................................................ 14

3.1 LTE Modem Module (WNC M18QWG) .............................................................................. 14

3.2 Expansion Connector ........................................................................................................ 16

3.3 2x6 Pin Peripheral Connector ............................................................................................ 21

3.4 WNC Module Interfaces ..................................................................................................... 22

3.4.1 SIM Interface (3FF Micro-SIM Connector) .................................................................. 22

3.4.2 USB Interface ............................................................................................................ 23

3.4.3 UART1 Interface ........................................................................................................ 25

3.4.4 UART2 – Software Debug UART Interface (3-pin header) .......................................... 25

3.4.5 Voltage Level Translation (1.8V / 3.3V) ...................................................................... 26

3.4.6 ADC / Ambient Light Sensor (JP2) ............................................................................. 27

3.4.7 3D Accelerometer Sensor (LIS2DW12) ...................................................................... 28

3.4.8 Pushbutton Switches (Reset, User, Boot) ................................................................... 29

3.4.9 LED Status Indicators (Power, WWAN, User) ............................................................. 30

3.4.10 PCM / I2S Digital Audio Interface ............................................................................... 31

3.4.11 Ethernet SGMII Interface ............................................................................................ 32

3.4.12 User GPIO ................................................................................................................. 33

3.5 Power Regulation .............................................................................................................. 34

3.5.1 VIN ............................................................................................................................ 34

3.5.2 3V8 (VCC) ................................................................................................................. 34

3.5.3 1V8_VREF (VREF) .................................................................................................... 36

3.5.4 VCC_UIM_SIM (UIM_VCC) ....................................................................................... 36

3.5.5 3V3 ............................................................................................................................ 36

3.7 WNC Module Power Control and State Interfaces .............................................................. 37

Page 4: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 4

3.8 Antennas ........................................................................................................................... 39

3.8.1 LTE Antennas (Primary, Diversity).............................................................................. 39

3.8.2 GPS Antenna ............................................................................................................. 40

4 Specifications and Ratings ..................................................................................... 42

4.1 Absolute Maximum Ratings ............................................................................................... 42

4.2 Recommended Electrical Operating Conditions ................................................................. 42

4.3 Power Consumption .......................................................................................................... 42

4.4 RF Characteristics ............................................................................................................. 43

4.5 Networking and Carrier ...................................................................................................... 43

4.6 GNSS Receiver Performance ............................................................................................ 44

4.7 Environmental ................................................................................................................... 44

4.8 Mechanical ........................................................................................................................ 45

5 Certifications ........................................................................................................... 47

5.1 RoHS Compliance ............................................................................................................. 47

5.2 Regulatory and Network Certifications ............................................................................... 47

5.2.1 Certification Documents ............................................................................................. 47

5.2.2 CE-RED: EMC Testing ............................................................................................... 47

5.2.3 CE-RED: Radio Testing ............................................................................................. 47

5.2.4 Electrical Safety Certification ...................................................................................... 47

6 Shipping, Handling and Storage ............................................................................ 48

6.1 Shipping ............................................................................................................................ 48

6.2 Handling ............................................................................................................................ 48

6.3 Storage ............................................................................................................................. 48

7 Safety Recommendations ...................................................................................... 48

8 Ordering Information ............................................................................................... 49

8.1 LTE System Board Accessories ......................................................................................... 49

8.1.1 Expansion Connector Options for Custom User Board ............................................... 49

8.1.2 Pulse FPC Antenna Options ....................................................................................... 49

9 Contact Information ................................................................................................ 51

10 Technical Support ................................................................................................... 51

11 Disclaimer ............................................................................................................... 51

12 Appendix A – LTE IoT Breakout Carrier ................................................................ 52

Page 5: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 5

Figures

Figure 1 – Global LTE IoT Starter Kit Contents ............................................................. 9

Figure 2 – LTE IoT System Board – Block Diagram .................................................... 12

Figure 3 – LTE IoT System Board – Feature Identification ......................................... 13

Figure 4 – Global LTE Cat.4 IoT System Board........................................................... 13

Figure 5 – Internal view of the similar WNC M18Q2 series module ............................ 14

Figure 6 – Use Cases for Avnet LTE IoT Boards ......................................................... 15

Figure 7 – 3D View of Samtec ERF8 / ERM8 Connector Pair..................................... 16

Figure 8 – Expansion Connector Polarization .............................................................. 17

Figure 9 – Expansion Connector Board Stack Profile-View ........................................ 17

Figure 10 – Expansion Connector Pin Numbering ....................................................... 20

Figure 11 – 2x6 Peripheral Connector Board Edge-View ............................................ 21

Figure 12 – USB Interface Drivers Enumerate on Windows Host Computer ............. 24

Figure 13 – Board Detail Showing Light Sensor (U3) .................................................. 27

Figure 14 – CODEC Interface Using PCM or I2S ........................................................ 31

Figure 15 – Sleep and Power Control of WNC Module ............................................... 38

Figure 16 – Detail of U.FL Antenna Connectors .......................................................... 39

Figure 17 – GPS Antenna Circuit Diagram .................................................................. 40

Figure 18 – Mechanical Details (1 of 2) ........................................................................ 45

Figure 19 – Pulse FPC Antenna Options ..................................................................... 50

Figure 20 – LTE IoT Breakout Carrier (plus Click Modules) ........................................ 52

Page 6: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 6

Tables

Table 1 – Summary of Key Specifications for LTE System Board .............................. 11

Table 2 – J1 Expansion Connector Pinout (Inner Row) ............................................... 18

Table 3 – J1 Expansion Connector Pinout (Outer Row) .............................................. 19

Table 4 – 2x6 Pmod Peripheral Connector Pinout ....................................................... 21

Table 5 – SIM Card Interface Connections .................................................................. 22

Table 6 – WNC USB Interface Connections ................................................................ 23

Table 7 – USB Logical Interfaces Reported by Windows Device Manager ................ 24

Table 8 – Software Debug UART Header (J9) ............................................................. 25

Table 9 – ADC Input Source Selector (JP2)................................................................. 27

Table 10 – LIS2DW12 Interrupt Outputs ...................................................................... 28

Table 11 – Pushbutton Switch Functions ..................................................................... 29

Table 12 – LED Indicator Functions ............................................................................. 30

Table 13 – PCM / I2S Digital Audio Interface Pins ...................................................... 31

Table 14 – GPIO Signals Available on Expansion Connector ..................................... 33

Table 15 – GPIO Signals Assigned Local Functions ................................................... 33

Table 16 – Summary of LTE System Board Voltages ................................................. 34

Table 17 – Control and State Signals ........................................................................... 37

Table 18 – WAKEUP_IN and WAKEUP_OUT ............................................................. 37

Table 19 – FPC Antenna Options from Pulse .............................................................. 39

Table 20 – Absolute Maximum Ratings ........................................................................ 42

Table 21 – Recommended Electrical Operating Conditions ........................................ 42

Table 22 – Power Consumption ................................................................................... 42

Table 23 – TX Power and RX Sensitivity ..................................................................... 43

Table 24 – Networking and Carrier Characteristics (Europe Operation) .................... 43

Table 25 – GNSS receiver performance ...................................................................... 44

Table 26 – Environmental Characteristics .................................................................... 44

Table 27 – Mechanical Characteristics......................................................................... 45

