grm-chap1-matbal

Upload: eduardo-mejorado

Post on 22-Feb-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 GRM-chap1-matbal

    1/27

    Gas Material Balance Basic Concepts

    Estimate OGIP

    Predict recovery

    Identify drive

    mechanism

    GRM-Engler-09

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    0 1 2 3 4 5 6 7 8 9 10 11 12

    Cumulative gas produced,Bscf

    p/z,psia

    (p/z) i

    (p/z)a

    Gpa=8.5 BscfG=10 Bscf

    Last measured

    data point

    extrapolate

  • 7/24/2019 GRM-chap1-matbal

    2/27

    Gas Material Balance Basic Concepts

    GRM-Engler-09

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    0 1 2 3 4 5 6 7 8 9 10 11 12

    Cumulative gas produced,Bscf

    p/z,psia

    (p/z)i

    (p/z)a

    Gpa=8.5 BscfG=10 Bscf

    Last measured

    data point

    extrapolate

    G

    pG1

    izip

    z

    p

    Gas property, f(T,P,g)

    Measured

    pressure Cumulative gasProduction @ P

    ipiz

    azap1

    gaB

    giB

    1volRF

  • 7/24/2019 GRM-chap1-matbal

    3/27

    Gas Material Balance Advanced Topics

    GRM-Engler-09

    Nonlinear gas material balanceWater drive gas reservoirs

    (additional pressure support)

    Abnormally pressured gas reservoirs

    (rock compressibility)

    Low permeability gas reservoirs(measured pressures dont achieve ave. press.)

  • 7/24/2019 GRM-chap1-matbal

    4/27

    Gas Material Balance Advanced Topics

    GRM-Engler-09

    Comprehensive gas material balance

    eWwBinjWwBpWgB

    615.5swRpWinjGpG

    G

    iz/p

    iz

    p

    )pip()p(ec1z

    p

    Geopressured

    component

    Water drive

    componentGas injection

    Gas in solution

  • 7/24/2019 GRM-chap1-matbal

    5/27

    p/z

    Gp/G

    (p/z)i

    (p/z)a

    Depletion drive

    water drive

    strength

    (p/z)a

    0 10050

    Gas Material Balance Water Drive Reservoirs

    GRM-Engler-09

    giBgB

    pWwB615.5eWgBpGG

    Cumulative water influx, rcfCumulative water

    production, stb

    How to determineWe?

  • 7/24/2019 GRM-chap1-matbal

    6/27

    Gas Material Balance Water Drive Reservoirs

    GRM-Engler-09

    giS

    grS

    ip

    iz

    az

    ap

    giS

    grS

    gaB

    giBwdRF

    1

    1

    Gas saturation

    Recovery (water drive) < Recovery (depletion)

    45 to 75% >75%

    vE

    vE

    giS

    grS

    gaB

    giB

    vEwdRF1

    1

    Volumetric sweep

    efficiency

  • 7/24/2019 GRM-chap1-matbal

    7/27

    Method accounts for

    pressure gradients within

    the invaded zone due to

    relative permeability

    effects resulting from

    trapped residual gas

    rt

    ra

    roreservoir

    aquifer

    Invaded

    zone

    Original

    Reservoir

    boundary

    Current

    Reservoir

    boundary

    Water

    influx

    Modified Gas Material Balance

    Prediction of water influx and reservoir pressure

    (Schafer, et al, 1993)

    pWwBeWgBgtBtGgiBgBGgBpG )()(

    GRM-Engler-09Trapped gas volume

  • 7/24/2019 GRM-chap1-matbal

    8/27

    Modified Gas Material Balance

    Input data

    Calculate

    ro

    Guess

    pok

    CalculateWe

    1

    Calculate

    rt

    Calculatept

    Calculate

    pave

    Calculate

    Gt

    Solve forWe

    2

    We1-We

    2< tolN Y

    Gpn+1= Gp

    n+DGp

    Update

    Pok+1

    Given Gpn

    *

    *

    GRM-Engler-09

  • 7/24/2019 GRM-chap1-matbal

    9/27

    Modified Gas Material Balance

    Comparison of reservoir performance from simulation,

    Conventional and modified material balance methods(Hower and Jones, 1991)

    GRM-Engler-09

  • 7/24/2019 GRM-chap1-matbal

    10/27

    Modified Gas Material Balance

    Modified Gas Material Balance - example

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    0 500 1000 1500 2000 2500

