gravitation&dark)energy) · 2015. 10. 15. · gravitation&dark)energy)! 3!...

4
GRAVITATION & DARK ENERGY 1 Part One (of 3) : Einstein’s Theory of General Relativity … is one of the greatest intellectual achievements of the human race. Let’s see how easy it was for Albert Einstein to discover General Relativity. Einstein’s truly brilliant idea was that the presence of massenergy (e.g., our massive Sun) somehow produces curvature of spacetime, which results in planets moving on curved paths around the Sun—instead of the planets simply moving at constant speed in straight lines (as Newton said happens if no “force” exists). That is, Einstein postulated that: Curvature of Spacetime = MassEnergy MassEnergy ! T μ ! which is the energymomentum tensor, with 4 ! 4 = 16 components Example: for a perfect gas (e.g., the “gas” of galaxies in the universe) T μ ! = p 0 0 0 0 p 0 0 0 0 p 0 0 0 0 ! "c 2 " # $ $ $ $ $ % & ' ' ' ' ' Now, what do we place on the “curvature of spacetime” side of our equation? Fortunately, Einstein had available the work of the brilliant mathematicians Riemann and Ricci. Riemann characterized geometrical curvature as R ! "#$ which has 4 ! 4 ! 4 ! 4 = 256 components! We can’t set it equal to T μ ! because the latter has only 4 ! 4 = 16 components. But! Ricci to the rescue: the purely mathematical operation of contraction gives us: R ! "!# = R "# where the righthand side is named the Ricci tensor. It has only TWO indices, so we are in business! Writing it in mixed covariantcontravariant form (like T μ ! ) gives us Einstein’s First Guess: R μ ! = G c 4 p 0 0 0 0 p 0 0 0 0 p 0 0 0 0 ! "c 2 " # $ $ $ $ $ % & ' ' ' ' ' (G is Newton’s G, the c 4 fixes units) Looks good, but there is a problem: massenergy is conserved, but the Ricci tensor is not. “Conserved” means that its derivative is zero. So, Einstein needed to patch the lefthand side so that its derivative would also be zero. Hey, it looks like a kluge, but here it is: where R = R ! ! is the contraction of Ricci’s tensor, and g μ ! is the metric tensor (just 1’s on the diagonal— trivial). Since we are requiring derivatives to be zero, naturally we can toss in an arbitrary constant, ! (the famous Cosmological Constant): and we have done that! If we also stick in the 8 ! —we’ve done that, too—our equation easily reduces, in the first approximation (and ignoring Λ) to Newton’s Law of gravity! We have derived the… Field Equations of General Relativity! R μ ! " 1 2 Rg μ ! # $ % & ' ( + )g μ ! = 8* G c 4 T μ ! # $ % & ' ( where p is the pressure (for galaxies, ~ zero), and ρ is the density. (Isaac Newton did not know Special Relativity, and thus did not know that p, tiny as it is, has to be included. So, Newton’s law of gravity is only one equation (dealing with the –ρc 2 ) and not the 16 equations (well, in this simple example, two independent equations) of General Relativity!)

Upload: others

Post on 10-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GRAVITATION&DARK)ENERGY) · 2015. 10. 15. · GRAVITATION&DARK)ENERGY)! 3! Part!Three!(of!3):!!Finally,!letus!ComparewithWhatNewton!Thought!! We!want!to!compare!our!result!with!what!Newton!would!have!asserted

GRAVITATION  &  DARK  ENERGY  

  1  

Part  One  (of  3)  :    Einstein’s  Theory  of  General  Relativity    …  is  one  of  the  greatest  intellectual  achievements  of  the  human  race.      Let’s  see  how  easy  it  was  for  Albert  Einstein  to  discover  General  Relativity.    Einstein’s  truly  brilliant  idea  was  that  the  presence  of  mass-­‐energy  (e.g.,  our  massive  Sun)  somehow  produces  curvature  of  spacetime,  which  results  in  planets  moving  on  curved  paths  around  the  Sun—instead  of  the  planets  simply  moving  at  constant  speed  in  straight  lines  (as  Newton  said  happens  if  no  “force”  exists).    That  is,  Einstein  postulated  that:    

