grasmannsdorf_workshop - composite simulation - 2013-09-25

33
Innovation Intelligence ® Workshop Composite Simulation Jan Grasmannsdorf Mittwoch, 25. September 2013

Upload: airbus1974

Post on 28-Nov-2015

20 views

Category:

Documents


1 download

TRANSCRIPT

Innovation Intelligence®

Workshop Composite Simulation

Jan Grasmannsdorf

Mittwoch, 25. September 2013

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Motivation for Simulation Driven Design

Detaillierung

Fertigung

Konstruktion &

Simulation

Konzept

Versuch

Innovation IntelligenceInnovation IntelligenceInnovation IntelligenceInnovation Intelligence

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Motivation Faserverstärkte Kunststoffe

• Metall hat in alle Richtungen dieselben Eigenschaften

• Struktur daher oft schwerer als benötigt

• Faserverstärkter Kunststoff kann “getunt” werden

• Material / Fasern liegen nur in Lastrichtung

• Großes Leichtbaupotential

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Motivation Faserverstärkte Kunststoffe

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Weitere Optimierungsdisziplinen

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Free Size Optimization Example: Bike Frame

http://venge.specialized.com

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Task: Find the optimum Plybook for a Plate

Fy = - 1000NFix

• Min. Mass

• Displacement

u < 0.6 mm

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Exercise 1: Composite Simulation Setup

• Please note that 2D – Shell Elements are used for this type of simulation

• Define / Review a material orientation (0°°°°layer) for your finite elements

Mesh � Assign � Element Material orientation

• Define / Review the Material Law MAT 8 for orthotropic behaviour

Materials � Create � Card Image MAT 8

• Define / Review the Property for Composite Elementes

Properties � Create � Properties � Card Image PCOMPP

• Define / Review the Ply Shapes for your property

Properties � Create � Plies � Card Image Ply

• Define / Review the Layer Sequence of your plies in a LAMINATE

Properties � Create � Laminates � Card Image STACK

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Exercise 1: Composite Simulation Setup

• Define a material orientation (0°°°°layer) for your finite elements

Mesh � Assign � Element Material orientation

1. Select Elements

2. Select System orOrientation Vector

3. Use „Assign“ or

„Review“

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Exercise 1: Composite Simulation Setup

• Review the Material Law MAT 8 for orthotropic behaviour in the material

browser � Right Click � Card Edit

Review the Material Values in

longitudinal, lateral and sheardirections

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Exercise 1: Composite Simulation Setup

• Review the Property PCOMPP in the property browser and the

correct assignment in the component browser

Review the Assignment of

property and material to the

elements of component 1

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Exercise 1: Composite Simulation Setup

• Review the Ply Shapes and Ply Stack Sequence using 3D visualization

+

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Exercise 1: Composite Simulation Setup

• To re-define plies and laminate sequence, edit the „ply“ and „Laminate“

from the model browser � right click on Ply or Laminate and Edit

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Herausforderung beim Entwurf von Compositebauteilen

Forderung: Beanspruchungsgerechte Bauweise

Werkstoff mit individueller

Gestaltungsmöglichkeit

Viele Freiheitsgrade und

Variationsmöglichkeiten

Wie müssen die Zuschnitte meiner Einzellagen aussehen?

Wie viele Einzellagen des jeweiligen Zuschnittes benötige ich?

In welcher Reihenfolge baue ich mein Laminat auf?

Welche Orientierung benötige ich wo?

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Composite Design Process

Phase 1: Konzept

Welche Faserorientierung wird wo benötigt?

� Free-Size-Optimierung erzeugt eine Dickenverteilung

für jede geplante Faserorientierung.

Diese werden für den Folgeschritt automatisch in

Zuschnitte für die Einzellagen interpretiert.

Phase 1: Konzept

Free-Size

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Composite Design Process

Phase 2: DimensionierungWie viele Einzellagen eines Zuschnittes werden

benötigt?

� Eine Diskrete Size-Optimierung berechnet die optimale Anzahl von Einzellagen der jeweiligen Zuschnitte.

Phase 1: Konzept

Free-Size

Phase 2: Dimension

Discrete

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Composite Design Process

Phase 3: StapelreihenfolgeIn welcher Reihenfolge müssen die Einzellagen

gestapelt werden?