    Gp, mscf

    p/z,psia

    G=2.16 Bscf

    measured

    We = 831 mstb

    Sgr = 24%

    GRM-Engler-09

  • 7/24/2019 GRM-chap1-matbal

    11/27

    F/Et,stb

    Intercept=G

    tE

    wBe

    W

    Wecorrect

    Wetoo small

    Wetoo large

    Gas Material Balance Water Drive Reservoirs

    GRM-Engler-09

    tE

    wBeWGtE

    F

    Linearized Gas Material Balance

    wBpWgBpGF

    giBgBgE

    pip

    wiS1

    fcwcwiS*giBcfE

    F = total net reservoir voidage

    Et= Eg+ Ecf= total expansion

    Eg= expansion of gas in reservoir

    Ecf = connate water and formation expansion * Bgi

  • 7/24/2019 GRM-chap1-matbal

    12/27

    Gas Material Balance Water Drive Reservoirs

    GRM-Engler-09

    Linearized Gas Material Balance - example

    y = 1.0602x + 2.1074

    R2= 0.9843

    3.03.2

    3.4

    3.6

    3.8

    4.0

    4.2

    4.4

    4.6

    4.8

    5.0

    1.0 1.5 2.0 2.5 3.0

    We/Et

    F/Et

    G = 2.107 Bscf

    484mstb

    1,427mstb

    We = 831 mstb

  • 7/24/2019 GRM-chap1-matbal

    13/27

    p/z

    Gp

    (p/z)i

    Gas expansion

    Gas expansion

    +

    Formation compaction

    +

    Water expansion

    Overestimate of G

    Gas Material BalanceAbnormally pressured gas reservoirs

    GRM-Engler-09

    p

    i

    p

    e

    c1

    G

    pG

    1

    iz

    ip

    z

    p

    wiS1

    fc

    wiS

    wc

    e

    c

    Where,

  • 7/24/2019 GRM-chap1-matbal

    14/27

    GRM-Engler-09

    Gas Material BalanceAbnormally pressured gas reservoirs

    Method 1 : Assume formation compressibility is known and constant

    Volumetric (geopressured)

    y = -92.336x + 6532.2

    R2= 0.9979

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0 20 40 60 80 100

    Gp, Bcf

    modifie

    dp/z,psi

    G=70.7

    pGvs

    )wi

    S1(

    )pi

    p(f

    cwi

    Sw

    c

    1z

    p

    Plotting function

    Conventional

    overestimates Gby > 25%!

  • 7/24/2019 GRM-chap1-matbal

    15/27

    GRM-Engler-09

    Gas Material BalanceAbnormally pressured gas reservoirs

    Method 2 [Roach (1981)] : Simultaneous solution of G and cf

    Revised material

    Balance eq.wi

    S1

    fc

    wc

    wiS

    ipz

    zi

    p

    pi

    p

    pG

    G

    11

    ipz

    zi

    p

    pi

    p

    1

    Geopressured

    y = 13.199x - 17.511

    R2= 0.993

    0

    50

    100

    150

    0 2 4 6 8 10 12 14

    x, Bscf/psi x 10-3

    y,psi

    -

    1x10-6

    Bscf8.75199.13

    1000

    slope

    1G

    1psi

    610x5.12

    wc

    wiS)

    wiS1(

    610bx

    fc

  • 7/24/2019 GRM-chap1-matbal

    16/27

    GRM-Engler-09

    Gas Material BalanceAbnormally pressured gas reservoirs

    Method 3 [Fetkovich (1991)] : Addition of gas solubility and total water

    Defines:)

    wiS1(

    ])p(f

    c)p(tw

    c[M)p(f

    cwi

    S)p(tw

    c

    )p(ec

    Where,

    Ctw, cumulative total water compressibility

    M, associated water-volume ratio given by:

    water expansion due to pressure depletion

    the release of solution gas in the water

    1

    2

    rr

    aqr

    rh

    aqh

    gh/

    nh

    gh/

    nh1

    r

    nnp

    aqMNNPMM

    non-net pay water and

    pore volumes

    external water volume

    found in limited aquifers

  • 7/24/2019 GRM-chap1-matbal

    17/27

    GRM-Engler-09

    Gas Material BalanceAbnormally pressured gas reservoirs

    Method 3 [Fetkovich (1991)]

