gothenburg diana users meeting april 25-26 2013 final-1

Download Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

If you can't read please download the document

Upload: abk1234

Post on 14-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    1/259

    1

    International DIANA Users Meeting

    Chalmers University of Technology

    Gothenburg, Sweden

    Opening - WelcomeInternational

    DIANA Users Meeting

    Ane de Boer

    DIANA Users Association &Ministry of Infrastructure, The Netherlands

    International DIANA Users Meeting

    Chalmers University of Technology

    Gothenburg, Sweden

    Why Gothenburg-Sweden after

    London-UK, NijmegenNL, Essen-Germany, Porto-Portugal,

    Trondheim-Norway, Delft-NL, Brescia-Italy

    -- DIANADIANA UsersUsers inin SwedenSweden

    -- LocalLocal arrangementsarrangements:: LundgrenLundgren andand HanjariHanjari

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    2/259

    2

    International DIANA Users Meeting

    Chalmers University of Technology

    Gothenburg, Sweden

    Gothenburg well-known city

    Volvos hometown & Factories

    Ferry link to Danmark

    Chalmers University of Technology

    Sport events like: Indoor European Championship Athletics

    Speed skating track

    International DIANA Users Meeting

    Chalmers University of Technology

    Gothenburg, Sweden

    Activities Users Association

    in cooperation with TNO DIANA BVDevelopment meetings:

    Since 1984, the foundation year of the Users Association

    -General meetings at the Users offices in The Netherlands,

    including Technical meetings in the Netherlands twice a year since 2000

    -International Users Meeting since London 2004

    - Users Association open for International Members since 2005,

    so join us, a registration form at the registration desk of this Meeting!

    -Activities:In cooperation with CUR-NL: Concrete Mechanics Applications 2003 [CD],

    Advanced FE analyses (CUR2003-1;NL) & Design in 3D(2008-1;NL)

    Wish Lists: International User Wish List since User Meeting 2005

    DIANA User Advisory Board: short, mid and longterm wishes

    Set-up of a User Database of articles, presentations around DIANANLFEA Guideline: Girders published 18 April 2013!!

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    3/259

    3

    International DIANA Users Meeting

    Chalmers University of Technology

    Gothenburg, Sweden

    NLFEA Guidelines / Safety Formats EC2-MC2010

    Safety Formats Slabexperiments Stevinlab; Framcos8 - Belletti etc.

    Pu/Pu,experiment

    E

    C

    2

    0

    20

    40

    60

    80

    100

    LevelI

    LevelII

    LevelIV

    -PF

    LevelIV-GRF

    LevelIV

    -ECO

    V

    Run-Mea

    n

    Experim

    ent

    NumericalAnalytical

    MC2010

    Henrik Schlune: Chalmers PhD Thesis Alternative Safety Formats

    Experiment

    International DIANA Users Meeting

    Chalmers University of Technology

    Gothenburg, Sweden

    Location of this meeting Hosting this meeting:

    Chalmers University of Technology

    Concrete Structures, Division of Structural Engineering

    Chalmers Teknik Park

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    4/259

    4

    International DIANA Users Meeting

    Chalmers University of Technology

    Gothenburg, Sweden

    Social Event

    17:00 City / Harbour guided Tour

    start: Teknik Park

    finish: Tvkanten

    19:30 Dinner Restaurang Tvkanten

    International DIANA Users Meeting

    Chalmers University of Technology

    Gothenburg, Sweden

    Wijtze Pieter Kikstra, Scientific Employee

    Gerd-Jan Schreppers, General Director

    Opportunity meeting TNO DIANA BV people

    Opportunity meeting DIANA Users Association people

    Nynke Vollema Henco Burggraaf

    Ane de Boer

    Opportunity to meet other DIANA Users !!

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    5/259

    Structural Engineering Concrete Structures

    t'

    Structural Engineering Concrete Structures

    Z^

    h&D

    ^

    D

    E

    &

    d

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    6/259

    Structural Engineering Concrete Structures

    h

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    7/259

    Structural Engineering Concrete Structures

    /

    Structural Engineering Concrete Structures

    ^

    W

    ^

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    8/259

    Structural Engineering Concrete Structures

    d

    Structural Engineering Concrete Structures

    -tn

    c

    tttn

    tt

    -c fa

    ^

    h

    &

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    9/259

    Structural Engineering Concrete Structures

    [mm]

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 5 10 15

    D

    ^

    &

    1.0

    c/fcc

    0.5

    05 10

    [mm]tn

    tt

    -c fa

    Structural Engineering Concrete Structures

    ^

    0

    20

    40

    60

    80

    100

    0 2 4 6 8 10

    Active slip [mm]

    Without stirrups

    Load [kN]

    0

    20

    40

    60

    80

    100

    0 2 4 6 8 10

    Load [kN]

    Active slip [mm]

    With two stirrups

    0

    20

    40

    60

    80

    100

    0 2 4 6 8 10

    Load [kN]

    Active slip [mm]

    With four stirrups

    FEAExp.

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    10/259

    Structural Engineering Concrete Structures

    z

    0

    5

    10

    15

    0 1 2 3 4 5 6

    0

    5

    10

    15

    0 0.2 0.4 0.6 0.8

    tt[MPa]

    tt[MPa]

    ut[mm]

    ut[mm]

    s

    s

    Structural Engineering Concrete Structures

    >

    250

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    11/259

    Structural Engineering Concrete Structures

    0

    50

    100

    150

    200

    250

    0 5 10

    Load [kN]

    l+ r[mm]

    B, B

    S

    S Exp.

    FEA, edge

    FEA, centre

    720720

    l r

    edge centre

    Structural Engineering Concrete Structures

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    12/259

    Structural Engineering Concrete Structures

    Bond - slip in centre slice(2)

    0

    10

    20

    0 0.5 1 1.5

    0

    10

    20

    0 0.5 1 1.5

    0

    10

    20

    0 0.5 1 1.50

    10

    20

    0 0.5 1 1.5

    0

    10

    20

    0 0.5 1 1.5

    0

    10

    20

    0 0.5 1 1.5

    0

    10

    20

    0 0.5 1 1.50

    10

    20

    0 0.5 1 1.5

    0

    4

    8

    12

    16

    0 0.5 1 1.5

    Bond [MPa]

    Slip [mm]

    Structural Engineering Concrete Structures

    d

    /

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    13/259

    Structural Engineering Concrete Structures

    Structural Engineering Concrete Structures

    Force [kN]

    0

    20

    40

    60

    80

    100

    120

    140

    0 2 4 6 8 10Slip [mm]

    Exp.

    FEA

    Yield force

    /

    Force [kN]

    0

    20

    40

    60

    80

    100

    120

    140

    0 2 4 6 8 10Slip [mm]

    Exp.

    FEA

    Yield force

    ,

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    14/259

    Structural Engineering Concrete Structures

    t

    Structural Engineering Concrete Structures

    /

    ^

    Z

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    15/259

    Structural Engineering Concrete Structures

    D

    /

    Z

    ^

    h

    DW

    -

    -

    -

    -

    -

    -

    - -

    -

    -

    -

    D

    Structural Engineering Concrete Structures

    &

    Z

    ^

    /

    d

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    16/259

    Structural Engineering Concrete Structures

    W E

    &

    Structural Engineering Concrete Structures

    0

    0.05

    0.1

    0.15

    0.2

    0 50 100 150

    0

    0.05

    0.1

    0.15

    0.2

    0 50 100 150

    0

    0.05

    0.1

    0.15

    0.2

    0 50 100 150

    crack width [mm] crack width [mm] crack width [mm]

    Analysis, corrosion equal around the rebar

    Analysis, corrosion localized at the crackExp. Andrade et al.

    1 2 3 1 2 3 1 3Mass loss [%]

    II: c = 20mm, 100Acm-2

    Mass loss [%]III: c = 30mm, 100Acm

    -2Mass loss [%]

    IV: c = 20mm, 10Acm-2

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    17/259

    Structural Engineering Concrete Structures

    W

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    18/259

    Structural Engineering Concrete Structures

    K

    r

    Structural Engineering Concrete Structures

    K

    r

    x

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    19/259

    Structural Engineering Concrete Structures

    )2()1( 22 xrxrry rs ++=

    K

    r

    x

    y

    s

    &

    Structural Engineering Concrete Structures

    )2()1( 22 xrxrry rs ++=

    K

    r

    x

    y

    urcor s

    &

    Z

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    20/259

    Structural Engineering Concrete Structures

    )2()1( 22 xrxrry rs ++=

    K

    r

    x

    y

    urco

    r s

    &

    Z

    Structural Engineering Concrete Structures

    )2()1( 22 xrxrry rs ++=

    K

    r

    x

    y

    urcor s

    &

    Z

    r

    s s

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    21/259

    Structural Engineering Concrete Structures

    )2()1( 22 xrxrry rs ++=

    K

    r

    x

    y

    urco

    r s

    &

    Z

    r

    x

    Structural Engineering Concrete Structures

    )2()1( 22 xrxrry rs ++=

    K

    r

    x

    y

    urcor s

    &

    Z

    r

    x

    y

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    22/259

    Structural Engineering Concrete Structures

    )2()1( 22 xrxrry rs ++= e

    Vxrxrry rsext

    ++=

    )2)(1( 22

    K

    r

    x

    y

    urco

    r s

    &

    Z

    r

    x

    y

    yext

    s s

    Structural Engineering Concrete Structures

    )2()1( 22 xrxrry rs ++= e

    Vxrxrry rsext

    ++=

    )2)(1( 22

    K

    r

    x

    y

    urcor s

    &

    Z

    r

    x

    y

    yext

    urco

    r

    s s

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    23/259

    Structural Engineering Concrete Structures

    D

    Structural Engineering Concrete Structures

    ^

    /

    Reinforcement bar

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    24/259

    Structural Engineering Concrete Structures

    K

    &

    s

    Structural Engineering Concrete Structures

    &

    &

    d d /E

    ^sW

    d

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    25/259

    Structural Engineering Concrete Structures

    tn

    tt

    -c fa

    &

    h

    Structural Engineering Concrete Structures

    /

    tn

    tt

    -c fa

    >

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    26/259

    Structural Engineering Concrete Structures

    /

    s

    D

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    27/259

    Fibre reinforced concrete in dapped-end

    beams

    s^

    '

    DE

    ,

    D Z'

    d

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    28/259

    3

    /

    K

    D

    Fibre reinforced concrete in dapped-end beams

    Introduction

    E.V. Sarmiento et al.