Table 28 – Certified Pulse Antennas ............................................................................ 47

Table 29 – Ordering Information ................................................................................... 49

Table 30 – Height options for Samtec ERM8 Expansion Connector .......................... 49

Table 31 – FPC Antenna Options from Pulse .............................................................. 49

Table 32 – Contact Information .................................................................................... 51

Page 7: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 7

Terminology

Abbreviation Definition

AC Alternating Current

CE European Conformity (Conformité Européene)

DC Direct Current

ETSI European Telecommunications Standards Institute

FCC Federal Communications Commission

GND Ground

GPIO General Purpose Input / Output

I/O Input / Output

IoT Internet of Things

I2C Inter-Integrated Circuit

JTAG Joint Test Action Group

MEMs Micro-Electro-Mechanical Systems

LTE Long Term Evolution

N/A Not Applicable

N/C Not Connected

PIN Personal Identification Number

Pmod Peripheral module (Digilent Inc. trademark)

SIM Subscriber Identity Module

SoC System on Chip

SoM System on Module

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

UIM User Identity Module

USB Universal Serial Bus

Vref Voltage reference

WCDMA Wideband Code Division Multiple Access

WNC Wistron NeWeb Corporation

Page 8: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 8

1 Introduction

The Global LTE IoT Starter Kit is a next-generation System-on-Module IoT solution, enabling the design

of cellular connected edge devices, for operation in Europe.

Powered by AT&T IoT services available through Avnet, this kit provides a complete development

environment for sensor-to-cloud applications and services.

Designed to be used for both prototyping and production, the slim form-factor LTE System Board with it’s regional certifications and pre-registered Micro-SIM card for AT&T M2X service (included in the kit), as well as versatile expansion options, together provide a high level of enablement that facilitates easy IoT

deployment and reduction in overall risk.

The Starter Kit features a small (79.5 mm x 30 mm) LTE System Board built around a Wistron NeWeb (WNC) M18QWG global LTE Cat-4 modem module. The M18QWG module provides cellular modem functionality plus an applications processor core dedicated for user applications, eliminating the need for an external host processor. A rich set of embedded system peripherals, controllable through the user’s application code, are easily accessible via a 60-pin expansion connector and 2x6 peripheral module header. This enables easy system customization with application specific sensors and I/O interfaces through the addition of user-created or off-the-shelf plug-in boards. The LTE System Board includes

ambient light, temperature and accelerometer sensors onboard, for out-of-box demonstration examples.

User application code runs directly on the M18QWG module, leveraging the OpenEmbedded software framework for Linux application development. A Software Development Kit (SDK) specific to the M18QWG module provides the necessary API calls to access hardware peripherals and system resources. Application code built with the SDK is loaded into the M18QWG module through a USB

interface on the development board eliminating the need for external proprietary JTAG cables.

Cloud application development is supported by AT&T’s M2X Data Services and Flow Designer.

- M2X is a cloud-based, fully managed data storage service for connected machine-to-machine

(M2M) devices

- Flow Designer provides a visual editing environment for the design of connected applications,

enabling IoT developers to rapidly create and deploy innovative new applications.

Design goals of this LTE IoT Starter Kit included the following:

- Provide a versatile prototyping- and production-ready (cost-optimized) platform for development and productized custom applications using WNC M18QWG Cat.4 cellular modem and GPS, for

deployment Globally via AT&T’s partner LTE networks

- Provide hardware expansion examples using: - PmodTM-compatible peripheral boards,

- Custom breakout board

- Provide reference designs that accelerate development of applications for popular use cases

- With the provided AT&T SIM starter pack, demonstrate the use of: - AT&T M2X and Flow Designer

- Additional 3rd party cloud services such as AWS, Watson IoT, and Azure

Page 9: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 9

1.1 Kit Info

Part Number: AES-ATT-M18QWG-SK-G

Price: $139.00 USD

Kit URL: http://cloudconnectkits.org/product/global-lte-starter-kit

Buy Page: AES-ATT-M18Q2FG-SK-G

1.2 Items Included in the Kit

• LTE System Board (p/n: AES-ATT-M18QWG-M1-G )

• Pulse FPC antennas (LTE Primary Antenna, GPS Antenna, LTE Diversity Antenna)

• Micro-SIM card (100K data points on AT&T M2X IoT platform services plus 200 SMS messages,

good for 60 days from activation)

• Universal AC/DC power supply with regional adaptors (5V @ 2.5A)

• USB Cable for programming and debug)

Figure 1 – Global LTE IoT Starter Kit Contents

Page 10: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 10

2 Block Diagram and Features

This section summarizes the features of the development board, followed by functional descriptions.

2.1 List of Features

The following features are supported:

2.1.1 LTE System Board M18QWG Global LTE SoC Module

Ambient Light Sensor

3-Axis Accelerometer

Temperature Sensor

USB Interface

60-pin High-density Expansion Connector (1.8V levels)

2x6 Peripheral Module Connector (3.3V levels)

Power Regulation

2.1.2 WNC M18QWG Global Module Supports Global LTE bands 1/2/3/5/7/8/20/28/38/40

Cat-4 LTE (up to 150/50 Mbps Download/Upload)

2G/3G Fallback

GPS

Based on Qualcomm MDM9207 o ARM® Cortex™ A7 Quad Core o One of the A7 cores is dedicated for User Application

Rich Peripheral Features

2.1.3 Pulse Electronics LTE + GNSS Antennas Three antennas implemented as two foldable FPC antenna-assemblies

2G/3G/4G MIMO

GNSS (GPS, Glonass)

Antenna interface to the LTE System board is via three space-efficient U.FL connectors

2.1.4 Expansion Interfaces for System-Level Prototyping

Two interfaces facilitate the adding of custom hardware to the LTE System board:

System expansion interface (1.8V I/O) is a 60 pin expansion connector (Samtec ERF8 /

ERM8 series) on the underside of the system board. WNC module peripherals are accessible via this interface at 1.8V signalling levels, if 3.3V (or 2.5V) levels are required by the user’s

custom circuitry, then voltage translator devices must be added to the user’s board.

Pmod™-compatible interface (3.3V I/O) is 6x2 pin connector facilitates an easy to use

interface via I2C or SPI peripherals, for access to a wide range of Pmod™ peripheral boards. The relaxed pitch of this connector and low pin count of these interfaces also permits wiring-in other 3.3V expansion boards (eg. MikroElektronika Click modules or Grove sensor boards) for

prototyping system-level solutions

Page 11: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 11

Table 1 – Summary of Key Specifications for LTE System Board

Product Parameter Relevant Characteristics

MSRP $99 @ 100+ units

Description Embedded LTE and GPS system board offering two modes of operation: - Host mode - Modem mode (aka Slave mode. No Avnet support for this mode currently)

Application Interface WNC API (Host mode only) WNC AT Commands

Cellular Technology LTE Cat.4, bands 1/3/7/8/20/28/38/40 (up to 150/50 Mbps DL/UL)

WCDMA, bands 1/8, 3GPP release 8

GSM, E-GSM 900, DCS 1800

GNSS Location Tracking GPS, GLONASS (-162 dBm tracking sensitivity)

Peripheral Interfaces HS USB 2.0 w/ PHY, SGMII, HSIC, UARTs (4 wire and 2 wire), SDC1/SPI1, I2C/SPI2, USIM, GPIOs, ADC, PCM/I2S, JTAG

