guidance laws for short range tactical

Upload: mykingboody2156

Post on 30-Oct-2015

76 views

Category:

Documents


0 download

DESCRIPTION

Guidance Laws for Short Range Tactical missiles

TRANSCRIPT

  • 79-0059

    Guidance Laws for Short Range Tactical Missiles

    ii

    H.L. Pastrick, U.S. Army Missile Research & Development Command, Huntsville, Ala.; and S.M. Seltzer, Control Dynamics Co., Huntsville, Ala.; and M.E. Warren, University of Florida, Gainesville, Fla.

    17th AEROSPACE SCIENCES MEETING

    New Orleans, La./January 15-17, 1979

    For permission lo copy or republish. contact the American institute 01 Aeronautics and Aslronaulics. 1290 Avenue 01 the Americas. New York. N.Y. 10019.

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • GUIDANCE LAWS FOR SHORT RANGE TACTICAL MISSILES

    H . L . P a s t r i c k " US Army M i s s i l e Research and Development Cornand

    H u n t s v i l l e , Alabama

    S. M. Sel tzer"* Control Dynamics Company

    H u n t s v i l l e , Alabama

    M. E . Warrent U n i v e r s i t y o f F l o r i d a G a i n e s v i l l e , F l o r i d a

    Abstract_

    A comparison of guidance laws a p p l i c a b l e t o s h o r t range t a c t i c a l m i s s i l e s is made. These laws are segmented i n t o several c l a s s e s and t h e p r i n c i - p l e s unde r ly ing each c l a s s are d i s c u s s e d . S p e c i f i c a t t e n t i o n is g iven t o the s t r u c t u r e of t h e guidance technique and t h e requirements f o r i t s implementa- t i o n . E v a l u a t i o n and comparison o f t h e performance of t a c h guidance l a w versus t h e c o s t o f implementing i t are cons ide red . An e x t e n s i v e b ib l iog raphy of r e l e v a n t l i t e r a t u r e i s included.

    1 . I n t r o d u c t i o n

    The US Army M i s s i l e Research and Development C o m n d (MIRADCOM) r e c e n t l y began a t a s k t o develop a n advanced guidance and c o n t r o l system f o r f u r t h e r Army Modular Missiles. The i n t e n t i s t o " leapfrog" systems c u r r e n t l y under development. The purpose o f this paper i s eo d e s c r i b e t h e work t h a t has been done wi th in t h i s new t a s k and t o provide an i nd i - c a t i o n of f u t u r e e f f o r t s t h a t are now planned.

    T h e reason f o r embarking on this t a s k is now s u m a r i z e d . P r e s e n t weapon systems performance may be s e r i o u s l y degraded i n engagements a g a i n s t t a r g e t s w i th p red ic t ed c h a r a c t e r i s t i c s of t h e 1990s and beyond and i n t h e b a t t l e f i e l d environments of t h a t t ime frame ( s e e , e.g. , p . 1 1 , Avia t ion Week and Space Techno lom, March 20, 1978). I t has been e s t a b l i s h e d t h a t t h e guidance laws c u r r e n t l y i n wide use may not be adequate t o combat t hose t h r e a t s . Thus, i t is p r o j e c t e d t h a t fundamental advances i n guidance and control systems theory are r e q u i r e d t o enhance t h e e f f e c t i v e n e s s of f u t u r e weapon systems. Add i t iona l ly , m i s s i l e a i r f r a m e and p ropu l s ion systems may r e q u i r e advances comen- % r a t e with t h e p red ic t ed t a r g e t s c e n a r i o s . I n p a r t i c u l a r , a i r d e f e n s e weapons c u r r e n t l y i n Research and Development (R&D) may be s e r i o u s l y hampered i n t h e combat s c e n a r i o s env i s ioned . From an overall systems viewpoint , t h i s t a s k s h a l l a d d i e s s t h e i s s u e o f c r e a t i n g new theory i n the guidance and c o n t r o l area t o meet the h i g h perform- ance t h r e a t of t h e f u t u r e as a l ead ing technology item. C lose ly a s s o c i a t e d wi th i t and i n p a r a l l e l w i th t h e guidance and c o n t r o l e f f o r t , weapon system work s h a l l be undertaken t o modify a i r f r a m e and p ropu l s ion modules t o be capab le of engaging t h e 1990s t h r e a t . General suppor t weapons s h a l l be viewed i n i t i a l l y as a s u b s e t of t h e a i r de fense

    system. Here to fo re t h e s e two classes of weapons each were developed independent ly . Th i s r e sea rch s h a l l a t tempt t o view them as p o t e n t i a l l y s i m i l a r systems t h a t u t i l i z e d i f f e r e n t modules such as propu l s ion , guidance, warhead, e t c .