    > Motivation

    Application for FRC

    /

    K

    D

    W

    Dapped-end beams project > Previous experience(1)

    witho

    utfibres

    1% Steel fibres

    4Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    29/259

    /

    K

    D

    W

    Dapped-end beams project > Previous experience(2)

    1% Steel fibres

    5Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    1%Steelfibres

    /

    K

    D

    W

    Dapped-end beams project > Previous experience(3)

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    6

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    30/259

    7

    /

    K

    D

    W

    >

    Fibre reinforced concrete in dapped-end beams

    Dapped-end beams project

    E.V. Sarmiento et al.

    > Limitations(1)

    >

    K

    K

    &

    8

    /

    K

    D

    W

    >

    Fibre reinforced concrete in dapped-end beams

    Dapped-end beams project

    E.V. Sarmiento et al.

    > Limitations(2)

    &

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    31/259

    9

    /

    K

    D

    W

    >

    &

    ^

    Fibre reinforced concrete in dapped-end beams

    Finite Element Analysis

    E.V. Sarmiento et al.

    > Study case(1)

    10

    /

    K

    D

    W

    >

    &

    ^

    Fibre reinforced concrete in dapped-end beams

    Finite Element Analysis

    E.V. Sarmiento et al.

    > Study case

    ^WE

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    32/259

    11

    /

    K

    D

    W

    >

    &

    ^

    D

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Model descriptionFinite Element Analysis

    Supports and loading

    Simple supports

    Interface elements

    Loading control

    Force load

    Displacement load

    Mesh size

    Element size 25x25

    Element size12.5x12.5

    12

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Materials / geometries(1)Finite Element Analysis

    Concrete in tension

    Multi-linear tension softening curve

    Fibre reinforced concrete

    Crack modeling

    Semeared crack approach with Rotating crack model

    Concrete in compresionIdeal

    Elements

    Eight-node quadrilateral plane stress elements (CQ16M)

    RILEM Design methods for steel fibre

    reinforced concrete. --design method

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    33/259

    13

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Materials / geometries(2)Finite Element Analysis

    Reinforcement

    Strain hardening model

    Yield stress: 566 Mpa

    Modulus of elasticity: 200 000 MPa

    Ultimate strain and stress at ultimate strain: 7.5, 589 MPa

    14

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Materials / geometries(3)Finite Element Analysis

    Bond properties

    All Embedded reinforcement

    Option 2 - BAR in Plane stress

    Reinf with slip: Truss elements (CL6TR)

    Line-plane interface elements (CQ22IF)

    Bond-slip + Embedded reinforcement

    Option 1

    Reinf with slip: Truss elements (CL6TR)

    Line interface elements (CL12I)

    David Fall et al.Non-linear finite element analysis of steel fibre

    reinforced beams with conventional r einforcement. BEFIB2013

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    34/259

    15

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Control method

    Step size

    Convergence norm

    Mesh size

    Concrete strain limit

    Bond properties

    16

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Control method

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    35/259

    17

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Control method

    Displacement control Force control

    Principal strain

    4mm deflection

    Principal strain6mm deflection

    18

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Step size

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    36/259

    19

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Step size

    0.5mm step size

    0.1mm step size

    0.2mm step size

    Principal strain5mm deflection

    20

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Convergence norm

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    37/259

    21

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Convergence norm Principal strain6.8mm deflection

    Displ norm0.05

    Displ norm0.02

    Displ norm0.01

    Force norm0.1

    22

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Mesh size

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    38/259

    23

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Mesh size

    25x25mm el. size 12.5x12.5 el. size

    Principal strain4mm deflection

    Principal strain6mm deflection

    24

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Concrete strain limit

    Principal strain6mm deflection

    Strain limit 0.025 Strain limit 0.050

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    39/259

    25

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Bond properties

    26

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    Fibre reinforced concrete in dapped-end beams E.V. Sarmiento et al.

    > Results and discussionFinite Element Analysis

    Bond properties

    Embedded reinforcements Bond slip reinforcements

    Principal strain3mm deflection

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    40/259

    27

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    ^

    Fibre reinforced concrete in dapped-end beams

    Summary

    E.V. Sarmiento et al.

    In general, the maximum load is under a certain limit

    well described

    The model underestimates the loads at large

    deflections

    The crack pattern is poorly described

    The bond slip properties have to be improved

    Dependency on the mess alignment

    Other material models for FRC need to be evaluated

    Thank you for your attention

    E.V. Sarmiento et al.Fibre reinforced concrete in dapped-end beams

    /

    K

    D

    W

    >

    &

    ^

    D

    D

    Z

    ^

    28

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    41/259

    Fatig

    ueAna

    lysisof

    BasculeBridgeDetail

    Coenvan

    derVliet/PeterKonijnenbe

    lt

    ArcadisNetherland

    s

    Im

    aginetheresult

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    42/259

    C

    ontents

    Project

    Fatigue

    Appro

    ach

    FEModels&Results

    FatigueVerification

    RelatedTopics

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia

    2

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    43/259

    Project

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    44/259

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia

    4

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    45/259

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia

    5

    Antwerp

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    46/259

    DianaUserMeeting|April25/2

    62013|ARCADIS2013

    Dia

    6

    Deurganck

    dok

    DeurganckdokSluice

    Waas

    landHarbour

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    47/259

    Deurganckdoksluis

    PortofAntwerp

    Dia

    7

    Length:

    500m

    Width:

    68m

    BridgeSpan:

    70m

    Construction

    Start

    2011

    Delivery

    2016

    Partiesinvolved:

    Client:

    BelgianDe

    p.Of

    MobilityandPublic

    Works

    Contractor:THVWaas

    landsluis

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    48/259

    BasculeBridg

    es

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia

    8

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    49/259

    BasculeBridg

    es

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia

    9

    axis

    castpiece

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    50/259

    BasculeBridg

    es

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia10

    axis

    castpiece

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    51/259

    Fatigue

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    52/259

    Fatiguegen

    eralprinciple

    Cyclicloadin

    greducesstreng

    th

    Strengthred

    uctionrelatedto

    log(N)

    Miner:6(ni/N

    i)1

    Stresspeaksatnotchesetc.

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia12

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    53/259

    Fatiguegen

    eralprinciple

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia13

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    54/259

    Fatigue-weld

    s

    Welds:locald

    isturbancesof

    stressdistrib

    ution

    Stresstrajec

    toriesand

    concentratio

    ns

    Stresspeak

    dependsonweld

    detail

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia14

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    55/259

    Fatiguewelds

    Residualstressesequalyield

    strength

    Vmax=fy,Vmin=fy-'V

    Stresslevel

    notimportant

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia15

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    56/259

    Fatiguewelddetails

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia16

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    57/259

    Fatiguedeta

    ilcat.strength

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia17

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    58/259

    Fatiguebasematerial

    Stressreliev

    ed:noresidual

    stresses

    Stresslevel

    doesmatter

    Fatiguestrengthdependson

    stresslevel(N=Vmin/Vmax

    )

    compone

    nt(bending,

    tensionc

    ompression,

    shear)