Curvature  of  Spacetime  =  Mass-­‐Energy    

Mass-­‐Energy  ! Tµ!      which  is  the  energy-­‐momentum  tensor,  with   4 ! 4 =16  components  

 

Example:    for  a  perfect  gas  (e.g.,  the  “gas”  of  galaxies  in  the  universe)    

Tµ! =

p 0 0 00 p 0 00 0 p 00 0 0 !"c2

"

#

$$$$$

%

&

'''''

   

   

Now,  what  do  we  place  on  the  “curvature  of  spacetime”  side  of  our  equation?    Fortunately,  Einstein  had  available  the  work  of  the  brilliant  mathematicians  Riemann  and  Ricci.    Riemann  characterized  geometrical  curvature  as   R!

"# $  which  has   4 ! 4 ! 4 ! 4 = 256  components!    We  can’t  set  it  equal  to  Tµ

!  because  the  latter  has  only   4 ! 4 =16  components.    But!    Ricci  to  the  rescue:    the  purely  mathematical  operation  of  contraction  gives  us:    R!

"!# = R"#  where  the  right-­‐hand  side  is  named  the  Ricci  tensor.    It  has  only  TWO  indices,  so  we  are  in  business!    Writing  it  in  mixed  covariant-­‐contravariant  form  (like  Tµ

!  )  gives  us  

Einstein’s  First  Guess:    Rµ! = G

c4

p 0 0 00 p 0 00 0 p 00 0 0 !"c2

"

#

$$$$$

%

&

'''''

         (G  is  Newton’s  G,  the   c4  fixes  units)  

Looks  good,  but  there  is  a  problem:    mass-­‐energy  is  conserved,  but  the  Ricci  tensor  is  not.    “Conserved”  means  that  its  derivative  is  zero.    So,  Einstein  needed  to  patch  the  left-­‐hand  side  so  that  its  derivative  would  also  be  zero.    Hey,  it  looks  like  a  kluge,  but  here  it  is:  

 

where   R = R!!  is  the  contraction  of  Ricci’s  tensor,  and                

gµ! is  the  metric  tensor  (just  1’s  on  the  diagonal—  

trivial).    Since  we  are  requiring  derivatives  to  be    zero,  naturally  we  can  toss  in  an  arbitrary  constant,  !  (the  famous  Cosmological  Constant):    and  we  have  done  that!    

If  we  also  stick  in  the  8! —we’ve  done  that,  too—our  equation  easily  reduces,  in  the  first  approximation  (and  ignoring  Λ)  to  Newton’s  Law  of  gravity!    We  have  derived  the…        

Field  Equations  of  General  Relativity!  

Rµ! " 12R gµ

!#$%

&'( + )gµ

! = 8* Gc4Tµ

!#$%

&'(

where  p  is  the  pressure  (for  galaxies,  ~  zero),  and  ρ  is  the  density.    (Isaac  Newton  did  not  know  Special  Relativity,  and  thus  did  not  know  that  p,  tiny  as  it  is,  has  to  be  included.    So,  Newton’s  law  of  gravity  is  only  one  equation  (dealing  with  the  –ρc2    )  and  not  the  16  equations  (well,  in    this  simple  example,  two  independent  equations)  of  General  Relativity!)  

Page 2: GRAVITATION&DARK)ENERGY) · 2015. 10. 15. · GRAVITATION&DARK)ENERGY)! 3! Part!Three!(of!3):!!Finally,!letus!ComparewithWhatNewton!Thought!! We!want!to!compare!our!result!with!what!Newton!would!have!asserted

GRAVITATION  &  DARK  ENERGY  

  2  

Part  Two  (of  3)  :    The  Cosmological  Constant:    Dark  Energy    ,  and  the  cosmological  constant  !gµ

!must  be  structured  like      

Tµ! =

p 0 0 00 p 0 00 0 p 00 0 0 !"c2

"

#

$$$$$

%

&

'''''

               

   Well,  we  will  do  what  Einstein  did,  and  consider  the  possibility  that  the  vacuum  is  not  vacuous,  as  we’d  always  thought,  but  rather  has  some  constant  mass  density   !V    (subscript   V  means  vacuum).    A  simple  thought  experiment  then  gives  us  the  pressure   pVfor  the  vacuum:                    