    The f i r s t scep i n implementing t h i s t a s k was t o conduct a l i t e r a t u r e survey t o e s t a b l i s h a tech- nology base s t a r t i n g p o i n t . C o n s t r a i n t s on l eng th of t h e paper r e s u l t i n summarizing ( a l p h a b e t i c a l l y by au tho r ) t h e l i s t t o inc lude only those r e f e r - ences considered by t h e a u t h o r s t o be most r e l e v a n t .

    Following t h i s survey, guidance l a w s were placed i n f i v e c a t e g o r i e s and de f ined mathematical ly . The implementation and p r e d i c t e d performance of each ca t egory was t h t a i n v e s t i g a t e d and compared in l i g h t of c u r r e n t and p r e d i c t e d hardware and so f tware capa- b i l i t i e s . Th i s paper d e s c r i b e s t h e s e r e s u l t s .

    11. Guidance Laws

    The development o f guidance laws f o r s h o r t range t a c t i c a l m i s s i l e s has become a wel l - researched t o p i c over the p a s t 25 y e a r s . A summary of a d e t a i l e d l i t e r a t u r e survey, how each guidance l aw can be implemented, and guidance l a w p red ic t ed per- formance are desc r ibed wi th in t h e f i v e guidance law c a t e g o r i e s s t a t e d i n t h e I n t r o d u c t i o n .

    L i n e of- S i g h t Guidance (Command- to-Line-of-Sight and B e a m R ide r1

    Clemow (1960), i n h i s book M i s s i l e Guidance, provides a d e t a i l e d d i s c u s s i o n o f beam r i d i n g , w h i l e Mahapatra (1976) d i s c u s s e s morphological d e s i g n based on beam r i d i n g , Clemow (1960) d i s - c u s s e s co-nd-to-line-of-sight (CLOS) , while Kain and Yost (1976) u s e t h i s method i n t h e i r s h i p de fense s c e n a r i o , u s i n g Kalman f i l t e r s t o reduce beam j i t t e r .

    A t t h e MIRADCOM, CLOS and Beam Rider (BR) con- c e p t s are each cons ide rad a s u b s e t of the l i n e - o f - s i g h t guidance laws. They d i f f e r p r i m a r i l y i n t h e i r mechanizat ion. The CLOS uses a wire f o r t h e t ransponder l i n k , e .g . , TOW o r DRAGON. BR may use an e l e c t r o - o p t i c a l l i n k , e .g . , SHILLELAGH, and f l y i n a d i r e c t e d beam aimed a t t h e t a r g e t . G e n e r i c a l l y they a re s imi la r and w i l l be d i scussed as one.

    *Research Aerospace Eng inee r . Member A I A A .

    **Senior S c i e n t i s t . Assoc ia t e Fellow A I A A .

    t A s s o c i a t e P r o f e s s o r , E l e c t r i c a l Engineer ing Department. Member A I A A .

    1 This paper ih declared P work 01 Ihe US. Gorernmcnl and Iherelorei, in thepublicdornsin.

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • The l i n e - o f - s i g h t (LOS) guidance scheme (CLOS and BR) i s one i n which t h e missile is guided on an LOS cour se so as t o remain on a l i n e ad jo in ing the t a r g e t and t h e po in t of c o n t r o l . To f l y a long the LOS, t he missile r e q u i r e s a v e l o c i t y component (V )

    perpend icu la r t o t h e u)S t h a t i s equal t o t h e MS v e l o c i t y desc r ibed by t h e r e l a t i o n

    M 1 i/

    'MI = %M 'ST (1)

    where RSM r e p r e s e n t s t h e range from t h e m i s s i l e t o

    the t r a c k i n g s t a t i o n and yST r e p r e s e n t s t he LOS. I n g e n e r a l , t he missile f l i e s a p u r s u i t guidance cour se a t t h e i n i t i a t i o n o f t he e n t r y i n t o t h e beam a t launch and f l i e s an approximately cons t an t bear - i n g course near impact. This is observed from t h e v e l o c i t y equa t ion

