graphene: electrons in the flatland antonio h. castro neto

27
Graphene: electrons in the flatland Antonio H. Castro Neto Seoul, September 2008

Upload: glynis

Post on 14-Jan-2016

31 views

Category:

Documents


3 download

DESCRIPTION

Graphene: electrons in the flatland Antonio H. Castro Neto. Seoul, September 2008. Disclaimer. Andre Geim. Philip Kim. Kostya Novoselov. IQHE measured. Graphene is discovered. AHCN, P. Guinea, N. Peres, K. Novoselov, A. Geim, Rev. Mod. Phys. (2008). A brief history of graphene. 5 m m. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Graphene: electrons in the flatland Antonio H. Castro Neto

Graphene: electrons in the flatland

Antonio H. Castro Neto

Seoul, September 2008

Page 2: Graphene: electrons in the flatland Antonio H. Castro Neto

Disclaimer

Graphene is discovered

IQHE measuredAndre Geim

Kostya Novoselov

Philip Kim

AHCN, P. Guinea, N. Peres, K. Novoselov,A. Geim, Rev. Mod. Phys. (2008)

Page 3: Graphene: electrons in the flatland Antonio H. Castro Neto

A brief history of graphene

Page 4: Graphene: electrons in the flatland Antonio H. Castro Neto

5 m

Page 5: Graphene: electrons in the flatland Antonio H. Castro Neto
Page 6: Graphene: electrons in the flatland Antonio H. Castro Neto

Plus some nanotechnology…

2m

SiO2

Si

Au contacts

graphite

optical image

SEM imagedesign contacts and mesa

Page 7: Graphene: electrons in the flatland Antonio H. Castro Neto

t ~ 2.7 eV

Some electronic properties of graphene

B

t’ ~ 0.1 eV

A

A

Unit cell Nearest neighborsNext Nearest neighbors

Page 8: Graphene: electrons in the flatland Antonio H. Castro Neto

In momentum space

300/2

3

0 with ),(

)(

2242

22

cta

v

mpvvmmpE

pvppvpE

F

FF

FyxF

Dirac Cone

Semi-Metal

“Ultra relativistic” Solid State at low speed of light

Page 9: Graphene: electrons in the flatland Antonio H. Castro Neto

Novoselov et al, Science 306, 666 (2004)

Page 10: Graphene: electrons in the flatland Antonio H. Castro Neto

Outline•Coulomb impurity in graphene Vitor M. Pereira, Johan Nilsson, AHCN Phys.Rev.Lett. 99, 166802 (2007); Vitor M. Pereira, Valeri Kotov, AHCN Phys. Rev. B 78, 085101 (2008).

•Anderson impurity in graphene Bruno Uchoa, Valeri Kotov, Nuno Peres, AHCN Phys. Rev. Lett. 101, 026805 (2008);

Bruno Uchoa, Chiung-Yuan Lin, Nuno Peres, AHCN

Phys.Rev.B 77, 035420 (2008).

Johan Nilsson

Bruno Uchoa

Vitor Pereira

Valeri Kotov

Nuno Peres

Page 11: Graphene: electrons in the flatland Antonio H. Castro Neto

Pereira et al., Phys.Rev.Lett. 99, 166802 (2007);

Page 12: Graphene: electrons in the flatland Antonio H. Castro Neto

3D Schroedinger l

Coupling

Page 13: Graphene: electrons in the flatland Antonio H. Castro Neto

UndercriticalSupercritical

Page 14: Graphene: electrons in the flatland Antonio H. Castro Neto
Page 15: Graphene: electrons in the flatland Antonio H. Castro Neto

Andrei’s group

Page 16: Graphene: electrons in the flatland Antonio H. Castro Neto
Page 17: Graphene: electrons in the flatland Antonio H. Castro Neto

HIC Neutron stars

Page 18: Graphene: electrons in the flatland Antonio H. Castro Neto
Page 19: Graphene: electrons in the flatland Antonio H. Castro Neto

LmvF

C

ar

a

t

aL

C

21

50

06.0

107

1 nm

Page 20: Graphene: electrons in the flatland Antonio H. Castro Neto

E

N(E)

0

U0

Anderson’s Impurity Model

T>TK

Page 21: Graphene: electrons in the flatland Antonio H. Castro Neto

00 00

Page 22: Graphene: electrons in the flatland Antonio H. Castro Neto

Non-interacting: U=0

Broadening

EnergyEnergy

0

V=0

R

Page 23: Graphene: electrons in the flatland Antonio H. Castro Neto

00

Mean-Field

Page 24: Graphene: electrons in the flatland Antonio H. Castro Neto

00

Page 25: Graphene: electrons in the flatland Antonio H. Castro Neto

The impurity moment can be switched on and off!

U = 1 eV

n_down

V=1eV, e0=0.2 eV

n_up

Page 26: Graphene: electrons in the flatland Antonio H. Castro Neto

U = 40 meV

U = 0.1 eV

Page 27: Graphene: electrons in the flatland Antonio H. Castro Neto

Conclusions

• Impurities in graphene behave in an unusual way when compared to normal metals and semiconductors.

• One can test theories of nuclear matter under extreme conditions.

• Control of the magnetic moment formation of transition metals using electric fields.