Suppose  the  above  were  a  conventional  piston-­‐and-­‐cylinder,  with  gas  in  it,  not  vacuum,  and  we  added  heat  !Q .    There  would  be  an  increase  in  the  temperature  (that  is,  in  the  energy  E)  of  the  gas,  and  the  piston  would  move.    Conservation  of  energy,  of  course,  applies:    

!Q = !E + p!V      ,  where  V  is  the  volume.    This  is  also  called  the  first  law  of  thermodynamics,  but  it  is  just  conservation  of  energy.     p!V is  the  work  done  as  the  piston  moves  (high  school  physics).    Now  apply  the  equation  to  our  thought  experiment  above,  for  the  case  !Q = 0  ,  that  is,  no  heat  added.    Then  we  have    

                                                                                                             0 = !Vc2!V + pV!V  

 

Any  outward  motion  of  the  piston  (“expansion  of  the  universe”)  spreads  further  apart  any  galaxies  that  are  in  the  cylinder  (thus  reducing  their  mutual  gravitational  attraction)  but    (by  Einstein’s  remarkable  hypothesis)  does  not  diminish  the  vacuum’s  mass  density !V at  any  location.     !V!V is  the  change  in  the  mass  contained  in  the  cylinder  (remember  that  density  is  mass  divided  by  volume  V).    OK!    Cancel  the  !V 's  and  we  get  our  answer:    

 

pV = !!Vc2      (which  is  negative;  and  which  is  enormous,  because  of  the  c2  )  and    

 

!gµ! = ""Vc

2

1 0 0 00 1 0 00 0 1 00 0 0 1

#

$

%%%%

&

'

((((

= ""Vc2gµ

!                

Rµ! " 12R gµ

! + #gµ! = 8$G

c4Tµ

!

nothing

(not even vacuum)

vacuum

V p

V

except  that,  since  we  want  to  represent  a  cosmological  constant,  all  four  entries  on  the  diagonal  must  be  identical,  and  must  be  constant.  What  does  that  take?  

Dark  Energy!      We’ll  see  that  it  repels,  instead  of  attracting!  

Page 3: GRAVITATION&DARK)ENERGY) · 2015. 10. 15. · GRAVITATION&DARK)ENERGY)! 3! Part!Three!(of!3):!!Finally,!letus!ComparewithWhatNewton!Thought!! We!want!to!compare!our!result!with!what!Newton!would!have!asserted

GRAVITATION  &  DARK  ENERGY  

  3  

Part  Three  (of  3)  :    Finally,  let  us  Compare  with  What  Newton  Thought    We  want  to  compare  our  result  with  what  Newton  would  have  asserted,  using  his  

F = ma ! m !!R( )  and  his  Law  of  Gravity,  F = !GMmR2

 (the  minus  sign  indicating  an  attractive  

force).    Our  galaxy,  having  mass  m,  is  attracted  by  everything  in  an  arbitrary  huge  sphere,  of  radius  R,  containing  total  mass  M.  The  density  for  that  vast  sphere  is,  of  course        

 Combining  our  3  “Newton  equations”  gives  us:                                  

 It  is  negative!    The  expansion  of  the  Universe  is  decelerating!      But,  what  does  Einstein  say?  

 The  above  is  a  compact  way  of  writing  16  separate  equations  (μ  and  ν  each  go  from  1  to  4,  since  there  are  4  dimensions:    3  space,  and  1  time).    You  saw  that  for  a  gas  of  galaxies,  only  the  4  diagonal  elements  of  the  energy-­‐momentum  tensor  were  non-­‐zero  (and  also  that  3  elements  were  the  same,  p).    All  4  diagonal  elements  are  1’s  for  the  metric  tensor.    As  for  the  Ricci  tensor,  if  you  assume  the  simplest  possible  isotropic  geometry  (called  Robertson-­‐Walker)  for  the  expanding  universe  (such  simplicity  is  strongly  supported  by  observations  of  the  famous  3K  background  radiation),  the  first  three  elements  are  again  the  same.      We’ll  use  RW  for  a  flat  universe,  since  observations  indicate  that  our  universe  is  flat,  to  a  high  degree.    So,  instead  of  the  fancy  equation  above,  with  its  raised  and  lowered  indices  (the  reason  for  “raised/lowered”  is  too  boring  to  discuss,  and  we  don’t  need  it  anyway),  our  fancy  equation  reduces  to  just  two  equations,  both  at  high-­‐school-­‐level:  