    Back-calculate cefrom,

    pi

    p

    1

    G

    pG

    1z/p

    iz/p1atedbackcalcule

    c

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 2000 4000 6000 8000 10000

    pressure, psia

    ce,psi-1

    ce(back)assuming OGIP

    ce(p)generated from rock &

    w ater properties

    Compare with rock and fluid derived ce

  • 7/24/2019 GRM-chap1-matbal

    18/27

    GRM-Engler-09

    Gas Material BalanceAbnormally pressured gas reservoirs

    Method 3 [Fetkovich (1991)]

    Results

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0 20 40 60 80 100

    Gp, Bscf

    p/z,psi

    historical performance data

    model M = 2.25

    Cf = 3.2x10-6psi-1

    G = 72 Bscf

  • 7/24/2019 GRM-chap1-matbal

    19/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs

    Gp

    p/z

    GGp

    p/z

    G

    Expanding

    Radius

    Rebound

    Effect

  • 7/24/2019 GRM-chap1-matbal

    20/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs

    Gp

    p/z

    Conventionalresponse

    G

    Tightgasresponse

    (p/z)i

    (p/z)int m1

    m2=m

    1

    ?

    Gp

    p/z

    Conventionalresponse

    G

    Tightgasresponse

    (p/z)i

    (p/z)int m1

    m2=m

    1

    ?m2=m

    1

    ?pG

    )z/p(m

    D

    D

    m

    1*

    scT

    scTPhcV

    )wS1(Ah43560hcV

    Hydrocarbon volume

    Estimate area

    slope

  • 7/24/2019 GRM-chap1-matbal

    21/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs

    m

    1*

    iz

    ipG

    m

    1*

    scT

    scTPhcV

    )1(43560 wSAhhcV

    Gas-in-place

    Hydrocarbon volume

    Estimate area

    (p/z)

    (p/z)i

    Gp

    CASE Am2

    G1G2

  • 7/24/2019 GRM-chap1-matbal

    22/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs

    2m

    1*

    iz

    ip

    1m

    1*

    intz

    pG

    Find Gas-in-place and m2

    2m

    1*

    scT

    scTPhcV

    Hydrocarbon volume

    (p/z)

    (p/z)i

    Gp

    CASE Bm2

    G1= G2

    (p/z)int

  • 7/24/2019 GRM-chap1-matbal

    23/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs

    Different slope and

    intercept

    Estimate using othercases

    Case B < actual < Case A

    (p/z)

    (p/z)i

    Gp

    CASE Cm2

    G1G2

    (p/z)int

  • 7/24/2019 GRM-chap1-matbal

    24/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs

    P/Z vs. Cumulative Production

    No. 114

    y = -0.8367x + 552.88

    R2= 0.958

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 100 200 300 400 500 600 700

    Cumulative Production, mmscf

    P/Z,psia

    Example 1.8??? 11gi, cp 0.0134h, ft 40

    cti, psi-1

    x 10-4 5.77

    gg 0.67

    Tr , deg F 106Sw, % 44

    rw, ft. 0.229

    Pi, psi 1131

    mmscfmz

    pG 660

    8367.

    9.552

    1

    1*

    int

    m2 = 2.12 psia/mmscf

    Vhc= 7.544 mmrcf

    A = 70 acres

    Case B

  • 7/24/2019 GRM-chap1-matbal

    25/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    0 100 200 300 400 500 600 700

    Cumulative production, mmscf

    flow

    rate,ms

    cf/month

    GIP = 700 mmscf

    Gp= 526 mmscf

    RF = 75%

  • 7/24/2019 GRM-chap1-matbal

    26/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs

    1

    10

    100

    1000

    0 5 10 15 20 25

    time, years

    productionrate,m

    scf/mo

    0

    200

    400

    600

    800

    1000

    1200

    SIBHP,psi

    simulated

    measured

    Single well simulation model

    Pwf =

    250 150 psia

    Model area =

    86 acres

  • 7/24/2019 GRM-chap1-matbal

    27/27

    GRM-Engler-09

    Gas Material BalanceLow-permeability gas reservoirs Problem 4

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0 200 400 600 800 1000

    cumulative production, mmscf

    p/z,psia

    , % 11

    gi, cp 0.0131

    h, ft 67

    cti, psi-1 x 10-4 6.22

    gg 0.67

    Tr , deg F 103

    Sw, % 44

    rw, ft. 0.229

    Pi, psi 1045

    Estimate the gas-in-place and drainage area for this well. If

    cumulative production was 752 mmscf, what has been the

    recovery factor?