    - _ %M 'Mi - RST 'T

    where t h e range of t h e t r a c k i n g s t a t i o n t o t h e t a r - g e t i s g iven by R and V r e p r e s e n t s t he t a r g e t

    v e l o c i t y r e l a t i v e t o t h e s u r f a c e of t h e e a r t h . ST T

    Figures 1 and 2 a r e s i m p l i f i e d c o n t r o l b lock diagrams h i g h l i g h t i n g f e a t u r e s of t h e scheme f o r each of t h e two cases. I t should be noted t h a t t he p r o j e c t o r mount dynamics i n F igu re 1 and t h e t r a c k e r mount dynamics i n F igu re 2 may be cons ide rab ly more

    complex than dep ic t ed he re . Also t h e BR missile r e q u i r e s anboard a u t o p i l o t compensation s i n c e t h e p r o j e c t o r does not know where t h e missile i s loca ted once enroute . The CMS scheme, however, does keep t r a c k of t h e m i s s i l e and thus compensates f o r i t s p o s i t i o n p r i o r t o t r a n s m i t t i n g t h e guidance s i g n a l v i a t h e w i r e l i n k .

    Performance o f m i s s i l e s f l y i n g t h i s guidance law i s t y p i c a l l y very good. Without t h e man-in- the- loop t r a c k i n g e r r o r , flawless guidance has been t h e r u l e : t a r g e t h i t s can be expected v i r t u a l l y on each sho t . I n t h e more r e a l i s t i c c o n d i t i o n where t h e the t r a c k i n g e r r o r i s t h e major e r r o r sou rce , g iven t h a t a r e l i a b l e round has been f i r e d , t h e p e r f o m - a w e has been found t o be b e t t e r than 1 f t CEP wi th a 90% conf idence l e v e l .

    P u r s u i t Guidance

    Goodstein (1972) gave a comparison o f t h e q u a l i t i e s and s e n s i t i v i t i e s of LOS, p u r s u i t , and p r o p o r t i o n a l nav iga t ion guidance f o r a i r - to-ground and a i r - t o - a i r missiles. I n ano the r paper i n t h e same r e p o r t , Goodstein d i s c u s s e s t h e guidance and c o n t r o l sys tem t r a d e o f f s i n m i s s i l e des ign .

    Two p u r s u i t guidance laws are d i scussed h e r e i n : a t t i t u d e p u r s u i t gu idance and v e l o c i t y p u r s u i t guidance. A t t i t u d e p u r s u i t guidance tries t o keep t h e c e n t e r l i n e of t h e m i s s i l e po in t ed a t t h e t a r s e t . I n a missi le which f l i e s an ang le o f a t t a c k when maneuvering, t h e v e l o c i t y v e c t o r w i l l always l a g

    'L ZOOM PROJECTOR

    PROJECTOR RANGE ZOOM

    ACCELERATION DYNAMICS MAY BE MORE COMPLEX

    Figure 1. Beam Rider Scheme$<

    TRACKER m! GAIN PROGRAM ACCELERATION AM I

    OVNAMICSMAY BE MORE COMPLEX

    Figure 2, Command-to-Line-of-Sight Scheme*

    . "Implementation scheme provided by R. H. Farmer, Technology Labora tory , US Army Missile Research

    and Development Comand.

    2

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • t h e v e h i c l e p o i n t i n g d i r e c t i o n . Miss d i s t a n c e i s a s t r o n g f u n c t i o n of the maneuver c a p a b i l i t y o i t h e m i s s i l e and can be reduced by a f a s t responding h igh -g v e h i c l e .

    Ve loc i ty p u r s u i t guidance a t t empt s t o keep t h e v e l o c i t y v e c t o r of t h e m i s s i l e po in t ed a t t h e tar- g e t . I t i s mechanized i n sone less s o p h i s t i c a t e d missiles by mounting a target sensor on an a i r vane which i n d i c a t e s r e l a t i v e wind d i r e c t i o n . The d i i - ference between t h i s v e l o c i t y v e c t o r and a t r u e v e l o c i t y v e c t o r is t h e primary error i n t h e scheme. The a t t i t u d e p u r s u i t guidance mechanizat ion decouples t h e ang le o f a t t a c k from t h e t a r g e t s eeke r and improves m i s s d i s t a n c e performancc by an amount p r o p o r t i o n a l t o t h e v e h i c l e ang le of a t t a c k . F igu re 3 d e p i c t s two-dimensional geometry useful f o r d e s c r i b i n g t h e p u r s u i t guidance laws.