Power Consumption See datasheet (utilizes power-efficient ARM Cortex-A7 technology)

Supply Voltage 4.5 V to 16 V DC

Expansion Interfaces Pmod™-compatible connector (3.3V levels, 2x6 pin, 2.54 mm pitch) SAMTEC ERM8 60pin connector (1.8V levels, 2x30pin, 0.8 mm pitch)

End-Device Certified Regulatory and network certifications planned for Europe only

Data Service Starter SIM includes: - 100K data points on AT&T M2X service, - 200 SMS messages,

- good for 60 days from activation

Data Interface N/A in Host mode

Dimensions (mm) 79.5mm x 30 mm

Warranty 1 year

Page 12: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 12

2.2 LTE IoT System Board Block Diagram

Figure 2 – LTE IoT System Board – Block Diagram

Page 13: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 13

2.3 Location of Key Components

Figure 3 – LTE IoT System Board – Feature Identification

Figure 4 – Global LTE Cat.4 IoT System Board

Page 14: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 14

3 LTE System Board Functional Description

The following sections describe the key functional blocks on the AT&T LTE IoT System Board

3.1 LTE Modem Module (WNC M18QWG) The M18QWG is a SoC modem module from Wistron NeWeb Corporation (WNC) that provides Cat.4 LTE cellular wireless connectivity plus GNSS location tracking, as well as a full-featured application processor subsystem with peripheral interfaces and functions uniquely designed to

address the power/performance/cost constraints of IoT and M2M applications.

The quad-core ARM Cortex A7 applications processor on this module is based on Qualcomm’s MDM9207 architecture and offers (OFDMA-related) software based signal processing capabilities

that significantly exceeds the efficiency of traditional ARM based communications processors.

Host mode: The WNC module will normally operate in “host mode”, where one of the ARM

Cortex A7 cores in the on-module Qualcomm MDM device is reserved for use as the system

processor for user applications. (The other three A7 cores are dedicated to the modem functions).

Modem mode: WNC module operation in “slave mode” (as a peripheral to an external processor

interfaced to the WNC module via USB interface) is not currently supported

The M18QWG also provides system peripheral interfaces and library support for these,

(eg. USB 2.0, I2C, SPI, SGMII, PCM, HSIC, UIM, UART*, SDIO*)

Refer to the next section pinout listing of the 60 pin Expansion Connector (Samtec ERF8) for

detail regarding the M18QWG module I/O that is accessible to the User

Documentation for the M18Q2 series WNC North America module that shares similar functionality

is available at the FCC certification website https://fccid.io/NKRM18Q2

Figure 5 – Internal view of the similar WNC M18Q2 series module

Page 15: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 15

Figure 6 – Use Cases for Avnet LTE IoT Boards

Page 16: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 16

3.2 Expansion Connector

The peripheral interfaces of the WNC M18QWG module are made available to the developer for

custom system design via the board’s 60 pin Expansion Connector.

This is interface is implemented using a 2x30 pin, 0.8mm pitch, Samtec ERF8 series connector, providing a robust, space-efficient and economical stacking solution that is especially attractive for

cases where small overall physical size of the final product is vital.

Figure 7 – 3D View of Samtec ERF8 / ERM8 Connector Pair

Page 17: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 17

The matching Samtec ERM8 connector that is fitted to the custom end product PCB, is made available in three different stacking heights, to better accommodate height clearance requirements

of your custom hardware. These offer 7mm, 10mm or 14mm overall clearance between the boards

Manuf. Avnet P/N Description

Samtec ASP⁃197278⁃01 ERM8 series connector to match ERF8 socket (7 mm mated connector height)

Samtec ASP⁃197278⁃02 ERM8 series connector to match ERF8 socket (10 mm mated connector height)

Samtec ASP⁃197278⁃04 ERM8 series connector to match ERF8 socket (14 mm mated connector height)

Figure 8 – Expansion Connector Polarization

Figure 9 – Expansion Connector Board Stack Profile-View

Page 18: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 18

Table 2 – J1 Expansion Connector Pinout (Inner Row)

J1 pin

PCB Signal Name

Description WNC pin

PU /PD

WNC Modem Mode

WNC Host Mode

1 VIN DC Input Voltage (5V) - - -

3 VIN DC Input Voltage (5V) - - -

5 VIN DC Input Voltage (5V) - - -

7 VIN DC Input Voltage (5V) - - -

9 UART1_RX Receive for WNC UART1 82 PD UART1_RX UART1_RX

11 UART1_TX Transmit for WNC UART1 83 PD UART1_TX UART1_TX

13 UART2_RX Receive for WNC UART2 106 PD UART2_RX UART2_RX

15 UART2_TX Transmit for WNC UART2 107 PD UART2_TX UART2_TX

17 USB_D- USB Data Negative 88 USB_DN USB_DN

19 USB_D+ USB Data Positive 86 USB_DP USB_DP

21 GND GND - - -

23 SGMII_MDC SGMII Management data clock

120 - SGMII_MDC

25 GND GND - - -

27 SDC1_CLK SDC1 Clock 124 - SDC1_CLK

29 SDC1_CMD SDC1 Command 123 - SDC1_CMD

31 SPI1_MOSI SPI1 MOSI / SDC1_DATA3 125 PD SPI1_MOSI SPI1_MOSI

33 GND GND - - -

35 SPI1_MISO SPI1 MISO / SDC1_DATA2 126 PD SPI1_MISO SPI1_MISO

37 SPI2_MOSI SPI2 MOSI 62 PD - SPI2_MOSI

39 SPI2_MISO SPI2 MISO 63 PD - SPI2_MISO

41 GND GND - - -

43 SGMII_RX_M SGMII receive – minus 59 - SGMII_RX_M

45 SGMII_RX_P SGMII receive – plus 58 - SGMII_RX_P

47 SGMII_TX_M SGMII transmit – minus 57 - SGMII_TX_M

49 SGMII_TX_P SGMII transmit – plus 56 - SGMII_TX_P

51 GND GND - - -

53 PCM_CLK PCM Clock 49 PD PCM_CLK/GPIO49 PCM_CLK/GPIO49

55 PCM_DOUT PCM Data Out 48 PD PCM_DOUT/GPIO48 PCM_DOUT/GPIO48

57 PCM_DIN PCM Data In 47 PD PCM_DIN/GPIO47 PCM_DIN/GPIO47

59 PCM_SYNC PCM Sync 46 PD PCM_SYNC/GPIO46 PCM_SYNC/GPIO46

PD: Pull-Down

PU: Pull-Up

NP: Non-Pull

Page 19: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 19

Table 3 – J1 Expansion Connector Pinout (Outer Row)