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia18

    'V

    V

    max

    V

    min

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    59/259

    Approa

    ch

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    60/259

    Step1:globalloca

    l

    Translateglo

    balstructural

    behaviourto

    localbehaviour

    aroundpivotpoint

    Balancedloadcaseonlocal

    model

    Supportstotakeunbalance

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia20

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    61/259

    Step1:globalloca

    l

    Unitloadsatmodelboundaries

    Memberforc

    esfromglobal

    modelloa

    dfactorsinload

    combinations

    Fatigueverificationofwelds

    aroundpivotpoint

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia21

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    62/259

    Step2:localdetail

    Translateloc

    alstructural

    behaviourto

    correctstress

    stateindeta

    ilmodelofcast

    piece

    Supportstotakeunbalance

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia22

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    63/259

    Step2:localdetail

    Stressesatsectionsinlocal

    modelloa

    dsindetailmode

    l

    Fatigueverificationatfillets

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia23

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    64/259

    FiniteE

    lemen

    tModels&

    Results

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    65/259

    Model

    1:shells

    Purposevsmodelspecs

    Provideproperboundaryconditionsfordetailmodel

    Geom

    etry:globalshapesufficient

    Mesh

    :onlyfineeleme

    ntsincastpiece

    area

    Enabled

    etailedfatigueve

    rificationofweldsaroundcastpie

    ce

    Geom

    etry:accurate,u

    ptomanandmo

    useholes

    Mesh

    :fineelementsa

    teverycriticalsp

    ot

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia25

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    66/259

    Model

    1:shells

    Purposevsmodelspecs

    Provideproperboundaryconditionsfordetailmodel

    Geom

    etry:globalshapesufficient

    Mesh

    :onlyfineeleme

    ntsincastpiece

    area

    Enabled

    etailedfatigueve

    rificationofweldsaroundcastpie

    ce

    Geom

    etry:accurate,u

    ptomanandmo

    useholes

    Mesh

    :fineelementsa

    teverycriticalsp

    ot

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia26

    prima

    ryscope

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    67/259

    Model

    1:shells

    Elementsize

    andgradingoptimumbetween

    modelsize

    peakstre

    ssaccuracy

    Result

    symmetricallineargrading2575foreveryedge

    refineme

    ntf

    actor2

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    68/259

    Model

    1:shells

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia28

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    69/259

    Model

    1:shells

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia29

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    70/259

    Model

    1:shells

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia30

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    71/259

    Model

    1:shells

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia31

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    72/259

    Model

    1:shells

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia32

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    73/259

    Model

    1:shells

    Modelverific

    ation

    SOLforinidividual(unity)

    loadcases

    DeformationscomparedtoSciamodel

    Results

    Firstimpressionbasedon

    VonMisesstres

    sesandprincipal

    stresses

    Fatigueverificationbased

    onstressrange

    alongsection

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia33

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    74/259

    Model

    1:shells

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia34

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    75/259

    Model

    1:shells

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia35

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    76/259

    Model

    1:shells

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia36

    'V

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    77/259

    Model

    2:solid

    s

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia37

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    78/259

    Model

    2:solid

    s

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia38

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    79/259

    Model

    2:solid

    s

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia39

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    80/259

    Model

    2:solid

    s

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia40

    shellstresse

    s

    translatedin

    to

    lineloads

    appliedto

    beams

    connectedto

    shells

    connectedto

    solids

    beams

    shells

    loadapplication

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    81/259

    Model

    2:solid

    s

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia41

    fatigue:allstress

    co

    mponentsin

    re

    levantelements

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    82/259

    FatigueVerific

    ation

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    83/259

    Fatigueverific

    ation

    Hotspotstre

    ss

    realisticgeometry(3Dvolume)

    extrapola

    tionofstresstow

    ardsweldtoe

    Nominalstre

    ss

    Bernouillimodels

    V=n/t+6m/

    t2

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia43

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    84/259

    Shellm

    odelvsreality

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia44

    realstresses

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    85/259

    Shellm

    odelvsreality

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia45

    realstresses

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    86/259

    Shellm

    odelvsreality

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia46

    shellstresses

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    87/259

    Shellm

    odelvsreality

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia47

    whichsection?

    1

    2

    3

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    88/259

    Shellm

    odelvsreality

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia48

    whichsection?

    1

    2

    3

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    89/259

    Shellm

    odelvsreality

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia49

    whichstressc

    omponents,

    andwhere?

    Vnn;top

    Vns;mid/Wn;mid

    Vnn;bot

    2/3!

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    90/259

    Shellm

    odelvsreality

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia50

    checkthes

    e

    stressesas

    well!

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    91/259

    Fatiguestreng

    th

    N=C'V-m

    Openingand

    closingi.c.w.

    windgoverning

    n=310000

    cycles

    n/N1designmodification

    checkconse

    quences:update

    model

    iterativeprocess

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia52

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    93/259

    Wishfu

    lthinking

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    94/259

    Thiswouldbe

    nice

    automatedd

    eterminationofs

    tressrange'V

    cyclecounte

    rbasedonsucce

    ssiveloadcases

    resultsinshiftedsection(e.g.fromcenterline

    toweldtoe)

    automatedfatigueverification

    basematerial

    VmaxandVmin

    Stren

    gthparsffatandm

    Resu

    lt:n/N

    alongwe

    lds

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia54

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    95/259

    Thiswouldbe

    nice

    automatedfatigueverification

    alongwe

    lds

    weld

    modelledasshe

    ll-interface(alreadypresentinDIANA)

    detailcategoryasmaterialparameter

    stresscomponentsno

    rmalandtangentialtoweld

    result:n/N

    DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

    Dia55

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    96/259

    Imagine

    theresult

    Dia56DianaUserMeeting|April25/2

    6

    2013|ARCADIS2013

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    97/259

    Study of the behaviour of reinforced concrete

    slabs subjected to concentrated loads near

    supports

    B. BELLETTI*, C. DAMONI*, M.A.N. HENDRIKS #

    * University of Parma, Italy + Delft University of Technology,The Netherlands

    #Norwegian University of Science and Technology,Norway

    8th InternationalDIANA Users Meeting

    25-26 April 2013

    Chalmers University of TechnologyGothenburg - Sweden

    OUTLINES

    Background and aim of the research

    Cases studies analyzed: experimental program

    Finite element model

    Evaluation of the carrying capacity of the RC slabs analyzed:

    Final remarks

    One way shear resistance

    (Model Code 2010)

    Punching resistance

    (Eurocode2, Regans formulation, CSCT )

    Bending resistance

    (Yield line theory)

    Nonlinear finite element analyses

    -Sensitivity study

    -Levels of Approximation Model Code 2010

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    98/259

    The Dutch Ministry of Infrastructure and the Environment initiated a

    project to re-evaluate the carrying capacity of existing bridges andviaducts

    - increased traffic in the last years- reallocation of emercency lanes to traffic lanes- need for additional traffic lanes

    JoostWalraven Sal, 25 October 2010.

    Why

    For a certain amount of Dutch bridges andother infrastructures the safety verificationsare not satisfied if the usual analyticalprocedures are adopted

    The Dutch Ministry of Infrastructure and theEnvironment proposed to make a structuralassessment ofexisting structures throughthe use of nonlinear finite elementanalyses

    Final release of a document containing guidelines for nonlinear finiteelement (NLFE) analyses of reinforced and prestressed concrete

    elements

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    99/259

    NLFEA represent a powerful instrument for structural assessment

    The results of NLFEA strongly depend on the modelling choices

    big scatter in the results for the same structure analyzed by several

    analysts

    Guidelines for NLFEA to be followed by all users in order to obtain

    reliable and safe results is of big importance

    The project well matches with the philosphy of the Model Code 2010:

    Carrying capacity of concrete elements evaluated with different Levels of

    Approximation adopting analytical calculations and NLFE analyses: the

    accuracy of the results increases if NLFE analyses are adopted.

    The carrying capacity of 3 RC slabs tested at TuDelft has been evaluated with:-NLFEA (following the Dutch guidelines)-anal tical calculations

    LevelI

    LevelII

    LevelIII

    LevelIV

    complexity, effort, level of detail

    precisio

    nofevaluation

    Analytical procedures for the evaluation of thedesign resistance

    NLFE analyses for the structural behavior prediction

    The design resistance is obtained byapplying Safety Format Methods

    -9

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

    [N/mm2]

    [-]

    Simple and continuous support

    S1T1:10mmfeltP50-8mmplywood

    S1T2:10mmfeltP50-8mmplyw ood

    S4T1:15mmfeltN100-8mmplywood

    -9

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

    [N/mm2]

    [-]

    Support 3

    S1T1:5mmfelt P50

    S1T2:5mmfelt P50

    S4T1:5mmfelt P50

    Felt and plywood

    5000

    600

    650

    600

    650

    1250

    1250

    Simple support

    Continuoussupport

    Dywidag bars(Support 3)

    Lantsoght, E., 2012. Shear tests ofReinforced Concrete SlabsExperimental data of Undamaged Slabs06-01-2012. Technical Report, Stevinlaboratory, Delft University ofTechnology.