    t Y

    Figure 3 . P u r s u i t Guidance Geometr)

    Neglect ing t h e case of a maneuvering t a r g e t , f o r s i m p l i c i t y , one no tes t h a t

    i = v - v ( 3 ) T M ' and the LOS r a t e i s

    For an i d e a l p u r s u i t , 0 = X . m i s s i l e w i l l always have t o t u r n du r ing t h e a t t a c k except f o r t h e case o f a p e r f e c t head o r t a i l chase.

    S ince 6 = A, t h e

    F igu res 4 and 5 p r e s e n t examples of s i m p l i f i e d c o n t r o l system diagrams f o r t h e a t t i t u d e and velo- c i t y p u r s u i t guidance laws, r e s p e c t i v e l y . I n t h e former, a wide angle t a r g e t sensor is r equ i r ed s i n c e i t is t y p i c a l l y mechanized t o be body f i x e d . I n t h e l a t t e r , a narrower f i e ld -o f -v i ew (FOV) sen- s o r may be u t i l i z e d as a r e s u l t of t h e decoupl ing o f t h e body from t h e sensor mount as p rev ious ly desc r ibed . I n each c a s e , i s t h e forward guidance

    g a i n , and i t w i l l d i f f e r f o r each as w i l l t h e fced- back damping g a i n K R .

    F igu re 5 i n d i c a t e s t h a t h i g h e r guidance g a i n i n the v e l o c i t y p u r s u i t law r e q u i r e s some smoothing t o i n h i b i t no i se o f t h e t a r g e t sensor o p t i c s and i ts a s s o c i a t e d e l e c t r o n i c s .

    The guidance f i l t e r i n

    Figure 4. A t t i t u d e P u r s u i t Guidance

    Figure 5. Ve loc i ty P u r s u i t Guidance

    The performance t o be expected f rom p u r s u i t 4 guidance i s i n d i c a t e d i n Figures 6 , 7 , and 8. These were obtained f o r a t a c t i c a l weapon of t h e c lass known as close suppor t a n t i t a n k weapons. They are i n d i c a t i v e o f t h e q u a l i t y of performance one may expect f o r t hese guidance laws. Although these are s i m u l a t i o n r e s u l t s , r e c e n t expe r i ence with f l i g h t hardware has v a l i d a t e d t h e s imulated pcriormance t o a h i g h degree of conf idence .

    The p r o p o r t i o n a l nav iga t ion guidance (PNG) law performance i s a l s o i n d i c a t e d ; t h e r e f o r e , i t s h a l l be desc r ibed next .

    40 I I ATTITUDE PURSUll

    VELOCITY PURSUIT

    PROPORTIONAL

    0 4 8 12 16 READING ERROR Idegl

    d Figure 6 , Performance of C l a s s i c a l Guidance Laws

    f o r a Given Heading E r r o r a t F i r s t Ta rge t Acqu i s i t i on

    3

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • 100

    80

    60

    VELOCITY PURSUIT

    40

    20

    0 0 10 20 30 40 60

    TARGET VELOCITY lrnph)

    Figure 7. Performance o f C l a s s i c a l Guidance Laws f o r a Given Ta rge t Ve loc i ty and as a FUnction of Control Au thor i ty (Units Expressed i n g ' s )

    loo 90 7 80 .

    70 - CONTROL AUTHORITY = 5 8's

    60 - 50 - 40 -

    20 -

    PROPORTIONAL

    0 0.1 0.2 0.3 0.4 0.5 TARGET ACCELERATION (a1

    Figure 8. Performance o f C l a s s i c a l Guidance Laws f o r a Given Ta rge t Acce le ra t ion Commencing 5 sec Before Impact

    P r o p o r t i o n a l Navigat ion Guidance

    Adler (1956) provided one of t h e seminal papers i n t h e area, cons ide r ing PNG i n t h r e e dimensions. Adler provides a r eadab le development of t h e theo ry u s i n g v e c t o r c a l c u l u s , whereas most subsequent a u t h o r s have cons ide red only t h e p l a n a r case f o r s i m p l i f i c a t i o n . Murtaugh and C r i e l ( 1 9 6 6 ) provided ano the r fundamental paper developing three-dimen- . s i o n a l PNG f o r a s a t e l l i t e rendezvous problem.