J1 pin

Signal Name Description WNC pin

PU /PD

WNC Modem Mode

WNC Host Mode

2 REG_EN 3V8 Regulator Enable - PD - -

4 ADC_H ADC ext. input (to JP2) 122 PD ADC (via JP2) ADC (via JP2)

6 UART1_CTS CTS for WNC UART1 80 PD UART1_CTS UART1_CTS

8 UART1_RTS RTS for WNC UART1 81 PD UART1_RTS UART1_RTS

10 GPIO02 GPIO02 53 PD GPIO02 GPIO02

12 GPIO03 GPIO03 54 PD GPIO03 GPIO03

14 GPIO04 GPIO04 55 PD GPIO04 GPIO04

16 GND GND - - -

18 GPIO95 GPIO95 95 PD GPIO95 GPIO95

20 GPIO94 GPIO94 94 PD GPIO94 GPIO94

22 EPHY_RST_N EPHY_RST_N 103 PD - EPHY_RST_N

24 GPIO96 GPIO96 96 PD GPIO96 GPIO96

26 GPIO97 GPIO97 97 PD GPIO97 GPIO97

28 I2C_SCL I2C_SCL 61 PD I2C_SCL I2C_SCL

30 I2C_SDA I2C_SDA 60 PD I2C_SDA I2C_SDA

32 GPIO93 GPIO93 (output only) 93 NP GPIO93 GPIO93

34 GND GND - - -

36 GND GND - - -

38 SGMII_MDIO SGMII MDIO 121 - SGMII_MDIO

40 SPI1_EN SPI1 Enable / SDC1_DATA1 127 PD SPI1_EN SPI1_EN

42 SPI1_CLK SPI1 Clock / SDC1_DATA0 128 PD SPI1_CLK SPI1_CLK

44 GND GND - - -

46 GPIO06 GPIO06 130 PD GPIO06 GPIO06

48 GPIO07 GPIO07 131 PU GPIO07 GPIO07

50 EPHY_INT_N EPHY_INT_N 132 PD GPIO08 EPHY_INT_N / GPIO08

52 WAKEUP_OUT WAKEUP_OUT 143 PD WAKEUP_OUT WAKEUP_OUT

54 WAKEUP_IN WAKEUP_IN 144 PD WAKEUP_IN WAKEUP_IN

56 RESET_N RESET_N 145 PD RESET_N RESET_N

58 1V8_VREF WNC 1.8V LDO Output 146 VREF VREF

60 1V8_VREF WNC 1.8V LDO Output 146 VREF VREF

PD: Pull-Down

PU: Pull-Up

NP: Non-Pull

Page 20: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 20

Figure 10 – Expansion Connector Pin Numbering

Page 21: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 21

3.3 2x6 Pin Peripheral Connector

The 2x6 Pin Peripheral Connector is compatible with a subset of Pmod™ peripheral boards from

Digilent, Maxim, Measurement Specialties (TE Connectivity) and others.

The pinout of this 2x6 pin right-angle socket connector is derived from the I/O signal assignments

defined in the Digilent Pmod™ Interface Specification for SPI and I2C serial interfaces.

Note however, that dual-row I2C Pmod peripheral boards in many cases may not be fitted to this board, as their duplicate SCL and SDA pins are not accommodated by the combo SPI plus I2C

interface pinout assignments implemented on the LTE System board.

Table 4 – 2x6 Pmod Peripheral Connector Pinout

Pmod Pin#

Function Signal Name Pmod Pin#

Function Signal Name

1 SPI_SS SPI1_EN_3V3 7 SPI_INT GPIO93_3V3

2 SPI_MOSI SPI1_MOSI_3V3 8 RESET GPIO95_3V3

3 SPI_MISO SPI1_MISO_3V3 9 I2C_SCL I2C_SCL_3V3

4 SPI_SCK SPI1_CLK_3V3 10 I2C_SDA I2C_SDA_3V3

5 GND GND 11 GND GND

6 3V3 3V3 12 3V3 3V3

Figure 11 – 2x6 Peripheral Connector Board Edge-View

Page 22: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 22

3.4 WNC Module Interfaces

3.4.1 SIM Interface (3FF Micro-SIM Connector)

The UIM (User Identity Module) interface is implemented with a Micro-SIM connector that interfaces a removable 3FF sized AT&T SIM card to the WNC module. - This SIM interface includes the necessary ESD protection devices

- It is powered from the WNC module and will auto set to 1.8V or 3.0V upon SIM negotiation.

The UIM_DETECT input pin of the M18QWG module is driven from the UIM connector

circuit: - If SIM card is present, UIM_DETECT = High (1.8V / 3.0V)

- If SIM card is absent , UIM_DETECT = Low (GND)

Table 5 – SIM Card Interface Connections

WNC Pin #

WNC Module Pin Name

WNC I/O Direction

Avnet SOM Signal Name

I/O Voltage Levels

Signal Description

133 UIM_VCC AO VCC_UIM_SIM 1.8V / 3.0V SIM card power

134 UIM_DATA DI/DO UIM_SIM_IO 1.8V / 3.0V SIM card data

135 UIM_CLK DO UIM_SIM_CLK 1.8V / 3.0V SIM card clock

136 UIM_RESET DO UIM_SIM_RST 1.8V / 3.0V SIM card reset

136 UIM_DETECT DI/DO UIM_SIM_DETECT 1.8V / 3.0V SIM card detect

Notes: - Power to the System board must be turned-off when removing or inserting the SIM card! - The SIM card connector is not spring-loaded. To remove the SIM:

Turn the board upside-down. Eject the SIM by pushing from inside, outward to board-edge

Page 23: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 23

3.4.2 USB Interface

The M18QWG module supports USB 2.0 high-speed protocol, it’s USB I/O lines complying

with the USB 2.0 electrical specification.

Table 6 – WNC USB Interface Connections

The USB electrical interface includes ESD protection and is accessible via either:

the MicroUSB connector, or

the 60-pin Expansion connector

The USB interface on the WNC module’s Qualcomm MDM9207 series quad-core processor implements a “USB Compound Device” (Qualcomm-patented) with virtual USB hub enabling

multiple logical devices to enumerate over single physical USB interface.

When the LTE System board is first connected to the developer’s computer, it enumerates as this USB peripheral device, implementing a total of 9 logical interfaces as shown in the

Windows screenshot on the next page…

WNC Pin #

WNC Module Pin Name

WNC I/O Direction

Avnet SOM Signal Name

Description

86 USB_DP DI/DO USB_D+ USB 2.0 Data Positive

87 USB Detect DI GPIO87 USB Detect

88 USB_DN DI/DO USB_D- USB 2.0 Data Negative

Page 24: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 24

Figure 12 – USB Interface Drivers Enumerate on Windows Host Computer

Table 7 – USB Logical Interfaces Reported by Windows Device Manager

# Description Device this Enumerates as

Windows Device Drivers

Comments

1 WNC M18Q2 USB Composite Device

qcusbfilter.sys, usbqccgp.sys

2 CDC ECM N/A N/A Installs on Linux host, not Windows

3 WNC M18Q2 HS-USB Diagnostics

COM port qcserv.sys Serial over USB

4 WNC Composite ADB Interface

Android device WdfCoInstaller01009.sys, WinUSBCoInstaller2.sys, winusb.sys,

Android Debug Bridge

5 WNC M18Q2 HS-USB Android Modem

COM port (modem)

qcserv.sys, modem.sys Serial over USB, AT Command interface

6 WNC M18Q2 HS-USB NMEA

COM port qcserv.sys Serial over USB, GPS interface

7 WNC M18Q2 HS-USB Ethernet Adaptor

Network adaptor qcusbwwan.sys Ethernet over USB for HS data transfer

8 USB Mass Storage Device Removable disk usbstor.sys Virtual removable drive

9 Linux File-Stor Gadget USB Device

Disk drive disk.sys, iaStorF.sys, partmgr.sys

Virtual disk drive

The M18QWG module supports 3GPP standard AT commands and proprietary AT commands

For Linux based user software applications, the SDK supports API access via the MAL Manager