    18 slabs tested 2500 x 5000 x 300 mm 3 chosen as cases studies: S1T1, S1T2, S4T1

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    100/259

    S1T1

    100

    250

    300

    20/12010/240

    10/240

    10/240

    20/12020/120

    A-A

    B-B

    50

    10/240 10/240

    20/120

    265300

    20/120

    20/120 10/240

    265300

    50

    1 sheet 200 x 5 mm

    felt P50

    200 x 200 x10 mm

    steel profile

    P

    3DYWIDAGBARS36300

    600 2700 900 500

    200 x 8 mmplywood

    2 layers of 100 x 5 mmfelt P50

    HEM 300

    Bottom side

    A-A B-B

    5000

    2500

    200

    200

    F pre-stressed dywidag =3*15

    kN

    S1T2

    100

    250

    300

    20/12010/240

    10/240

    10/240

    20/12020/120

    A-A

    B-B

    50

    10/240 10/240

    20/120

    265300

    20/120

    20/120 10/240

    265300

    50

    P

    3DYWIDAGBARS36300

    2700 900 500600

    1 sheet 200 x 5 mm

    felt P50

    200 x 200 x10 mm

    steel profile

    200 x 8 mmplywood

    2 layers of 100 x 5 mmfelt P50

    HEM 300

    Bottom side

    A-A B-B

    5000

    2500

    200

    200

    F pre-stressed dywidag =3*15

    kN

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    101/259

    S4T1Bottom sideA-A B-B

    5000

    2500

    300

    300

    250300

    20/12010/125

    10/24010/25010/25010/125

    20/12010/12510/240 10/25010/25010/125

    125

    A-A

    B-B

    10/240 10/250

    20/120

    20/120

    20/120 10/125

    300

    265

    50

    265300

    50

    P

    3DYWIDAGBARS36300

    600 2700 900 500

    1 sheet 200 x 5 mm

    felt P50

    200 x 200 x10 mm

    steel profile

    200 x 8 mmplywood

    3 layers of 100 x 5 mmfelt N100

    HEM 300

    F pre-stressed dywidag =3*15

    kN

    CRACK PATTERN AT FAILURE, FAILURE MODE AND ULTIMATELOAD

    S1T1 S1T2 S4T1

    Ec: 30910 Mpa

    fc: 29.7 Mpa

    ft: 2.8 MPa

    Failure: one-way shearPu,exp : 954 kN

    Ec: 30910 Mpa

    fc: 29.7 Mpa

    ft: 2.8 MPa

    Failure: one-way shearPu,exp : 1023 kN

    Ec: 34930 Mpa

    fc: 42.9 Mpa

    ft: 3.8 MPa

    Failure: one-way shearPu,exp : 1160 kN

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    102/259

    Analytical calculation

    Numerical procedure

    One-way shear

    resistance

    Model Code 2010Level I- II Approximation

    Bending resistance Yield line method

    Safety format methods for NLFEanalysesin order to reduce the peak load values toobtain the DESIGN SHEARRESISTANCE

    Punching resistanceEurocode 2

    Regans formulation

    Critical Shear Crack Theory (Muttoni)

    NLFE analyses Model Code 2010Level IV Approximation

    Sensitivity study

    -shell / brick model-parametric study on sensitiveparameters of the crack model

    BEFORE STARTING WITH THE MODELLING IT IS IMPORTANT TO FEEL, THANK TO CIVIL

    ENGINEERING KNOWLEDGE, WHICH SHOULD BE THE STRUCTURAL BEHAVIOUR

    RC slabs treated as beams without shear reinforcement with an effective widthbeff

    45 4

    5

    1500

    45

    1288

    1500

    S1T1 S1T2 S4T1

    Analytical calculation: One-way shear resistance

    Level I and II Approximation provided by Model Code 2010

    eff

    c

    ck

    vc,Rd zbf

    kV

    =

    -

    +

    +=

    +=

    zk1000

    1300

    15001

    4.0k

    z25.11000

    180k

    dgx

    IILevel,v

    ILevel,v

    += Ed

    l

    Ed

    ss

    x Vz

    M

    AE2

    1

    Design shearresistance

    75.0

    d16

    32k

    gdg

    +=

    Model Code 2010

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    103/259

    Analytical calculation: Punching resistance

    Eurocode 2 effRdcRdc duvV =

    effd4b2a2u ++=

    ( ) 3/1ckc,RdRdc f100kCv =

    cc,Rd /18.0C =

    effd

    2001k +=

    tl =

    Regan 2R1RR PPP +=

    tt2

    ll1

    d5.1bd5.1u

    d5.1ad5.1u

    ++=

    ++=

    Eurocode 2a

    b

    1.5dl

    1.5dt

    Regan

    1.5dt

    1.5dl

    4

    lsl

    d

    500=

    4

    t

    std

    500=

    3cklcl f10027.0v =

    3cktct f10027.0v =

    t1ctstl2clsl1R duv2duvP +=

    l2clsl

    v

    l2R duv

    a

    d2P =

    controlperimeter

    Analytical calculation: Punching resistance

    Critical Shear Crack Theory(CSCT)

    dg

    c

    R

    c

    R

    kd125.04.0

    1

    du

    V

    +=

    =

    Failure criterion

    rotation of the slab chosen as controlparameter since the opening of the criticalshear crack reduces the strength of theinclined concrete compression strut thatcarries shear and eventually leads to thepunching shear failure

    Muttoni A. (2008) Punching ShearStrength of Reinforced Concrete Slabswithout Transverse Reinforcement, ACIStructural Journal, V. 105, No. 4, 440-450.

    S1T1

    1. An linear elastic (LE) finite element analysis (mesh with shell elements) carried out to

    determine the maximum shear force vmax,el and the control perimeter u;

    2. a NLFE analysis (mesh with shell elements) carried out to determine the rotation ;

    3. from the intersection between the results of NLFE analysis and the failure criterion the

    failure load is determined.

    MAIN STEPS FOLLOWED:

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    104/259

    XZ

    Analytical calculation: Punching resistanceCSCT

    S1T1

    1. Calculation of maximum shear force vmax,el and control perimeteru

    2D finite element model

    (Software used: DIANA)

    m257.0ddd yx ==

    m/N3.759257.02950v elmax, ==

    m32.1

    3.759

    1000

    v

    Qu

    elmax,

    ===

    Principal shear stress

    detected from LE analysis:

    Control perimeter u:

    Applied load in LE analysis

    Analytical calculation: Punching resistance CSCTS1T1

    2. Evaluation of rotation

    -0.004

    -0.002

    0.000

    0.002

    0.004

    0.006

    0.008

    0.010

    0.012

    0 1 2 3 4 5

    Rotatio

    ny

    Distance [m]

    P = 500 kN

    P=750 kN

    P=1000 kN

    Point1

    Point2

    Point 1 Point 2

    Rotation = difference between the rotations of

    the slab at two points: Point 1 and Point 2.

    Point 1: located at the centroid of the applied

    load.

    Point 2: chosen so that the maximal relative

    rotation is obtained .

    NLFLE analysis

    is not the same at each load step

    Arbitarly chosen max at P=750 kN

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    105/259

    Analytical calculation: Punching resistance CSCTS1T1

    3. Determination of failure load

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 5 10 15 20

    /c

    d kdg

    Failure criterion

    NLFEA results

    Failure load P= 793 kN

    )63.12571320(/P

    )f3.0du(/P/ cc

    =

    =

    )kd125.04.0(/1/ dgcR +=

    Pfailure=793 kN

    NLFE analysis

    Failure criterion

    Analytical calculation: Bending resistance Yield line method

    a b

    c

    c

    a b

    c

    c

    a b

    c

    c

    xl xr

    y

    y

    Collapse mechanism 1

    y

    y

    Collapse mechanism 2

    xl xr

    Collapse mechanism 3

    xr

    Collapse mechanism 1

    Collapse mechanism 2

    Collapse mechanism 3

    ==

    ++++= ++

    1cve

    yyyyxrxxrxxlxVi

    PL

    bm2am2c2mc2mc2mL

    ==

    +++= +

    2cve

    yyyyxrxxrxVi

    PL

    bm2am2c2mc2mL

    ==

    ++= ++

    3cve

    xrxxrxxlxVi

    PL

    c2mc2mc2mL

    Pc1=2198.22kN

    Pc2=790.7 kN

    Pc3=1970.5 kN

    S1T1

    Yield pattern of collapsemechanism 2 in agreement withexperimental crack patetrn

    Different collapse mechanisms considered, according to the kinematic theorem of limit analysis

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    106/259

    Analytical results

    Ultimate load P values [kN]

    Minimum load value detected analytically: one-way shear

    Measured mechanicalproperties used in calculations

    (c=1, s=1)

    Some remarks: it has been assumed a direct correspondance between minimum strength

    (analytically obtained) and actual failure mode.

    Fpe

    FpeFpe

    uz

    Software used: DIANA 9.4

    MESH

    BOUNDARY CONDITIONS

    CONVERGENCE

    CRITERION:

    displacement control

    Newton Raphson based on

    force (10-2) and energy (10-3)

    Model with

    brick elements

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    107/259

    Software used: DIANA 9.4

    MESH

    BOUNDARY CONDITIONS

    CONVERGENCE

    CRITERION:

    displacement control

    Newton Raphson based on

    force (10-2) and energy (10-3)

    Model with shell

    elementsS1T1

    4_NL

    XYZ Fpe

    Fpe

    Fpe

    ( )( ) ( )( )

    ( )( ) ( )( )

    nstt1ins

    tt1i

    211

    1

    211

    211211

    1

    ~

    +

    +

    +

    +

    = ++++

    Total strain crack models

    Multi-axial stress state:

    Reduction of fc due to lateral cracking-(Vecchio, F.J., Collins, M.P.: Compression response of

    cracked reinforced concrete. Journal StructuralEngineering, 1993, 119, 3590^3610)

    Constitutive laws

    up

    Rotating

    Fixed

    =

    nssnns

    s

    snns

    sns

    snns

    nsn

    snns

    n

    G

    EE

    EE

    D

    00

    011

    011

    =shear retention factor (variable)(linearly decreasing from 1 to 0 as a

    function ofEand n

    snns, =Poissons ratio

    (variable)

    GGns =

    Gc=250Gf(Nakamura, H., Higai, T.,2001. CompressiveFracture Energy andFracture Zone Length ofConcrete. Modeling ofinelastic behaviour of RCstructures under seismicloads, P.Benson ShingTada-aki Tanabe (eds))

    Gf=73fc0.18 (Model Code 2010)

    For 3D modelling with brick elements total strain crack models implemented in standard software are

    not powerful as in 2D modelling!