    Clemow (1960) g i v e s ano the r b a s i c d e r i v a t i o n o f PNC, wh i l e Pitman (1972) compiled s e n s i t i v i t y f u n c t i o n s and p r o j e c t e d errors f o r PNG w i t h g a i n s o f 2 , 3, and 4. C a l c u l a t i o n s o f t e rmina l homing parameters were made by Rawlings (1970). I n a 1971 paper , Rawlings cons ide red t h e e f f e c t s o f s a t u r a t i n g aerodynamic s u r f a c e s on t r a j e c t o r i e s flown w i t h PNG. Many a u t h o r s have considered augmenting PNG t o account f o r t a r g e t a c c e l e r a t i o n s . Arbenz (1970) considered making t h e c l o s i n g v e l o c i t y heading r a t e p r o p o r t i o n a l t o LOS r a t e and developed a c l o s e d form expres s ion f o r a modif ied PNG law. Siouris (1974) added an e s t i m a t e of t a r g e t a c c e l e r a t i o n t o t h e missile a c c e l e r a t i o n command t o y i e l d an aug- mented PNG law. Guelman used geometr ic arguments t o g i v e t h e s t r u c t u r e of t h e m i s s i l e t r a j e c t o r y ; he showed i n 1971 t h a t PNG w i l l a lmost always r e s u l t i n an i n t e r c e p t f o r a c o n s t a n t v e l o c i t y t a r g e t i n 1972. For c o n s t a n t t a r g e t a c c e l e r a t i o n s , q u a l i t a - t i v e t r a j e c t o r i e s were determined and t a r g e t acqu i - s i t i o n boundaries a s ses sed . I n 1976 Cuelman con- s i d e r e d the s t r u c t u r e o f t r a j e c t o r i e s under t m e p r o p o r t i o n a l n a v i g a t i o n guidance (TPNG), where t h e commanded a c c e l e r a t i o n is normal t o t h e LOS r a t h e r t han the m i s s i l e v e l o c i t y . I n this work h e showed t h a t TPNG r e s u l t s i n i n t e r c e p t only if the i n i t i a l c o n d i t i o n s l i e i n a w e l l d e f i n e d Subset of t h e parameter space. Sh ina r (1976) cons ide red PNG f o r a r o l l i n g missile where he cons ide red t h e cross- coup l ing between roll and t h e c o n t r o l system. S l a t e r and Wells (1973) s t u d i e d opt imal e v a s i v e t a c t i c s a g a i n s t a PNG m i s s i l e , i n c o r p o r a t i n g a l a g i n t o t h e missile dynamics, and gene ra t ed two S t r a - t e g i e s based upon d i f f e r e n t o p t i m a l i t y c r i t e r i a . A comprehensive s t u d y of c l a s s i c a l (PNG) and o p t i - mal c o n t r o l techniques f o r t e rmina l homing of CN- c i fo rm and bank- to - tu rn s t e e r i n g m i s s i l e s was per- formed by B a l b i r n i e , S h e p o r a i t i s , and Eferriam (1975).

    PNG i s a guidance l a w i n which t h e angu la r r a t e of t h e m i s s i l e f l i g h t p a t h is d i r e c t l y p o r p o r t i o n a l t o t h e angu la r LOS rate o f change. T h i s is shown s i m p l i s t i c a l l y i n F igu re 9 f o r a two-dimensional case.

    Y FLIGHTPATH

    Figure 9. Geometry of F l i g h t Pa th

    The geometry o f F igu re 9 sugges t s

    where yH r e p r e s e n t s f l i g h t pa th a n g l e r e l a t i v e t o

    a f i x e d reference, h r e p r e s e n t s the LOS r e l a t i v e t o a f i x e d r e f e r e n c e , and N i s t h e n a v i g a t i o n r a t i o . A g e n e r a l expres s ion f o r m i s s i l e a c c e l e r a t i o n may h e w r i t t e n

    - - 7 = VMfMR + VMT ( 6)

    where q r e p r e s e n t s t o t a l m i s s i l e a c c e l e r a t i o n ; VM, t h e m i s s i l e speed ; T ~ , t h e missile f l i g h t