Page 25: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 25

3.4.3 UART1 Interface

The WNC module firmware limits UART1 to a predefined system function specifically for: “High Speed Data Transfer”

WNC UART1 modem interface as implemented via the USB Compound Device, is available through either:

the MicroUSB connector, or

the 60-pin Expansion connector

As tabled on the previous page, additional UARTs (in service of the other processor cores) also communicate over the same USB interface

3.4.4 UART2 – Software Debug UART Interface (3-pin header)

WNC UART2 is limited by the module firmware to performing the predefined system function of: “Software Debug UART”

The I/O levels of this UART are level-shifted, with it’s TX, RX and GND signals made available on a 3-pin header (J9) to facilitate external connection to a 3rd-party USB-to-Serial debug cable

Table 8 – Software Debug UART Header (J9)

J9 Pin Signal Name Description

1 UART2_TX_3V3 Level-shifted WNC UART2_TX output

2 UART2_RX_3V3 Level-shifted WNC UART2_RX input

3 GND Ground

Page 26: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 26

3.4.5 Voltage Level Translation (1.8V / 3.3V)

SPI1 and UART2 interfaces plus two GPIOs (GPIO93 and GPIO95) from the WNC module are

level-shifted to 3.3V levels by Fairchild FXLA108BQX octal bi-directional level-translator device

In addition, the I2C peripheral interface bus from the WNC module is also level-shifted, using

an FXMA2102L8X 2-bit level-translator that is compatible for use with open-collector outputs

The level-shifted 3.3V signals are routed to the following connectors:

the Pmod-compatible 2x6 peripheral connector (J8) and

the Software Debug UART 3-pin header connector (J9)

Page 27: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 27

3.4.6 ADC / Ambient Light Sensor (JP2)

A single ADC input is provided on the WNC module.

This inputs to a 16 bit convertor, sampled at 2.4MHz for an ENOB of 15 bits

Analog Input Bandwidth is 100 kHz (typical)

The ADC’s input range is 0.1V to 1.7V

A shorting link across jumper JP2 connects one of the following sources to this ADC input:

Table 9 – ADC Input Source Selector (JP2)

Note! Two issues should be noted that limit the utility of the ADC input on the initial production boards:

a) ADC input source selection via JP2 is not possible unless the R50 “default” resistor is removed

b) The ADC’s input voltage limit could be exceeded if the Ambient Light Sensor is exposed to an excessively bright light source, resulting in potential damage to the module. To prevent this, it is recommended that light-levels must be restricted using some form of optical filter placed over the U3 light sensor (see U3 location below)

Figure 13 – Board Detail Showing Light Sensor (U3)

JP2 Pins Signal Source for ADC Input

1 & 2 (default) Ambient Light Sensor output (U3)

2 & 3 Expansion Connector (J1 pin 4) (ie. driven by an external circuit)

Page 28: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 28

3.4.7 3D Accelerometer Sensor (LIS2DW12)

The LIS2DW12 is a 2017-released, ultra low-power, MEMS 3-axis smart accelerometer from

ST Micro. It has 16-bit output and can be configured (with 5 settings in either mode) to prioritize:

ultra-low power consumption (< 1 µA @ ODR = 12.5 Hz), or

very low-noise performance (down to 90 µg/√Hz)

Other features include:

Selectable acceleration full-scale range of ±2/±4/±8/±16 g

32-level embedded FIFO (for measurement buffering)

Thermal stability over the full -40 to +85 °C industrial temperature range

Embedded temperature sensor

1.8V operation and I/O levels

50 nA power-down mode

Dedicated internal engine for motion and acceleration processing:

o Free-fall wakeup o 6D/4D orientation o Tap and double-tap recognition o Activity/inactivity recognition o Portrait/landscape detection

The LIS2DW12 is used as a slave device (address=0011001 b7) on the WNC module’s I2C

peripheral bus. The SA0 input of the LIS2DW12 device is tied high, but this signal is pinned-out to test-point SA0 to facilitate potential modification of (LSB) of the device I2C address

Table 10 – LIS2DW12 Interrupt Outputs

LIS2DW12 Pin Name WNC Pin Name Isolating Resistor

INT1 GPIO06 R48

INT2 GPIO07 R49

Both interrupt outputs are by default connected to the WNC module (GPIO06 and GPIO07)

If one or both of these WNC GPIOs are required for a different purpose, they may be disconnected from the LIS2DW12 device by removing resistors R48 and R49

Page 29: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 29

3.4.8 Pushbutton Switches (Reset, User, Boot)

Three pushbutton switches connected to inputs on the WNC module, are mounted on the most

mechanically secure section of the board (ie. pressing down on the 60-way expansion connector)

Table 11 – Pushbutton Switch Functions

Switch # Name Switch Function How Activated

SW1 RESET WNC module Reset input Press and hold for > 3 seconds to Reset

SW2 USER User-defined trigger input User defined function, forces a logic Low on GPIO98

SW3 BOOT Force USB Boot Press + hold during reset, forces reprogramming of firmware from USB (Note! This is an advanced function that requires use of WNC_Dloader software)

Page 30: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 30

3.4.9 LED Status Indicators (Power, WWAN, User)

Three LEDs are visible on the LTE System board, their functions are tabled below:

Table 12 – LED Indicator Functions

LED # Name LED Function How Activated

LED1 POWER 3V8 Power Good Indicator Illuminates if board is powered

LED2 WWAN Network Connection Status Controlled by User software: Indicates valid network connection

LED3 USER User defined RGB output Controlled by User software: User defined color and sequence

Page 31: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 31

3.4.10 PCM / I2S Digital Audio Interface

PCM and I2S share the same four pins on the M18QWG module.

ie. The Digital Audio interface pins can be configured for PCM or I2S functionality.

These four pins can alternatively serve as user-defined GPIO, see table below…

Access to these signals is via the 60-pin Expansion Connector

Note: Software support for the Digital Audio Interface is not currentltly included in the SDK

Figure 14 – CODEC Interface Using PCM or I2S

Table 13 – PCM / I2S Digital Audio Interface Pins

PCM mode I2S mode WNC GPIO Pin

PCM_SYNC I2S_WS GPIO46

PCM_DIN I2S_DATA0 GPIO47

PCM_DOUT I2S_DATA1 GPIO48

PCM_CLK I2S_SCK GPIO49

Page 32: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 32

3.4.11 Ethernet SGMII Interface

An SGMII interfaced Ethernet MAC is integrated within the WNC module.