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    108/259

    Nonlinear finite element analyses 2D modelS1T1

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    0 10 20 30 40

    Load(kN)

    deflection (mm)

    Shell model

    Experimental

    Brick model

    Yielding bottom f20

    Yielding BOTF10T

    Crushing of concrete

    Punching (Regan)

    One-way shear Model Code 2010 (Level II)

    Yielding bottom 20 l

    Punching (Eurocode 2)

    Yield lineCSCT

    S1T1

    As expected the shellmodel is not able toproperly describe the shearfailure of the slab andsubstantiallyoverestimates thecapacity of the slab

    (first) surfaceinonmodel set:.681E-2.518E-6

    tsshown:edtonodes

    .588E-

    .8E-3

    0

    0. 5

    1

    1. 5

    2

    2. 5

    3

    0 0.0 0 0 5 0. 0 01 0 .0 0 1 5 0. 0 02 0 .0025

    [N

    /mm

    2]

    0

    0 .5

    1

    1 .5

    2

    2 .5

    3

    0 0 .00 0 5 0.0 01 0 .0 0 1 5 0 .0 0 2 0 . 0 0 25

    [

    N/mm

    2]

    The other slabs (S1T2and S4T1) have been

    analyzed only with 3Dmodels

    Nonlinear finite element analyses

    0

    400

    800

    1200

    1600

    0 5 10 15 20 25 30

    Load[kN]

    Deflection [mm]

    ANALYSIS B

    ANALYSIS C

    ANALYSIS D

    ANALYSIS E

    ANALYSIS F

    Experimental

    S1T1

    0

    400

    800

    1200

    1600

    0 5 10 15 20 25 30

    Load[kN]

    Deflection [mm]

    ANALYSIS B

    ANALYSIS C

    ANALYSIS D

    ANALYSIS E

    ANALYSIS F

    Experimental

    S1T2

    0

    400

    800

    1200

    1600

    0 5 10 15 20 25 30

    Load[kN]

    Deflection [mm]

    ANALYSIS B

    ANALYSIS C

    ANALYSIS E

    Experimental

    ANALYSIS A

    S4T1

    Parametric study: combined the main sensitive parameters of the crack model

    ANALYSIS B =analysis that better fit with experiments for all slabsChosen as reference for the application of safety format methods

    Model with brick elements

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    109/259

    0

    0.5

    1

    1.5

    2

    2.5

    0 .0 0 00 0 .0 0 05 0 .0 01 0 0 .0 0 15 0 .0 02 0

    [N/mm2]

    S4T1

    0

    400

    800

    1200

    1600

    0 5 10 15 20 25 30

    Load[kN]

    Deflection [mm]

    ANALYSISB

    Experimental

    S4T1

    Pmax=883 kN

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0. 0005 0. 001 0. 0015 0. 002 0. 0025

    [N/mm2]

    S1T2

    0

    400

    800

    1200

    1600

    0 5 10 15 20 25

    Load[kN]

    Deflection[mm]

    ANALYSISB

    Experimental

    S1T2 Pmax=1020 kN

    Nonlinear finite element analyses

    ANALYSIS B: crack pattern at failure

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0 .0 00 5 0 .0 01 0 .0 01 5 0 .0 02 0 .0 02 5

    [N/mm

    2]

    One-way shear failure(as detected in

    experiments)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0 .0 00 5 0 .0 01 0 .0 01 5 0 .0 0 2 0 . 00 2 5

    [N/mm2]

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0 . 0 00 5 0 . 00 1 0 . 00 1 5 0 . 0 0 2 0 . 0 0 2 5

    [N/mm

    2]

    S1T1

    0

    400

    800

    1200

    1600

    0 5 10 15 20 25 30

    Load[kN]

    Deflection [mm]

    ANALYSISB

    Experimental

    S1T1

    Pmax=907 kN

    a b

    c

    c

    a b

    c

    c

    a b

    c

    c

    xl xr

    y

    y

    Collapse mechanism 1

    y

    y

    Collapse mechanism 2

    xl xr

    Collapse mechanism 3

    xr

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0 .0 00 5 0 .0 01 0 .0 01 5 0 .0 02 0 .0 02 5

    [N/mm2]

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0 . 00 0 5 0 . 0 0 1 0 . 0 0 1 5 0 . 0 0 2 0 . 0 0 2 5

    [N/mm

    2]

    S1T1 Strain values in the 10 transversal bars atthe bottom of the slab at peak load

    The failure load strongly depends on boundary condition modelling (e.g. interface elements

    stiffness, etc.). For real cases it could be quite difficult to have these data.

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    110/259

    Effective width beffused for the shear strength calculatiuon.

    45 4

    5

    1500

    45

    1288

    1500

    S1T1 S1T2 S4T1

    Effective width as a resul from NLFEA, as used in the analytical calculations and as

    observed in the experiments

    Overall results

    Ultimate load P values [kN]

    Minimum load value detected analytically: one-way shear

    The failure mode detected analytically and from NLFE analyses is

    consistent with the experimental failure mode

    Measured mechanicalproperties used in calculations

    (c=1, s=1)

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    111/259

    Design shear resistance: Levels of Approximation Model Code 2010

    Evaluated the DESIGN SHEAR RESISTANCE of the slabs applying the Levels ofApproximation:

    GRF

    PF

    ECOV

    Mean mechanical properties as input data in NLFEA

    Design mechanical properties as input data in NLFEA

    Mean mechanical properties +Characteristic mechanical properties

    as input data in NLFEA

    3 SAFETY FORMAT METHODS proposed by MC2010 to reduce the peakload obtained from NLFEA in order to determine the design shear resistance

    Analytically: Level I-IIApproximation

    Design mechanical properties used incalculations(c=1.5, s=1.15)

    From NLFE analysis: Level IV Approximation

    1. Partial Factor Method (PF)2. Global Resistance Factor Method (GRF)

    3. Estimation of Coefficient of Variation Method (ECOV)

    ( ),...fRR dd =

    ( ) ( ) ( )

    27.1

    ,...fR

    06.12.1

    ,...fR,...fRR mm

    RdR

    md =

    =

    =

    Peak load obtained from NLFEA

    Peak load obtained from NLFEA

    ( ) ( )

    RdR

    md

    kkmm

    RR

    ;,...fRR,,...fRR

    =

    == ( )

    ( )

    =

    =

    km

    RRR

    RRln65.1

    18.38.0exp

    Vexp

    Peak loads obtained from NLFEA

    Design shear resistance: Levels of Approximation: overall

    results

    Model Code

    2010

    LevelI Level II Level IV

    PFLevelIV

    GRFLevelIV

    ECOVAnalysis B Exp

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Pu/Pu,ex

    p[%]

    S1T1

    Level I LevelII LevelIV

    PF

    Level IV

    GRF

    LevelIV

    ECOVAnalysis B Exp

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Pu/Pu,e

    xp[%]

    S1T2

    LevelI Level II LevelIV

    PF

    LevelIV

    GRFLevelIV

    ECOVAnalysis B Exp

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Pu/Pu

    ,exp[%]

    S4T1

    Level I- II Level IV (PF- GRF- ECOV) Analysis B (no safety format) Experimental (100%)

    Pu/Pexp [%]

    Good agreement with Model Code 2010 philosophy:

    by increasing the Level of Approximation the design resistance

    increases

    From Level II to Level IV: Increase ranging from 69% to 87

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    112/259

    Three slabs subjected to concentrated loads near supports have been analyzed.The carrying capacity of each slab has been determined with NLFE analyses and

    with analytical procedures.

    For all slabs the lowest resistance value calculated analytically is the one-way shear

    resistance, in accordance to experimental test observations.

    However, S1T1 and S1T2 also showed a fully developed flexural cracking pattern at

    failure. For S1T1 the critical collapse mechanism calculated with the yield line

    method is in agreement with the crack pattern observed in experimental test at

    failure.

    The results ofNLFEA strongly depend on the modeling choices made by the analyst,

    especially with regards of relatively simple crack models.

    The availability ofguidelines on how to properly perform NLFE analyses is of big help

    for analysts.

    The results obtained well fit with the philosophy of the Model Code 2010: by

    increasing the approximation level the shear resistance of the slabs increases.

    Once the finite element model is properly validated, the structural assessment carried out

    with multiple approximation levels can be of benefit for intervention plans on existing

    structures (e.g. maintenance, repair, demolition etc.)

    The authors acknowledge the Dutch Ministry of

    Transport, Public Works and Water Management

    for supporting this research.

