green telecom & it workshop: marceau greentouch

20

Click here to load reader

Upload: belllabs

Post on 08-Jul-2015

298 views

Category:

Technology


10 download

TRANSCRIPT

Page 1: Green Telecom & IT Workshop: Marceau greentouch

Impact on Coverage and Capacity of Reduced

Transmit Power in Cellular Networks

Marceau Coupechoux∗

∗ TELECOM ParisTech (INFRES/RMS) and CNRS LTCI

Joint work with Jean-Marc Kelif (Orange Labs) and Frederic Marache

(Orange Labs)

Green Telecom and IT Workshop, Indian Institute of Science, Bangalore

4 April 2012

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 1 / 20

Page 2: Green Telecom & IT Workshop: Marceau greentouch

Outlines

Interference Model

Outage Probabilities

Interference Factor Analysis

Noise and Power Analysis

Applications

Conclusion

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 2 / 20

Page 3: Green Telecom & IT Workshop: Marceau greentouch

Interference Model

Interference Model: SINR

Figure: Interference model.

SINR is a central parameter for performance evaluation:

γ∗u =

Su

α(Iint,u − Su) + Iext,u + Nth

.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 3 / 20

Page 4: Green Telecom & IT Workshop: Marceau greentouch

Interference Model

Interference Model: Output Power

Other-cell interference factor: fu = Iext,u/Iint,u

fu =

j 6=b Pjgj ,u

Pbgb,u

Transmitted power for mobile u: Pb,u = Su/gb,u

Pb,u =γ∗u

1 + αγ∗u

(αPb + fuPb + Nth/gb,u).

Total BS output power:

Pb =Pcch +

uγ∗

u

1+αγ∗

u

Nth

gb,u

1 −∑uγ∗

u

1+αγ∗

u(α + fu)

.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 4 / 20

Page 5: Green Telecom & IT Workshop: Marceau greentouch

Outage Probabilities

Outage Probabilities: Generic Expression

For n MS with a single service:

P(n)out = Pr

[

n−1∑

u=0

Tu >1 − ϕ

β− nα

]

,

where ϕ = Pcch/Pmax , β = γ∗/(1 + αγ∗) and

Tu = fu + hu.

Two terms appear:

The OCIF: fu andA noise factor: hu = Nth

Pmaxgb,u.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 5 / 20

Page 6: Green Telecom & IT Workshop: Marceau greentouch

Outage Probabilities

Outage Probabilities: Without Shadowing

The outage probability is now (Gaussian approx.):

P(n)out = Q

(

1−ϕβ − nµT − nα

√nσT

)

.

where:

µT = µf0 + µh0

σ2T = σ2

f0+ σ2

h0+ 2E[f0h0] − 2µf0µh0

Means and standard deviations are taken over the uniform distributionof MS on the cell area.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 6 / 20

Page 7: Green Telecom & IT Workshop: Marceau greentouch

Outage Probabilities

Outage Probabilities: With Shadowing

The outage probability is now:

P(n)out = Q

(

1−ϕβ − nMT − nα

√nST

)

,

where:

MT = Mf + Mh,

S2T = S2

f + S2h + 2E[fuhu] − 2Mf Mh,

Means and standard deviations are taken both over the shadowingvariations and mobile location.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 7 / 20

Page 8: Green Telecom & IT Workshop: Marceau greentouch

Interference Analysis

Interference Analysis: Fluid Model

Interfering BS are approximated by a continuum of BS.

Each elementary surface zdzdθ at distance z from u containsρBSzdzdθ BS and contributes with ρBSzdzdθPbKz−η to theinterference.

Rc

Rnw

2Rc

Continuum of

base stations

Figure: Cellular network approximation.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 8 / 20

Page 9: Green Telecom & IT Workshop: Marceau greentouch

Interference Analysis

Interference Analysis: Fluid Model

Discrete sum is approximated byan integral:

Iext,u =

∫ 2π

0

∫ Rnw−ru

2Rc−ru

ρBSPbKz−ηzdzdθ

(1)

If network size is large:

f0 =2πρBS r

ηu

η − 2(2Rc − ru)2−η.