This has the following key features

IEEE 802.3 compliance

Full duplex at 1 Gbps

Half/full duplex for 10/100 Mbps

Supports VLAN tagging

Supports IEEE 1588, Precision Time Protocol (PTP)

Can be used connected to an external Ethernet PHY such as AR8033, or to an external switch

Layout recommendations:

Differential impedance:100 Ω

Space to other signals: > 3x line width

Lane-to-lane space: > 3x line width

Intra-lane mismatch: < 0.7 mm

Page 33: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 33

3.4.12 User GPIO

Eighteen of the signals routed from WNC module to the Expansion Connector (J1) can operate

as GPIO serviced by the User Application software (see comments regarding use):

Table 14 – GPIO Signals Available on Expansion Connector

GPIO Name

J1 Pin #

Host Mode Function / Also Connects To…

PU /PD

Comments

GPIO02 10 PD

GPIO03 12 PD

GPIO04 14 PD

GPIO06 46 LIS2DW12: INT1 (*Note1) PD To use as GPIO, disable INT1

GPIO07 48 LIS2DW12: INT2 (*Note1) PU To use as GPIO, disable INT2

GPIO08 50 EPHY_INT_N PD Available as GPIO if SGMII not used

GPIO46 59 PCM Sync (*Note2) PD Level-shifted on LTE IOT Carrier board

GPIO47 57 PCM Data In (*Note2) PD Level-shifted on LTE IOT Carrier board

GPIO48 55 PCM Data Out (*Note2) PD Level-shifted on LTE IOT Carrier board

GPIO49 53 PCM Clock (*Note2) PD Level-shifted on LTE IOT Carrier board

GPIO93 32 PMOD: J8 pin 7 (*Note1) NP Level-shifted on Pmod Interface

GPIO94 20 PD

GPIO95 18 PMOD: J8 pin 8 (*Note1) PD Level-shifted on Pmod Interface

GPIO96 24 PD

GPIO97 26 PD

GPIO120 23 SGMII_MDC (*Note3) PD Check WNC firmware support

GPIO123 27 SDC1_CMD (*Note3) PD Check WNC firmware support

GPIO124 29 SDC1_CLK (*Note3) NP Check WNC firmware support

*Note1 Take care to avoid contention if GPIO shared with other devices or interfaces

*Note2 PCM Digital Audio pins are configured as GPIO in current WNC Host mode firmware

*Note3 Check GPIO 120, 123, 124 support in the version of WNC firmware used

PU = Internal Pull-Up resistor, PD = Internal Pull-Down resistor, NP = Output Only

Table 15 – GPIO Signals Assigned Local Functions

Signal Name

J1 Pin #

Assigned Function On Avnet Board

Comments

GPIO92 n/a RGB LED: Red User controlled RGB LED (Red)

GPIO98 n/a User P/B Switch User controlled Pushbutton Switch

GPIO101 n/a RGB LED: Green User controlled RGB LED (Green)

GPIO102 n/a RGB LED: Blue User controlled RGB LED (Blue)

Page 34: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 34

3.5 Power Regulation

Table 16 – Summary of LTE System Board Voltages

3.5.1 VIN Unregulated DC input power (in range of 4.5V to 16V) can be supplied to the LTE System board via one of three different input interfaces:

the “PWR IN” MicroUSB connector (J6)

the 60-pin Expansion Connector (J1)

the 2-pin VIN and GND aux connector (J10, unpopulated)

In the IoT Starter Kit, the provided 5V 2.5A AC/DC power adaptor applies power to the LTE

System board via the “PWR IN” MicroUSB (J6) connector

The input supply voltage can be measured by placing voltmeter test leads across the

unpopulated DC aux input connector pads (J10)

3.5.2 3V8 (VCC) 3.8V @ 3 A max, An onboard ON Semi NCP3170 buck switching regulator supplies the WNC

module’s VCC input requirement. Regulators on the WNC module then convert this voltage down to the lower core voltages required The REG_EN regulator enable input:

is pulled high following power-up via an RC delay circuit (enables the 3V8 output)

can be pulled low from the 60-pin Expansion Connector (to disable the 3V8 output)

Power Good status of the 3V8 output supply rail can be verified in two places

LED1 - illuminates green when the circuit is correctly powered and REG_EN is high

PG test point - this should be high (when circuit is powered and REG_EN = high)

An unpopulated 2-pin header site (JP1) is provided for 3V8 current measurement. To use this feature, the following board modification is required:

Zero-ohm resistor R47 must be removed

A 2-pin header connector JP1 must be added

The meter test leads must be placed across the pins of JP1

After completion of current measurements, a shorting link (JPR1) must be fitted across these JP1 header pins

Voltage Rail Voltage Current max (A)

VIN 5.0V (nominal) 1.8 A (MicroUSB) 4.0 A (Exp. Connector)

3V8 (VCC) 3.8V 3.0 A

1V8_VREF (VREF) 1.8V 0.1 A

VCC_UIM_SIM 1.8V / 3.3V 0.15 A

3V3 3.3V 0.3 A

Page 35: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 35

Page 36: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 36

The 3V8 module supply is filtered per WNC recommendations using the following circuit

3.5.3 1V8_VREF (VREF) 1.8V @ 100 mA max. Supplied by the VREF pin of the WNC module.

This provides 1.8V power to the following circuits:

The VREFA input of the 1.8V/3.3V level-shifter devices (U9 and U10)

The LIS2DW12 accelerometer

The LNA in the GNSS/GPS antenna circuit

Some discrete pull-up resistors

3.5.4 VCC_UIM_SIM (UIM_VCC) 1.8V or 3.0V @ 150mA max. Supplied by the UIM_VCC output pin of the WNC module

This voltage is auto set on SIM negotiation and provides 1.8V or 3.3V power to:

The “User Identity Module”, ie. the removable SIM Card.

3.5.5 3V3 3.3V @ 150 mA max. Supplied by the onboard On Semi NCP114 LDO regulator.

This supplies 3.3V power to the following circuits:

The VREFB input of the 1.8V/3.3V level-shifter devices (U9 and U10)

The Pmod Interface (J8)

Page 37: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 37

3.7 WNC Module Power Control and State Interfaces

The following 6 signals fall in this category:

Table 17 – Control and State Signals

Signal Name Connected to I/O Function in this Circuit

RESET J1 pin 56 IO Allows expansion board to reset the WNC module

WAKEUP_IN J1 pin 54 I Allows expansion board to wake-up WNC module

WAKEUP_OUT J1 pin 52 O WNC module wake-up output to expansion board

REG_EN J1 pin 2 I 3V8 Regulator Enable

POWER_ON PWR testpoint I Unused, but available at “PWR” test-point

WWAN_STATE WWAN LED O Drives network status WWAN LED (Amber color) Under program control from the User application

RESET

The RESET signal on the 60-pin Expansion Connector may be used as an input or output. This functions in parallel with the onboard SW1 pushbutton switch. The WNC module is reset by a logic

low on this signal for 3 seconds or longer

WAKEUP_IN and WAKEUP_OUT

For power-sensitive applications, this mechanism allows the modem and an external host to enter

low power states whenever possible, with the other side then waking it when required.

If the modem receives data while the host is in low power state, then it must wake-up the host.

If the host needs to transmit data while the modem is in low power state, then the host must be able to wake-up the modem.

The interface consists of two signals: WAKEUP_IN is driven by an external host and received by the modem

WAKEUP_OUT is driven by the modem and received by the host.

Each side can wake the other side by toggling it’s wakeup signal high, or allowing the other side to go to sleep when not needed by toggling wakeup low.