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    113/259

    ^ /EhD

    DK>>/E'K&KE,s/KhZK&EdhZ>>zKZZKZ/E&KZDEd/E

    KEZd^dZhdhZ>DDZ^E^

    Dd

    '

    d'

    ^

    K

    >

    d

    d

    d

    E

    &

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    114/259

    ^

    d t

    ^

    '

    W

    W>

    ^

    ^

    ^

    ZE

    D

    ,

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    115/259

    ^

    d

    ^

    d

    /

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    116/259

    ^

    d

    ^

    d

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    117/259

    ^

    /

    Z^

    ^

    d &&

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    118/259

    ^

    ^

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    119/259

    ^

    & ^

    d>dZh

    ^

    d,

    d

    &YDD

    / d>/&

    ^

    & DW

    ^ K

    d

    &

    &/D D

    ^

    W

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    120/259

    ^

    DW

    &/

    &

    ,

    DW DW 'W 'E

    Z///

    Z/s

    Zs//

    y//

    y///

    &/

    ^

    DW

    ^

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    121/259

    ^

    Z&

    W

    ^

    Z

    &

    W

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    122/259

    ^

    D&

    ^

    D

    &

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    123/259

    ^

    W

    ^

    ,

    >

    D

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    124/259

    ^

    D

    D

    &

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    125/259

    7KHXVHRI',$1$

    IRUQRQOLQHDU)(DQDO\VLV

    LQWKHDGYDQFHGFRQFUHWH

    VWUXFWXUHVFRXUVHDW&KDOPHUV

    Mario PlosDivision of Structural EngineeringChalmers University of Technolog

    Sweden

    1RQOLQHDU)($RIFRQFUHWHVWUXFWXUHV

    FEM - Finite element method

    PU

    p, u

    x

    yxy

    Long tradition at Chalmers Today: engineering practice

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    126/259

    1RQOLQHDU)($RIFRQFUHWHVWUXFWXUHV

    FEM - Finite element method Fracture mechanics and bond modelling

    F

    L

    =f(w)

    w

    wwu

    FsFs +dFsFs

    tltn

    FsFs +dFsFs

    vidhftning

    utdragsbrott

    glidning

    1RQOLQHDU)($RIFRQFUHWHVWUXFWXUHV

    FEM - Finite element method Fracture mechanics and bond modelling Non-linear analysis of concrete structures

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    127/259

    1RQOLQHDU)($RIFRQFUHWHVWUXFWXUHV

    FEM - Finite element method Fracture mechanics and bond modelling Non-linear analysis of concrete structures Important part of our research methodology

    0DVWHUSURJUDPPH

    Structural Engineering and Building Technology

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    128/259

    0DVWHUSURJUDPPH

    Structural Engineering and Building Technology

    From learning outcomes:

    Understanding of structural behaviour

    Ability to do structural idealisation and to chooseappropriate models

    Ability to work methodically with modern tools

    Structuralsystems

    FEM basics* Timber

    engg.

    FEMstructures *

    Geo-technics*

    Structura

    l

    concrete

    Structuraldesign *

    Concrete

    structures

    Steel

    structur

    e

    Structuraldynamics*

    Building technologyand services engineering

    Materialperformance

    Heat, moistureengineering

    Sustainable building- competition*

    Sound &vibration*

    Build. acoust &commun noice*

    Buildingphysics

    Indoor climateand HVAC

    Masters Thesis

    0DVWHUSURJUDPPH

    Structural Engineering and Building Technology

    FEM in education:

    0

    10

    20

    30

    40

    50

    60

    0 50 100 150 200

    q [kN/m]

    [mm]

    a

    b

    c

    d e

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    129/259

    7KHFRXUVH&RQFUHWH6WUXFWXUHV

    Final course in master programme

    Preparing for: Long-lasting career as practising Structural Engineer Master thesis and research career

    Contents: Continuous beams and columns

    Finite element analysis of concrete structures Restraint cracking and time-dependent deformations

    7KHFRXUVH&RQFUHWH6WUXFWXUHV

    Finite element analysis of concrete structures: Lectures and group exercises FEM project in DIANA

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    130/259

    7KHFRXUVH&RQFUHWH6WUXFWXUHV

    Learning outcome

    Use of FEA in different stages(from conceptual design to assessment)

    To choose suitable element types, BC:s and loading

    Previous course: To design reinforcement from linear analysis Basic theory and experience in nonlinear analyses-Nonlinear concrete material, localisation-Modelling of reinforcement, how different choices affectthe results

    -Understanding and interpretation of analysis results

    7KHFRXUVH&RQFUHWH6WUXFWXUHV

    Lectures and exercises

    Concrete cracking and concrete modelingReinforcementconcrete interaction

    Modeling on various levelsNon-linear FE analysisMaterial response in 3DFEA in practice

    0

    100

    200

    300

    400

    500

    600

    700

    0 0.5 1 1.5 2

    2b

    2a

    M[kNm]

    [mm]

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    131/259

    )(0SURMHFWLQ',$1$DQG);

    qk

    gk

    z

    z^

    z&

    &&

    Reinforce-

    mentM

    M

    )(0SURMHFWLQ',$1$DQG);

    Part 1 Analysis of continuous beam

    Leaflet to followWell defined analysis

    -Beam elements

    -Embedded reinforcement-Total Strain Crack Modelwith rotating cracks

    Focus on:-Understand what I do-Verification-Interpretation of results

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    132/259

    )(0SURMHFWLQ',$1$DQG);

    Part 2 Group specific investigation

    Independent workOpen problem-Find relevant information-Comprehend-Model and analysis ontheir own

    Focus on:-Learn independently-Teach student colleagues-Learn from each other

    Boundary conditions

    Frame joints

    Safety evaluation

    Shrinkage

    Prestress

    Creep

    Temperature effects

    Slab modelling

    Loading

    Material models

    )(0SURMHFWLQ',$1$DQG);

    Our experience

    Using Diana and FX+ works in generalMore user-friendly pre- and postprocessor desirable

    -improved integration: FX+, MeshEdit & Diana solver

    Great preparation for master thesis!

    The analysis of continuous beam:-Fits well within the course-Results hard to comprehend-Not full benefit of FE posibility-Continuum analysis would fitbetter in the MP progression

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    133/259

    )(0SURMHFWLQ',$1$DQG);

    Discussion

    How can we develop the project?How can we improve our education regarding FEA of concretestructures?

    7KDQN\RX

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    134/259

    &KDOOHQJH WKHIXWXUH

    'HOIW8QLYHUVLW\ RI7HFKQRORJ\

    )(0DQDO\VLVRIUHLQIRUFHGFRQFUHWHGHFNVZLWKFRPSUHVVLYHPHPEUDQHDFWLRQ

    &RUYDQGHU9HHQ'HOIW8QLYHUVLW\ RI7HFKQRORJ\

    *HUW-DQ%DNNHU:LWWHYHHQ%RV

    Shear in reinforced concrete slabs

    2YHUYLHZ

    ,QWURGXFWLRQ

    3UREOHPGHILQLWLRQ

    FRPSUHVVLYHPHPEUDQHDFWLRQ

    2YHUYLHZRIILQLWHHOHPHQWPRGHOV )LQLWHHOHPHQWPRGHOVLQFOXGLQJFRPSUHVVLYHPHPEUDQHDFWLRQ

    3UDFWLFDOH[DPSOH

    &RQFOXVLRQVUHFRPPHQGDWLRQV

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    135/259

    Shear in reinforced concrete slabs

    7UDIILFORDGLQJSDVWDQGSUHVHQW(&

    Lane 1

    F = 4 x 150 kN

    Lane 2

    F = 4 x 100 kN

    Lane 3

    F = 4 x 50 kN

    Left over area

    side view

    top view configuration 1

    Lane 1

    q = 0,8 x 4 x DAF k N/m2F = 12 x 0,8 x 50 x DAF kN

    Lane 3

    Left over area

    top view configuration 2

    LOAD MODEL ACCORDING TO VOSB 1963 LOAD MODEL ACC ORDING TO NEN-EN 1991-2

    Lane 1

    q = 4 x DAF kN/m2

    Lane 2

    q = 4 x DAF kN/m2F = 12 x 50 x DAF kN

    Lane 3

    Left over area

    side view

    top view configuration 1

    Lane 2

    q = 0,8 x 4 x DAF k N/m2F = 12 x 0,8 x 50 x DAF kN

    q = 0,8 x 4 x DAF k N/m2

    q = 0,8 x 4 x DAF k N/m2

    q = 4 x DAF kN/m2

    q = 4 x DAF kN/m2

    DAF stands for

    Dynamic Amplication Factorsquare 400 x 400 mm

    top view configuration 2

    for local failure mode

    2m

    2m

    0,5m

    0,5m 0,

    5m

    1 m 4 m

    rectangle 320 x 250 mm

    1,2 m

    q = 1 9 kN/m2

    q = 2 2,5 kN/m2

    q = 2 2,5 kN/m2

    q = 2 2,5 kN/m2

    rectangle 350 x 600 mm

    2 = 1,0 for less then 3 lanes2 = 1,4 for 3 or more lanes

    F = 2 x 200 kN

    1 = 1,0 for less then 3 lanes1 = 1,15 for 3 or more lanes

    Shear in reinforced concrete slabs

    %ULGJH'HFNWKLFNQHVVSDVWDQGSUHVHQW

    10-150

    12-150

    1200

    160

    build in the 70's

    12001200

    top layer

    compression layer

    formwork

    edge beam

    in-situ concrete

    1 2 - 1 5 0

    1 6 - 1 0 0

    1 2 0 0

    230

    n e w t o b u i ld b r i d g e s

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    136/259

    Shear in reinforced concrete slabs

    &RPSUHVVLYH PHPEUDQH DFWLRQ &0$

    DOORZHG LQ5(,1)25&(''HFNV&DQDGLDQ+LJKZD\ %ULGJH'HVLJQ&RGH

    8.+LJKZD\ $JHQF\ 6WDQGDUG%'