    4

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • - p a t h angle;

    miss i le f l i g h t p a t h ; t i a l t o m i s s i l e f l i g h t pa th . The d e f i n i t i o n s o f R and 7 y i e l d t h e r e l a t i o n s h i p , a . may implement p r o p o r t i o n a l nav iga t ion v i a t h e r e l a t i o n s h i p ( i n t h e Laplace domain)

    VMl, a u n i t v e c t o r l a t e r a l t o t h e

    and 7, a u n i t v e c t o r tangen- -

    = 0. One

    where 0 r e p r e s e n t s t h e l a t e r a l a c c e l e r a t i o n i n

    u n i t s o f g ' s and E r e p r e s e n t s t h e LOS e r r o r which is measured by a seeker hav ing a t ime lag c o n s t a n t of T sec and an error o f d. The symbol k r ep re - s e n t s a guidance g a i n f a c t o r .

    M

    By no t ing t h a t a c o n s t a n t bea r ing cour se i s determined i f m i s s i l e and t a r g e t are f l y i n g con- s t a n t speed and n e i t h e r i s maneuvering, it may be concluded that the LOS a t each i n s t a n t o f t i m e would be p a r a l l e l t o t h e LOS a t a previous i n s t a n t . L a t e r a l l y p e r t u r b i n g t h e c o l l i s i o n cour se noted by t a r g e t and m i s s i l e p o s i t i o n s X and r e spec t i . ve ly

    y i e l d s Z and Z which may be i n t e g r a t e d t o y i e l d

    t h e m i s s i l e t r a j e c t o r y u s i n g p r o p o r t i o n a l nav iga t ion :

    T

    T M

    2

    - gkTX + ~(3) Td ZM dZM 2 + - = - d t

    t=o d t

    The pe r fo rmawe and implementation of t h e guidance l a w are b e s t apprec i a t ed i n t h e i r r e l a t i o n - s h i p t o t w o o t h e r guidance laws which are similar i n i n t h a t no requirement i s e s t a b l i s h e d f o r range or range r a t e i n fo rma t ion . Ve loc i ty p u r s u i t and a t t i - t ude p u r s u i t are i n t h i s c a t e g o r y w i t h PNG. The performance i s i n d i c a t e d i n F i g u r e s 6 , 7 , and 6.

    O p t i m a l L inea r Guidance

    S ince the mid-1960's t h e m i s s i l e guidance l i t e r a t u r e has become i n c r e a s i n g l y permeated by t echn iques based upon opt imal c o n t r o l . The g r e a t s u c c e s s found by l i n e a r - q u a d r a t i c r e g u l a t o r theory a i d i t s dua l ana log , Kalman f i l t e r i n g , p l u s t h e a t t r a c t i v e and e a s i l y determined form of a fced- back s o l u t i o n has l ed t o a lmost a l l work i n t h i s area being based upon l i n e a r model dynamics, w i th q u a d r a t i c c o s t s and a d d i t i v e Gaussian no i se (LQG). Most fo rmula t ions c o n s i d e r t e rmina l m i s s d i s t a n c e and running c o n t r o l e f f o r t only i n t h e c o s t func- t i o n a l . Unlike the Standard r e g u l a t o r format , a running c o s t on t h e s t a t e i s g e n e r a l l y not appro- p r i a t e i n t h i s framework. The general o p t i m i z a t i o n problem then becomes

    where E ( . ) d e s i g n a t e s t h e expected va lue o p e r a t i o n , S and R are weight ing m a t r i c e s , x i s t h e s t a t e , u i s t h e c o n t r o l , and w i s a white no i se p rocess . I n most f o m l a t i o n s the dynamics are assumed con- s t a n t t o o b t a i n c losed form s o l u t i o n s .

    f

    I/ Bryson, Denham, and Dreyfus (1963); Denham

    and Bryson (1964) ; and D e n h a m (1964) were among t h e f i r s t t o c o n s i d e r o p t i m i z a t i o n techniques a p p l i e d t o m i s s i l e guidance problems. I n a s e r i e s of papers they formulated and solved t h e opt imal c o n t r o l problem with i n e q u a l i t y c o n s t r a i n t s , and then a p p l i e d t h e r e s u l t t o t h e t r a j e c t o r y shaping o f a s u r f a c e - t o - s u r f a c e missile f o r range maximization.