 

!!R2

R2+ 2!!RR

= 8!Gc2

p                and                !R2

R2= 8!G

3"  

 

The  first  equation,  the  one  with  p  on  the  right,  occurs  3  times—but  of  course,  we  don’t  need  3  copies!    We  have  omitted  Λ—we  will  see  it  appear  as  dark  energy,  from  Einstein’s  ρV  idea  (and  his  deduction  that   pV = !!Vc

2 ),  so  that   !  and  p  each  have  two  contributors:    1)  matter  M  (including  dark  matter),  and  2)  dark  energy  (subscript  V).    So   ! = !M + !V and  p = pM + pV ! pV  (since  the  pressure  of  the  galaxies,  as  well  as  of  the  only-­‐weakly-­‐interacting  dark  matter,  is  ~  zero,    in  drastic  contrast  to  the  enormous  pressure  of  the  dark  energy).    In  our  equations,  R  is  an  arbitrary  distance  proportional  to  the  size  of  the  universe  at  any  time,  R  with  a  dot  on  it  (Isaac  Newton’s  notation)  is  the  universe’s  expansion  speed  at  that  time,  and  R  with  two  dots  on  it  is  the  acceleration  of  the  expansion  of  the  universe—which  is  what  interests  us  most.  Now  eliminate   !R from  our  two  equations  (easy).    Result:  

 

If  we  ignore  the  dark  energy,  the  first  part  gives  our  negative  Newtonian  result!    But,  if  the  universe  has  expanded  enough  (diminishing  ρM  to  the  point  that  it  is  negligible,  as  in  our  present  universe)  we  get  our  final  expression  above  for  the  acceleration  of  the  universe:      

 

—which  is  positive!    So,  instead  of  living  in  a  universe  that  is  decelerating  (negative   !!R ),  we  find  ourselves  in  a  universe  that  is  accelerating  its  expansion!    So,  Dark  Energy  rules!  

acceleration = !!R = ! 4"

3G#M R

Rµ! " 12R gµ

! + #gµ! = 8$G

c4Tµ

!

acceleration = !!R = ! 4"

3c2G #Mc

2 + 3pV + #Vc2( )R = ! 4"

3c2G #Mc

2 ! 2#Vc2( )R $ + 8"

3G#V R = !!R

!M = M4"3R3.

R M

m

Page 4: GRAVITATION&DARK)ENERGY) · 2015. 10. 15. · GRAVITATION&DARK)ENERGY)! 3! Part!Three!(of!3):!!Finally,!letus!ComparewithWhatNewton!Thought!! We!want!to!compare!our!result!with!what!Newton!would!have!asserted

GRAVITATION  &  DARK  ENERGY  

  4  

     

   

 …  but,  in  the  vacuum,  and  with  cosmological  constant  zero,  these    

Field  Equations  of  General  Relativity  reduce  to      

   

The  photo  shows  Albert  Einstein  writing  this  equation  (in  covariant  form;  that  is,  with  two  subscripts).    Einstein  followed  his  equation  with  a  question  mark!  

 Anyone  reading  my  four-­‐page  account  might  wonder  why,  General  Relativity  being  so  simple  and  so  apparently  arbitrary  (especially  regarding  dark  energy),  it  is  held  in  such  high  esteem.    It  is  because  this  theory  makes  quantitative  predictions,  for  example  of  the  evolution  of  the  orbits  of  cosmic  binary  neutron  stars,  that  have  always  turned  out  to  be  highly  accurate!    The  Global  Positioning  System  (GPS)  could  not  function  without  our  use  of  General  Relativity;  Special  Relativity  (has  time  as  the  4th  dimension,  but:    with  a  MINUS  sign  in  the    Pythagorean  Theorem)  led  directly  to  atomic  power,  and  to  the  hydrogen  bomb.  

Rµ! " 12R gµ

! + #gµ! = 8$G

c4Tµ

!

Rµ! = 0