    1HZ=HDODQG

    tensile membrane

    actionaction

    compressive membrane

    bending action

    central deflection

    applie

    dloa

    ding

    VWUHQJWK LQFUHDVH E\ FRPSUHVVLYHPHPEUDQH DFWLRQ

    Shear in reinforced concrete slabs

    3DUWO\KRUL]RQWDOUHVWUDLQHGPRGHO

    3DUWO\ UHVWUDLQHG HIIHFWUHLQIRUFHG WUDQVYHUVH

    EHDPV

    1RUHVWUDLQ IUHH

    )XOO\ UHVWUDLQHG HIIHFWWUDQVYHUVHSUHVWUHVVLQJ

    DQGEHDPV

    12 L

    12 L

    k k

    k = 0

    elongation of the slab

    k = infinite

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    137/259

    Shear in reinforced concrete slabs

    9DULDWLRQRI3XQFKLQJORDGZLWKUHLQIRUFHPHQWUDWLR

    VFDOH%DWFKHORU HWDO

    Shear in reinforced concrete slabs

    2YHUYLHZRIILQLWHHOHPHQWPRGHOV

    /LQHDUHODVWLFEHKDYLRU

    &RPSDULVRQPRGHOV

    1RQOLQHDUEHKDYLRU

    7KHPRGHOPXVWEHDQRQOLQHDUPRGHO

    &UDFNLQJRIWKHFRQFUHWHLVLPSRUWDQW

    3ODVWLFLW\RIVWHHODQGFRQFUHWH

    6RIWHQLQJFRQFUHWH

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    138/259

    Shear in reinforced concrete slabs

    'EHDPPRGHO/%(1

    L

    X

    Y

    flexural reinforcementdistributed loadshear reinforcement (if needed)

    0,5h-d'

    L7BEN beam elements

    Shear in reinforced concrete slabs

    'SODQHVWUHVVPRGHO&40

    0,5L

    symmetryaxes

    flexural reinforment

    shear reinforcment (if needed)distributed load

    X

    Y

    CQ16M plane stresselements

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    139/259

    Shear in reinforced concrete slabs

    'FXUYHGVKHOOPRGHO&46

    Y

    X

    Z

    0,5L

    0,5b

    0,5h-d'

    shear reinforcement (if needed)

    flexural reinforcement

    distibuted load

    symmetryaxes

    symme

    tryaxe

    s

    CQ40S curved shell elements

    Shear in reinforced concrete slabs

    'VROLGVPRGHO&+;

    symmetry

    axis

    symmetry

    axis

    Y

    X

    Z

    CHX60 solid elements

    flexural reinforcement

    distibuted load

    shear reinforcement (if needed)

    0,5L

    0,5bhd

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    140/259

    Shear in reinforced concrete slabs

    $[L V\PPHWULFPRGHO&4$

    y

    x z

    2D slice modeled in DIANA

    loaded area

    concrete slab

    reinforcement grid

    axi-symmetric model

    loadingreinforcement gridc

    entreoftheplate

    CQ16Aelements

    support

    Shear in reinforced concrete slabs

    &RPSDULVRQRIWKHPRGHOV

    inp ut graphical ou tpu t real ist ic mode l p un ch b eh av iour calculat io n time

    2D beam model ++ -- + irrelevant ++

    2D plane stress model + + + irrelevant +

    3D curved shell model o - + -- o

    3D solids model - ++ ++ o --

    axi-symmetric model+ + -* ++ +

    * : rectangular slabs cannot be modelled with this model

    )RUEHQGLQJIDLOXUHWKH'SODQHVWUHVVPRGHOLVWKHEHVW

    RSWLRQ

    )RUDFRPELQDWLRQRISXQFKLQJVKHDUDQGEHQGLQJIDLOXUHWKH

    D[L V\PPHWULFPRGHOLVWKHEHVWRSWLRQ

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    141/259

    Shear in reinforced concrete slabs

    0DWHULDOSURSHUWLHV

    7RWDOVWUDLQURWDWLQJFUDFNPRGHO

    %ULWWOHDQG+RUGLMN 7HQVLRQVRIWHQLQJ

    ,GHDOSODVWLFLQFRPSUHVVLRQ

    ,GHDOSODVWLFIRUUHLQIRUFHPHQW

    Shear in reinforced concrete slabs

    %HQGLQJIDLOXUHLQFOXGLQJ&0$

    )(0RGHO

    0,5L

    symmetryaxis

    flexural reinforment

    shear reinforcment (if needed)distributed load

    CQ16M plane stresselements

    y

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    142/259

    Shear in reinforced concrete slabs

    5HVXOWV)(PRGHOIOH[XUDOIDLOXUHZLWK&0$

    5HVXOWVDIIHFWHGE\VRIWHQLQJFKRLFH

    Shear in reinforced concrete slabs

    5HVXOWV)(PRGHOIOH[XUDOIDLOXUHZLWK&0$

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 1 1 2 2 3 3 4 4

    central deflection in mm

    loadin

    kN/m

    Finite element model

    Park's ultimate load

    Analytical ultimate

    load

    ,QFUHDVHRIFRPSUHVVLYH]RQH

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    143/259

    Shear in reinforced concrete slabs

    :KHHOORDGRQFRQFUHWHGHFN

    Shear in reinforced concrete slabs

    $[L V\PPHWULFPRGHOGLIIHUHQWVRIWHQLQJ

    DQR&0$

    E&0$UHVWUDLQHG

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    144/259

    Shear in reinforced concrete slabs

    $[L V\PPHWULFPRGHOSXQFKLQJVKHDU

    /2$'

    GHIOHFWLRQ

    &ODPSHGUHVWUDLQHGPRGHO

    %ULWWOHEHKDYLRXUIRUFHFRQWUROOHG

    Shear in reinforced concrete slabs

    3UHGLFWLRQV$[L V\PPHWULFPRGHO

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 0,1 0,2 0,3 0,4

    central deflection in mm

    loadinkN

    finite element model

    punch capacity according

    to the Dutch code

    predicted punch failure

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    145/259

    Shear in reinforced concrete slabs

    (QKDQFHPHQWUDWLR&0$ZLWKRXW&0$

    0

    1

    2

    3

    4

    5

    6

    0 0,2 0,4 0,6 0,8 1 1,2 1,4

    re i n forc e me nt ra t i o i n %finite element model

    0

    1

    2

    3

    4

    5

    6

    10 15 20 25 30 35 40 45 50 55 60

    fc u i n N / mm2 finite element model

    5HLQIRUFHPHQWUDWLR&RQFUHWHFRPSUHVVLYHVWUHQJWK03D

    Shear in reinforced concrete slabs

    (IIHFWERXQGDU\FRQGLWLRQUHVWUDLQHGIDFWRU

    cen

    treo

    fthep

    late

    loading

    nodes are tyed to have the same displacement in x-directionsprings to set the grade of lateral restrainedness