(2)

Cell boundary

First BS ring

ru 2Rc - ru

Network boundary

BS b MS u

Rnw - ru

Figure: Integration limits for interferencecomputation.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 9 / 20

Page 10: Green Telecom & IT Workshop: Marceau greentouch

Interference Analysis

Interference Analysis: Fluid Model

Figure: Interference factor vs. distance to the BS; comparison of the fluid modelwith simulations on an hexagonal network with η = 2.7, 3, 3.5, and 4.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 10 / 20

Page 11: Green Telecom & IT Workshop: Marceau greentouch

Interference Analysis

Interference Analysis: Without Shadowing

OCIF is obtained from the fluid model:

f0 =2πρBS rη

η − 2(2Rc − r)2−η .

We integrate over the cell area:

µf0 =24−ηπρBSR2

c

η2 − 4

(

Re

Rc

2F1(η − 2, η + 2, η + 3,Re/2Rc ).

where 2F1(a, b, c , z) is the hypergeometric function, whose integralform is given by:

2F1(a,b, c, z) =Γ(c)

Γ(b)Γ(c − b)

Z 1

0

tb−1(1 − t)c−b−1

(1 − tz)adt,

The same for σf0 (can be expressed in closed-form using 2F1).

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 11 / 20

Page 12: Green Telecom & IT Workshop: Marceau greentouch

Interference Analysis

Interference Analysis: With Shadowing

At a distance ru, fu can be approx. by a log-normal RV withFenton-Wilkinson → mf and σf .

We then integrate RV fu over the cell area:

Mf =

∫ Re

0E[fu|r ]pr (r)dr =

∫ Re

0f0(r)J(r , σ)ea2s2

f/2 2r

R2e

dr ,

E[

f 2u

]

=

∫ Re

0E[

f 2u |r]

pr (r)dr =

∫ Re

0(f0(r)J(r , σ))2e2a2s2

f2r

R2e

dr .

where J(ru, σ) = ea2σ2/2(

L(ru, η)(ea2σ2 − 1) + 1)− 1

2and

L(ru, η) = f0(ru ,2η)

f0(ru ,η)2

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 12 / 20

Page 13: Green Telecom & IT Workshop: Marceau greentouch

Noise and Power Analysis

Noise and Power Analysis: Without Shadowing

This is a simple case since: hu = h0 = Nth

PmaxKr−η

u

Mean and standard deviation over MS locations:

µh0=

2NthRηe

PmaxK (η + 2)

σh0=

R2ηe

η + 1

(

Nth

PmaxK

)2

.

E[f0h0] involves an hypergeometric function but can be computedwith:

E[f0h0] =2NthπρBS

PmaxK (η − 2)

∫ Re

0r2η(2Rc − r)2−ηpr (r)dr .

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 13 / 20

Page 14: Green Telecom & IT Workshop: Marceau greentouch

Noise and Power Analysis

Noise and Power Analysis: With Shadowing

Thermal noise factor is now: hu = h0/Ab = h010−ξb/10.

And so: Mh = µh0E[

10−ξb/10]

= µh0ea2σ2/2 (the same for Sh).

fuhu (both terms are not ind.) can be approx. at a given distance r

by a log-normal RV using Fenton-Wilkinson.

We then integrate over the cell area:

E[fuhu] =

∫ Re

0E[fuhu|r ]pr (r)dr

=4πρBSNthe

3a2σ2/2

PmaxKR2e (η − 2)

∫ Re

0r2η+1(2Rc − r)2−ηdr .

Again, this can be expressed in closed-form using 2F1.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 14 / 20

Page 15: Green Telecom & IT Workshop: Marceau greentouch

Applications

Applications: Scenarios

Common parameters: CDMA network, γ∗ = −19 dB, W = 5 MHz,α = 0.6, ϕ = 0.2, N0 = −174 dBm/Hz.