Table 18 – WAKEUP_IN and WAKEUP_OUT

Function Driven by Signal Name

WAKEUP_IN = Low Host Host allows Modem to sleep

WAKEUP_IN = High Host Host requires the Modem, or this an ACK response to a WakeUp from the Modem

WAKEUP_OUT = Low Modem Modem allows the Host to sleep

WAKEUP_OUT = High Modem Modem requires the Host, or this an ACK response to a WakeUp from the Host

Page 38: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 38

REG_EN and POWER_ON

REG_EN controls the main 3V8 regulator and is pulled high (enabled) following power-up via an

onboard RC delay circuit. This signal is also available on the 60-pin Expansion Connector for external ON/OFF control of the onboard 3V8 and 3V3 regulators. This allows system power to be

controlled by eg. a low-power MCU on the User’s custom hardware

Figure 15 – Sleep and Power Control of WNC Module

POWER_ON is the power control input to the WNC module. This is made available on a test-point

(“PWR”) but is otherwise unused in this design. (Not available on the 60-pin Expansion Connector)

Note: In the event the User application also needs control of the POWER_ON input, this requires rework of the LTE System board as R11 will need to be removed

WWAN_STATE

This signal drives the WWAN LED (Amber color) and is normally used to indicate network status,

but is control from the User application so can be repurposed if necessary

Page 39: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 39

3.8 Antennas

3.8.1 LTE Antennas (Primary, Diversity)

This IoT Starter Kit ships with it’s three antennas implemented on two FPC antenna

assemblies (see 2nd option highlighted in bold type below)

Avnet’s antenna partner Pulse provide three different implementation options using FPC type

antennas, for maximum flexibility in achieving specific end-product form-factors

Table 19 – FPC Antenna Options from Pulse

Manuf. Part Number Description Antenna Circuits

Pulse W6113B0100 FPC combo 3-in-1 antenna LTE + GPS + LTE

Pulse W3906B0100 W3907B0100

FPC dual antenna FPC single antenna

LTE + GPS LTE

Pulse W3907B0100 W3908B0100

2x FPC single antennas 1x FPC GPS antenna

LTE, LTE GPS

Features of these Pulse FPC antennas include the following:

2G / 3G / 4G MIMO

Global LTE bands: B1-B23, B25-B29, B33-B42 (N.America, Europe, Asia incl.Japan)

Guaranteed Port-to-Port isolation

Foldable for tight spaces

2.9 dBi gain for LTE antennas

0.3 or 0.8 dBi dBi gain for GNSS antenna

Figure 16 – Detail of U.FL Antenna Connectors

Page 40: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 40

3.8.2 GPS Antenna

GPS and adaptive A-GPS are supported by the WNC module

The GNSS antenna circuit is made up of the following circuitry:

SAW filters 1 and 2 : Murata SAFFB1G56KB0F0AR15

Low Noise Amplifier: Infineon BGA824N6

The LNA device is enabled under firmware control, by GPIO05 on the WNC module

Figure 17 – GPS Antenna Circuit Diagram

The GPS antenna section of the LTE System board schematic is detailed on the next page…

Page 41: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 41

Page 42: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 42

4 Specifications and Ratings

4.1 Absolute Maximum Ratings

Table 20 – Absolute Maximum Ratings

Parameter Min Typ Max Unit

VIN (DC Supply Voltage) 4.5 5.0 16 Volts

MicroUSB connector VIN rating @5V 1.8 A

Expansion connector VIN rating @5V 4.5 A

3V8 Voltage Regulator rating 3.0 A

3V3 Voltage Regulator rating

300 mA

4.2 Recommended Electrical Operating Conditions

Table 21 – Recommended Electrical Operating Conditions

Parameter Min Typ Max Unit

V_High on WNC Digital I/O 1.7 1.8 1.9 Volts

Voltage on WNC ADC Input 0

1.7 Volts

4.3 Power Consumption

Typical power consumption @ Vcc = 3.8V

(Note! WNC module only consumption, from WNC M18QWG specifications)

Table 22 – Power Consumption

Parameter Test Condition Typ Unit

Airplane mode Module only (no other device) 0.86 mA

LTE Standby mode lowest power consumption (Band 8)

DRX=2.56 sec, BW=10MHz 1.01 mA

LTE Standby mode highest power consumption (Band 2)

DRX=2.56 sec, BW=10MHz 1.22 mA

LTE Working mode lowest power consumption (Band 40)

BW=20MHz, PTX =23dbm, DL=145Mbps 400 mA

LTE Working mode highest power consumption (Band 7)

BW=20MHz, PTX =23dbm, DL=145Mbps 800 mA

WCDMA standby mode lowest power consumption (Band 8)

DRX=2.56 sec 0.98 mA

WCDMA standby mode highest power consumption (Band 5)

DRX=2.56 sec 1.06 mA

WCDMA Working mode lowest power consumption (Band 8)

HSPA+ DL=21 Mbps, PTX =23 dBm 389 mA

WCDMA Working mode highest power consumption (Band 2)

HSPA+ DL=21 Mbps, PTX =23 dBm 433 mA

Page 43: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 43

GSM standby mode lowest power consumption (GSM850)

DRX=1.18 sec 1.12 mA

GSM standby mode highest power consumption (GSM1900)

DRX=1.18 sec 1.18 mA

GSM Working mode lowest power consumption (GSM1800)

GPRS 1 down 4 up, TX Power=33dbm 751 mA

GSM Working mode lowest power consumption (GSM900)

GPRS 1 down 4 up, TX Power=33dbm 913 mA

Powering On Consumption Power consumption peak when module is powering up

780 mA

Power Off Consumption Power when module is powered off 10 uA

4.4 RF Characteristics

Table 23 – TX Power and RX Sensitivity

Parameter Typical Unit

TX Power (LTE) 23.0 dBm

TX Power (WCDMA) 23.5 dBm

TX Power (GSM) 32.5 / 29.5 dBm

RX Sensitivity (LTE) -99 to -102 dBm

RX Sensitivity (WCDMA) -108.5 to -110 dBm

RX Sensitivity (GSM) -107 to -109 dBm

4.5 Networking and Carrier

Table 24 – Networking and Carrier Characteristics (Europe Operation)

Parameter Characteristics Notes

Carrier and Technology 4G LTE Cat.4 WCDMA GSM

Supported Bands: LTE Cat.4 B1/3/7/8/20/28/38/40 3GPP release 10 (no Carrier Aggregation)

Supported Bands: WCDMA B1/8 3GPP release 8

Supported Bands: GSM E-GSM 900, DCS 1800

VoLTE (Voice over LTE) Yes

Security (See White Paper 1Q18)

Data Rates (LTE Cat.4) 150/50 Mbps for DL/UL

Page 44: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 44

4.6 GNSS Receiver Performance

Table 25 – GNSS receiver performance

Test Items Parameter Typ Unit

Cold start TTFF @ -130 dBm 38 Seconds

Hot start TTFF @ -130 dBm 2 Seconds

CEP-50 Accuracy Open sky with -130 dBm input < 3 Meters

Cold start sensitivity Acquire First with Signal level -146 dBm

Tracking sensitivity (GPS) Detect an in-view satellite 50% of the time

-162 dBm

4.7 Environmental

Table 26 – Environmental Characteristics

Parameter Min Typ Max Unit

Humidity Range* %

Storage Temperature -40 +85 ºC

Operating Temperature**

- LTE System Board Functional - WNC Module Functional - WNC Module 3GPP Compliant

-25

-25 -20

+60

+75 +60

ºC

* Non-condensing, relative humidity ** Thermal spec for push-button switches is -40 to +60C

Page 45: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 45

4.8 Mechanical

Table 27 – Mechanical Characteristics

Parameter Characteristics

LTE System board PCBA dimensions 29.5 mm × 30 mm × 10 mm (typ.)