    reinforcement grids

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    146/259

    Shear in reinforced concrete slabs

    (IIHFWUHVWUDLQHGIDFWRURQXOWLPDWHORDG

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0,0

    E+00

    5,0

    E+05

    1,0

    E+06

    1,5

    E+06

    2,0

    E+06

    2,5

    E+06

    3,0

    E+06

    3,5

    E+06

    4,0

    E+06

    4,5

    E+06

    5,0

    E+06

    spring stiffness in N/mm

    ultimateloadinkN/m

    total horizontal restrained

    Finite lement model

    total horizontal restrained

    analytic solution

    tth

    Shear in reinforced concrete slabs

    3UDFWLFDOH[DPSOH

    160

    10 - 15012 - 150

    117

    1200

    fcu = 55 N/mm2fs = 350 N/mm2d = 117 mm

    600

    loaded area 600 x 350

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    147/259

    Shear in reinforced concrete slabs

    7UDGLWLRQDOFDOFXODWLRQQR&0$

    %HQGLQJ N1

    3XQFKLQJVKHDUIDLOXUH N1

    7KHZKHHOORDGFDSDFLW\SUHVFULEHGE\WKH'XWFK

    FRGHLV[N1

    7KHFRGHUHTXLUHPHQWLVQRWPHW

    Shear in reinforced concrete slabs

    &0$LQFOXGHG

    %HQGLQJ N1

    )LQLWHHOHPHQWPRGHO N1

    3XQFKLQJVKHDUIDLOXUH N1

    1RWHSXQFKLQJVKHDULVQRUPDOO\DOZD\VJRYHUQLQJEXWORDGHGDUHDLVUHODWLYHO\ODUJHFRPSDUHGWRVSDQ

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    148/259

    Shear in reinforced concrete slabs

    &RQFOXVLRQV ,IDFODPSHGFRQFUHWHVODELVODWHUDOUHVWUDLQHGFRPSUHVVLYHPHPEUDQH

    DFWLRQHQKDQFHVWKHEHDULQJFDSDFLW\

    $QRQOLQHDUILQLWHHOHPHQWPRGHOFDQSUHGLFWWKHEHDULQJFDSDFLW\

    LQFOXGLQJFRPSUHVVLYHPHPEUDQHDFWLRQ

    3DUWO\KRUL]RQWDOUHVWUDLQHGVWUXFWXUHVFDQDOVREHPRGHOHGE\DGMXVWLQJ

    WKHERXQGDU\FRQGLWLRQV

    8VLQJILQLWHHOHPHQWPRGHOVLWFDQEHVKRZQWKDWWKHGHFNVRI=,3JLUGHU

    EULGJHVFRPPRQO\IRXQGLQWKH1HWKHUODQGVFDQZLWKVWDQGWKHZKHHO

    ORDGVSUHVFULEHGE\WKHODWHVW(XURFRGHV

    &KRLFHRIWKHVRIWHQLQJFXUYHJUHDWO\DIIHFWWKHXOWLPDWHORDGFDOLEUDWLRQ

    RISDUDPHWHUVQHFHVVDU\

    Shear in reinforced concrete slabs

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    149/259

    Non-linear finite element analysis of steel

    fibre reinforced concrete in combination

    with conventional reinforcement

    David Fall and Karin Lundgren

    Chalmers University of Technology

    DIANA Users Meeting 2013 1/27

    Modeling of SFRC-beams

    Four point bending:

    6

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    150/259

    ModelingofSFRC-beams

    Fourpointbending:

    6

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    151/259

    ModelingofSFRC-beams

    Twodimensionalplain-stressmodel

    Deformationcontrolledphasedanalysis

    Reinforcementrepresentedbytrusselements

    Interfaceelements

    Smearedcrackapproach

    Rotatingcracks

    ModelingofSFRC-beamsDIANAUsersMeeting20134/27

    ModelingofSFRC-beams

    ModelingofSFRC-beamsDIANAUsersMeeting20135/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    152/259

    Materialinput

    Concreteintension

    012345Crackwidth,w[mm]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Stress[MPa]

    Vf=0.50%

    Vf=0.25%

    Vf=0%

    Reinforcement

    0.000.020.040.060.080.100.120.140.160.18Straini[-]

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    Stressis

    [MPa]

    6

    8

    MaterialinputDIANAUsersMeeting20136/27

    Materialinput

    Bondstressvs.slip

    sys4s3 36912Slip[mm]

    f,pl

    f

    y

    0

    4

    8

    12

    16

    20

    Bondstress[MPa]

    Originalmodel

    Engstrom

    MaterialinputDIANAUsersMeeting20137/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    153/259

    Materialinput

    Prioryielding:

    OriginalModified

    Vf=0.50%,applieddeformation2.7mm(prioryield.)

    MaterialinputDIANAUsersMeeting20138/27

    Materialinput

    Prioryielding:

    OriginalModified

    Afteryielding:

    Vf=0.50%,applieddeformation2.7mm(prioryield.)and14mm(afteryield.)

    MaterialinputDIANAUsersMeeting20138/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    154/259

    Results:Generalbehavior

    0510152025Deflection[mm]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    Load[kN]

    Experiment

    FE

    MC2010

    Vf=0%

    0510152025Deflection[mm]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    Load[kN]

    Experiment

    FE

    MC2010

    Vf=0.50%

    Load-deflection(mid-span)

    ResultsDIANAUsersMeeting20139/27

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201310/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    155/259

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201311/27

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201312/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    156/259

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201313/27

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201314/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    157/259

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201315/27

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201316/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    158/259

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201317/27

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201318/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    159/259

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201319/27

    Results:Vf=0.25%

    ResultsDIANAUsersMeeting201320/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    160/259

    Conclusions

    TheeffectofSFRC,seeninexperiments,canbeestimatedwithFE-analysis.

    ConclusionsDIANAUsersMeeting201321/27

    Conclusions

    TheeffectofSFRC,seeninexperiments,canbeestimatedwithFE-analysis.

    CrackpatternsagreewhencomparingexperimentsandFE-analyses.

    ConclusionsDIANAUsersMeeting201321/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    161/259

    Conclusions

    TheeffectofSFRC,seeninexperiments,canbeestimatedwithFE-analysis.

    CrackpatternsagreewhencomparingexperimentsandFE-analyses.

    Utilizingabond-stressmodelwherethebondstressisreducedpostyielding,resultedinmorelocalizedcrackpatterns.

    ConclusionsDIANAUsersMeeting201321/27

    Conclusions

    TheeffectofSFRC,seeninexperiments,canbeestimatedwithFE-analysis.

    CrackpatternsagreewhencomparingexperimentsandFE-analyses.

    Utilizingabond-stressmodelwherethebondstressisreducedpostyielding,resultedinmorelocalizedcrackpatterns.

    MC2010underestimatesthebeneficialeffectsfromsteelfibresforthesebeams.Theunderestimationincreaseswithincreasedfibre content.

    ConclusionsDIANAUsersMeeting201321/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    162/259

    Furtherwork

    FurtherworkDIANAUsersMeeting201322/27

    Furtherwork

    Spanlength,l=2.2m.Thickness,t=80mm.Deflectionmeasuredin28

    pointsontopsurfaceStraingaugesatsupportsfor

    measuringreactionforcesUnsymmetricreinforcement

    FurtherworkDIANAUsersMeeting201322/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    163/259

    Furtherwork

    Spanlength,l=2.2m.Thickness,t=80mm.Deflectionmeasuredin28

    pointsontopsurfaceStraingaugesatsupportsfor

    measuringreactionforcesUnsymmetricreinforcement

    #ReinforcementbarsSteelfibresTextile

    TypeCR36--TypeCFR360.5%-TypeFR3-0.5%-TypeBTRC3--BasaltTypeGTRC3--AR-Glass

    FurtherworkDIANAUsersMeeting201322/27

    Furtherwork

    FurtherworkDIANAUsersMeeting201323/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    164/259

    Furtherwork

    050100150

    0

    20

    40

    60

    80

    100

    Deflection[mm]

    Load

    [kN]

    Conv.+SFRCConv.SFRC

    FurtherworkDIANAUsersMeeting201324/27

    Furtherwork

    050100150

    0

    20

    40

    60

    80

    100

    Deflection[mm]

    Load

    [kN]

    Conv.+SFRCConv.SFRC

    FurtherworkDIANAUsersMeeting201324/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    165/259

    Furtherwork:Materialtesting

    Compressivetest

    RILEM-beams

    Uniaxialtensiontest

    Tensiontestofreinforcementbars

    FurtherworkDIANAUsersMeeting201325/27

    Furtherwork:Modelling

    Pre-testmodelsJiangpengShuandKamyabZandi

    Detailednon-linearsolidmodellingJiangpengShu

    ModellingoftextilereinforcedconcreteNatalieWilliamsPortalandKamyabZandi

    Non-linearshellmodellingMasterThesis

    PractitionersapproachMasterThesis

    ModellingofRILEM-beamsDavidFall

    FurtherworkDIANAUsersMeeting201326/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    166/259

    Projectpartners

    [email protected]

    ProjectpartnersDIANAUsersMeeting201327/27

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    167/259

    d

    1

    Structural appraisal existing box girders

    8th International DIANA Users Meeting, Gothenburg, April 25-26, 2013 Henco Burggraaf,TNO, The Netherlands

    Contents

    Introduction

    Linear 2.5D analysis

    Linear 3D analysis

    Non-linear 3D analysis

    Conclusions

    HencoBurggraaf Existing box girders

    2

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    168/259

    d

    Introduction

    2007: recognition of risk that concrete structures, designed before

    1974, may have insufficient shear capacity

    Dutch building codes:

    VB 74: reduction of shear strength due to higher steel qualities

    VBC 1990 + VBC 1995: further reduction of shear strength

    Lack of shear capacity may give a brittle failure mechanism, without

    warning

    HencoBurggraaf Existing box girders

    3

    Introduction

    Bridges in the Netherlands

    HencoBurggraaf Existing box girders

    4

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    169/259

    d

    Introduction

    Assessment of each concrete structure would require too much time

    How can the Dutch Ministry of Infrastructure and Environment

    guarantee the structural safety of their concrete structures?

    HencoBurggraaf Existing box girders

    5

    Approach

    Corporation between Dutch Ministry of Infrastructure and

    Environment, TU Delft, TNO and engineering companies

    Risk controlled and phased approach

    Quick Scans and qualitative classification

    Advanced analyses

    Fundamental approach

    Looking for evidence of hidden reserves

    Research outside the codes and on the edges of available knowledge

    HencoBurggraaf Existing box girders

    6

  • 7/27/2019 Gothenburg DIANA Users Meeting April 25-26 2013 Final-1

    170/259