Urban and rural scenarios:

Table: Propagation parameters

K (2 GHz) K (920 MHz) σ (dB) t η Rc

Urban 4.95 10−4 6.24 10−3 6 0.5 3.41 1 Km

Rural 0.88 4.51 4 0.5 3.41 5 Km

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 15 / 20

Page 16: Green Telecom & IT Workshop: Marceau greentouch

Applications

Applications: Capacity

0 5 10 15 20 25 30 35 40 450

1

2

3

4

5

6

7

Maximum output power Pmax [dBm]

MS

den

sity

ρ

MS

[MS

/Km

2 ]

Urban (Rc=1Km)

f=920 MHzf=2000 MHz

0 10 20 30 40 500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Maximum output power Pmax [dBm]

Rural (Rc=5Km)

f=920 MHzf=2000 MHz

We set P∗out = 5%

For a given Pmax ,nMS is the max nb.of MS such thatPout < P∗

out

ρMS = nMS/πR2e

Effect of Freq. ↑: K ↓, fu is unchanged, hu ↑Effect of Rural deployment: Rc ↑ so more power is needed per MSbut K ↑ and σ ↓. Cell range increase has a dominant influence.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 16 / 20

Page 17: Green Telecom & IT Workshop: Marceau greentouch

Applications

Applications: Coverage

P∗out = 1 or 5%

ρMS is fixed forrural and urban

Cov. range Re isvariable

For given Pmax , welook for Re suchthat Pout < P∗

out

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Maximum output power Pmax [dBm]

Cov

erag

e ra

nge

[Km

]

Urban (Rc=1Km)

0 5 10 15 202

2.5

3

3.5

4

4.5

5

5.5

Maximum output power Pmax [dBm]

Rural (Rc=5Km)

f=920 MHz, target outage = 5%f=2000 MHz, target outage = 5%f=920 MHz, target outage = 1%f=2000 MHz, target outage = 1%

920 MHz

920 MHz

2 GHz2 GHz

When Pmax ↓, Re ↓ because less MS can be served and average powerper MS should decrease.

A small degradation of QoS allows an important power reduction inrural

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 17 / 20

Page 18: Green Telecom & IT Workshop: Marceau greentouch

Applications

Applications: Should we neglect noise ?

0.5 1 1.5 2 2.5 3

0.05

0.06

0.07

0.08

0.09

0.1

Half inter−BS distance Rc [Km]

Out

age

prob

abili

ty

Urban

1 2 3 4 5 6 7 8 9 10

0.05

0.06

0.07

0.08

0.09

0.1

Half inter−BS distance Rc [Km]

Rural

f=920 MHzf=2000 MHzNoise neglected

P∗out = 5%

Pmax = 43 dBm

nMS is fixed suchthat Pout = P∗

out

when noise isneglected.

We then computePout whileconsidering noise.

Noise neglected ⇒ Pout doesn’t depend on K , frequency, Rc

(homothetic networks).

Noise cannot be neglected for Rc > 1 Km in urban and Rc > 7 Km inrural at 2 GHz (if we accept 0.5% error).

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 18 / 20

Page 19: Green Telecom & IT Workshop: Marceau greentouch

Applications

Applications: Power Density and Densification

P∗out = 5%

MS densityconstant

Full coverage isassumed

For a given Rc ,Pmax is such thatPout < P∗

out

Power density isPmax/πR2

e0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Half inter−BS distance Rc [Km]

Pow

er d

ensi

ty [W

/Km

2 ]

Urban

f=2000 MHzf=920 MHz

At 2 GHz, 11% more BS means half power density.Deploying small and femto cells are good means of reducingelectromagnetic pollution provided that transmission power isoptimized.

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 19 / 20

Page 20: Green Telecom & IT Workshop: Marceau greentouch

Conclusion

Conclusion

This work analyzes interference, noise and outpout power in cellularnetworks and their impact on outage.

Fluid model provides a simple formula for the OCIF.

Integrations are done both over shadowing variations and MSlocations.

Slight QoS degradation implies much lower output powers (rural).

Slight increase of BS nbr implies much lower power densities (2GHz).

M. Coupechoux (TPT) Limiting Power Transmission 4 April 2012 20 / 20