� Eine Shuffle-Optimierung findet unter Berücksichtigung von ply book Regeln eine optimale Reihenfolge der Einzellagen

Phase 1: Konzept

Free-Size

Phase 2: Dimension

Discrete

Phase 3: Reihenfolge

Shuffle

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Composite Design Process

Free-Size

Phase 2: Dimension

Discrete

Phase 3: Reihenfolge

Shuffle

Phase 1: Konzept

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Design Variable: Dicke der Einzellagen pro Element

Randbedingung:

Maximale Verschiebung an der Spitze u ≤ 0.6

Fertigungsrandbedingung:

Kopplung der ±45°Schichten

Optimierungsaufgabe: Min (Mass)

Variables TX,t of each Super-Ply-Element

90°

45°

-45°

PCOMP

TX,-45°

TX,0°F

3

1

2

3

90°

Free-Size Optimierung

SMEAR-Parameter

Smeared Superply Level

Superply Level

+45°

-45°

90°

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Exercise 2: Composite Optimization Setup

• Review the Optimization Entries through the „optimization browser“

• Start the Optimzation Run through Optimization ���� OptiStruct

• Start HyperView and have a look at the results

Review the Optimization

Variable, Objective andConstraints

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Exercise 2: Composite Optimization Setup

• Create a new HyperMesh Session and read „plate_opt_sizing.10.fem“

through File � Import � Solver Deck

Review the optimized ply

shapes

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Total element thickness distribution T0 + T90 + T-45 + T45

90°

45°

-45°

PCOMP

T-45°

T0°

Free-Size Optimization

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Balance Constraint

90°

0 DEG

- 45 DEG45 DEG

90 DEG

Free-Size Optimization

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

-45°45°

90°

0 DEG 90 DEG

- 45 DEG45 DEG

• Automatic extraction of patches from free-sizing optimization

• User defined number of patches per ply orientation

• Tune manufacturing complexity

Example: 4 patches

Free-Size Optimization

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Discrete Size optimization

Phase 1: Konzept

Free-Size

Discrete

Phase 3: Reihenfolge

Shuffle

Phase 2: Dimension

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Ziel: Minimale Anzahl von Einzellagen pro Zuschnitt identifizieren

Design Variablen:

Diskrete Anzahl von Einzellagen pro Zuschnitt

Zielfunktion:

Minimiere das Volumen

Randbedingungen:

Spannung unter einem gewissen Niveau

(stress < 0.15)

Maximale Verschiebung der Spitze < 3e-4

Fertigungsrandbedingung:

Gekoppelte ±45°patches

Diskrete Size Optimierung

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Shuffling Optimierung

Phase 1: Konzept

Free-Size

Phase 2: Dimension

Discrete

Phase 3: Reihenfolge

Shuffle

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Shuffling Optimierung

Ziel: den Plybook Regeln entsprechen mit Design undFertigungsrandbedingungen

+45

-45 0 0 0

+45

-45

+45

-45 0 0 0

+45

-4500

0

45

-45

90

45 -45 0 0

45 -45 90

90 -45 45 0 0

-45 45

Beispiel: maximale Anzahl aufeinander folgender Lagen mit gleichemFaserwinkel (typisch 3 oder 4)

Kern- und DecklagendefinitionPly pairing...

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Composite Design Process

Phase 1: Konzept

Free-Size

Phase 2: Dimension

Discrete

Phase 3: Reihenfolge

Shuffle

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Fazit

Leichtbaustrukturen erfordern Beanspruchungsgerechtes Designs!

Altairs Composite Design Prozess stellt sicher dass:

- beanspruchungsgerechte Designs erzielt werden

- die Komplexität des Werkstoffes beherrschbar wird

- manuelle Iterationen eingespart werden

- die Auslegung von Faserverbundstrukturen

sicherer und schneller wird

… hilft das wahre Leichtbaupotential von Laminatstrukturen zu heben!

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Free Size Optimization Example: Bike Frame

• Design Space = Maximum Thickness for all Fiber Layers (0°, 45°, -45°, 90°)

• Design Variable: Thickness of all Elements

• Objective: Minimize Mass,

• Constraint: Stiffness according to regulations

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Free Size Optimization Example: Bike Frame

• Thickness Results for all Composite FibreLayers

• The Layer at 0°needs the most

material

0° +45°

- 45° +90°

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Free Size Optimization Example: Bike Frame

• Design Interpretation and further optimization leads to 12 Composite Patches

• All regulations were met with this lightweight frame

Patch 1

Patch 2