Figure 18 – Mechanical Details (1 of 2)

Page 46: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 46

Page 47: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 47

5 Certifications

5.1 RoHS Compliance The AES-ATT-M18QWG-M1-G module is lead-free and RoHS compliant.

5.2 Regulatory and Network Certifications

End-device certification testing has been completed and test reports submitted for CE-RED Approval. The scope of this CE-RED certification covers the Global LTE Starter Kit using the specified Pulse antennas and power supply that ships in this kit.

5.2.1 Certification Documents

Certification-CE_RE_Directive_Examination_Certificate_AES-ATT-M18QWG-SK-G

Certification-CE_DoC_AES-ATT-M18QWG-SK-G

5.2.2 CE-RED: EMC Testing Additional EMC testing will be required when this module is: a) fitted to an additional PCB assembly, and/or b) the external power supply is changed

5.2.3 CE-RED: Radio Testing CE certification testing of this kit was conducted with the LTE SOM board fitted with the Pulse

antennas tabled below. Use of different antennas will require additional certification testing!

Table 28 – Certified Pulse Antennas

Manuf. Part Number Description Antenna Circuits

Pulse W3906B0100 W3907B0100

FPC dual antenna FPC single antenna

LTE + GPS LTE

5.2.4 Electrical Safety Certification Due to the small form-factor of the LTE SOM board, the details below are provided in this Hardware User Guide to fulfil the regulatory requirement to display the CE mark, brand name,

model number and electrical rating

Page 48: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 48

6 Shipping, Handling and Storage

6.1 Shipping Bulk orders of AES-ATT-M18QWG-M1-G LTE System boards are delivered in trays of TBD units.

6.2 Handling The AES-ATT-M18QWG-M1-G LTE System board contains sensitive electronic circuitry that

requires proper ESD protection when handling. Failure to follow these ESD procedures may

result in permanent damage to the module.

The module should not be subjected to excessive mechanical shock.

6.3 Storage Per J-STD-033, the shelf life of devices in a Moisture Barrier Bag is:

12 months at <40ºC and <90% room humidity (RH).

Do not store in salty air or an environment where there is a high concentration of corrosive gas,

such as Cl2, H2S, NH3, SO2, or NOX.

Do not store in direct sunlight.

7 Safety Recommendations

Be sure the use of this product is authorised for use in the country and environment where is operated.

The use of this product may be hazardous and must be avoided in areas:

Where it can interfere with other electronic devices, eg in hospitals, airports and aircraft

Where there is a risk of explosion such as gasoline stations and oil refineries

It is the responsibility of the user to comply with their country’s regulations and environmental regulations. Do not disassemble the product; any mark of tampering will compromise the warranty’s validity.

It is recommended the instructions in this hardware user guide be followed for correct wiring of the product. The product must be supplied with a reliable voltage source, and wiring must conform to the security and

fire-prevention regulations.

This product must be handled with care; avoid contact the possibility of electrostatic discharge which may damage the product. Same caution must be taken regarding the UIM card; carefully check the instructions

for its use. Do not insert or remove the UIM when the product is in power-saving mode.

The system integrator is responsible for the functioning of the final product. Care must be taken with the circuitry external to the module as well as for project or installation issues—there may be a risk of disturbing the cellular network or external devices or of having an impact on device security. If you have any doubts,

please refer to the technical documentation and the relevant regulations in force.

Every module must be equipped with a proper antenna of the specified characteristics. The antenna must

be installed with care in order to avoid any interference with other electronic devices.

Page 49: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 49

8 Ordering Information

Table 29 – Ordering Information

Part Number Description MSRP

AES-ATT-M18QWG-SK-G AT&T LTE Cat.4 IoT Starter Kit $139.00

AES-ATT-M18QWG-M1-G AT&T LTE Cat.4 IoT System Board $99.00

8.1 LTE System Board Accessories

8.1.1 Expansion Connector Options for Custom User Board

System Designers have a choice of three different stack heights, for overall inter-board

clearances of 7mm, 10mm or 14mm

Table 30 – Height options for Samtec ERM8 Expansion Connector

Manuf. Avnet Part Number Description MSRP

Samtec ASP⁃197278⁃01 ERM8 series matching connector (7 mm mated connector height)

$1.35

Samtec ASP⁃197278⁃02 ERM8 series matching connector (10 mm mated connector height)

$1.35

Samtec ASP⁃197278⁃04 ERM8 series matching connector (14 mm mated connector height)

$1.90

8.1.2 Pulse FPC Antenna Options

Pulse has providioned three different implementation options using FPC type antennas, for

maximum flexibility in achieving specific end-product form-factors

Table 31 – FPC Antenna Options from Pulse

Manuf. Part Number Description Antenna Circuits MSRP

Pulse W6113B0100 FPC combo 3-in-1 antenna LTE + GPS + LTE

Pulse W3906B0100 W3907B0100

FPC dual antenna FPC single antenna

LTE + GPS LTE

Pulse W3907B0100 W3908B0100

2x FPC single antennas 1x FPC GPS antenna

LTE, LTE GPS

The highlighted 2nd option shows the antennas that ship in the IoT Starter Kit.

(This is the pair of antennas covered in the certification)

Page 50: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 50

Figure 19 – Pulse FPC Antenna Options

Page 51: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 51

9 Contact Information

For further details, contact your local Avnet representative or e-mail us at:

Table 32 – Contact Information

Region Email

General Global Kit Enquiries [email protected]

Europe Sales Enquiries [email protected]

10 Technical Support Technical support for the Global LTE IoT Kit is available via online support forum pages. These are located (on same website as the product documentation) at: http://cloudconnectkits.org/forum

11 Disclaimer Avnet assumes no liability for modifications that the owner chooses to make to their LTE IoT Starter Kit

Page 52: Global LTE IoT Starter Kit Hardware User Guidecloudconnectkits.org/sites/default/files/M18QWG-Global-LTE-Kit-HW-UG-v1-4.pdfvia this interface at 1.8V signalling levels, if 3.3V (or

Page 52

12 Appendix A – LTE IoT Breakout Carrier The LTE IoT Breakout Carrier is an optional expansion board that facilitates system-level prototyping

using the Global LTE IoT Starter Kit

Via it’s Samtec ERM8 series 60-pin connector, a subset of the WNC LTE module’s peripheral interfaces (signaling at 1.8V levels) are level-shifted to 3.3V levels and pinned-out to two Click Module sockets for

which over 300 different MikroElekronika Click peripheral modules are available for purchase from Avnet.

Features:

Access to key peripheral interfaces of LTE System Module via 60 pin Samtec ERM8 series connector (10mm mated connector height. 10mm standoffs required for mounting of LTE Board)

Level-shifting of the WNC module signals to/from 1.8V / 3.3V levels

Dual sockets for two MikroE Click peripheral modules (available from Avnet)

Flexible system prototyping via a choice of over 425 Click peripheral modules

External control of LTE System board power-down and sleep modes

Additional level-shifted GPIO (or PCM Digital Audio) signals (four pins)

Onboard 3.3V and 1.8V voltage regulators

Figure 20 – LTE IoT Breakout Carrier (plus Click Modules)

LTE IoT Breakout Carrier details and ordering info available at:

http://cloudconnectkits.org/product/lte-iot-breakout-carrier