    S r a l l a r d (1968) gave a good t u t o r i a l review of c l a s s i c a l and modern methods f o r homing i n t e r c e p t o r m i s s i l e s . I n an e a r l i e r paper (1966), h e d e a l t w i th an a u t o p i l o t des ign . I n a 1972 paper , he a p p l i e d d i s c r e t e op t ima l control t o a m i s s i l e sys- tem wi th u n d e s i r a b l e s t a b i l i t y c h a r a c t e r i s t i c s , and then modified t h e dynamics t o y i e l d a new problem wi th more d e s i r a b l e c h a r a c t e r i s t i c s .

    An e x c e l l e n t review of d e t e r m i n i s t i c opt imal c o n t r o l and i ts a p p l i c a t i o n s , w i th an e x t e n s i v e b ib l iog raphy , i s found i n an IEEE paper by Athans (1966). Another e x c e l l e n t review wi th e x t e n s i v e references is i n B 1965 A I A A paper by Paiewonsky. Kokotovic and Rutman (1965) provided a survey of s e n s i t i v i t y methods drawing h e a v i l y upon S o v i e t l i t e r a c u r e .

    Some e a r l y a u t h o r s , i n an a t t empt t o j u s t i f y t h e r e s u l t i n g guidance laws achieved v i a l i n e a r opt imal c o n t r o l , showed that t h e i r r e s u l t s were an e x t e n s i o n of PNG. Axelband and Hardy (1969, 1970) used l i n e a r opt imal c o n t r o l t o develop what they c a l l e d quasi-optimum PNG. As w i t h a lmost a l l l i n e a r opt imal schemes, t ime-to-go i s r e q u i r e d f o r implementation.

    '4

    Lee (1969) desc r ibed s e v e r a l techniques i n non l inea r c o n t r o l which extended t h e l i n e a r rcgu- l a t o r t heo ry and drew h e a v i l y upon r e c e n t d i s s e r - t a t i o n s a t t h e Un ive r s i ty o f Minnesota.

    Deyst and P r i c e (1973) used l i n e a r dynamics wi th a p l a n a r engagement t o develop opt imal c o n t r o l laws where the t a r g e t a c c e l e r a t i o n was a f i r s t - o r d e r Markov p rocess , and found t h a t t h e s a t u r a t i o n of conc ro l s u r f a c e s was an important f a c t o r i n modeling a maneuver l i m i t e d m i s s i l e .

    Nazaroff (1976) f o m l a t e d an I Q G approach i n which h e assumed extremely s i m p l i f i e d missile dynamics b u t included t a r g e t a c c e l e r a t i o n and j e r k terms. Stockum and Wiener (1976) assumed exponen- t i a l l y c o r r e l a t e d t a r g e t a c c e l e r a t i o n s i n gene ra t - ing an I Q G guidance law. The feedback they obtained on p r o j e c t e d m i s s d i s t a n c e and r a t e was analogous t o t ime-varying PNG. They compared t h e i r guidance scheme a g a i n s t an augumented PNG law.

    Asher and Matuseewski (1974) considered t h e opt imal c o n t r o l problem where t a r g e t a c c e l e r a t i o n was accounted f o r as an e x t e r n a l d i s t u r b a n c e , r e s u l t i n g i n a t r a c k i n g f o m l a t i o n of t h e regula- t o r problem. They cons t r a ined t h e f i n a l miss d i s - t ance t o be zero b u t , t o ach ieve t h i s , needed t o know t h e t a r g e t a c c e l e r a t i o n h i s t o r y p r e c i s e l y . '4

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • B a l b i m i e , S h e p o r a i t i s , and Merriam (1975) gave a means t o o b t a i n weight ing ma t r i ces which r e s u l t i n " c l a s s i c a l type" c o n t r o l ga ins i n an LQG formula t ion . S h e p o r a i t i s , B a l b i r n i e , and Liebner (1976) cons idered a quadra t i c c o s t on t h e ang le of a t t a c k . They used a second o rde r Newton-Raphson scheme t o s o l v e the r e s u l t i n g op t imiza t ion problem. L

    Speyer (1976) app l i ed h i s l i nea r -exponen t i a l - Gaussian (LEG) c o n t r o l l e r t o a t e rmina l guidance problem. Rather than minimizing t h e expec ta t ion o f a quadra t i c form J2 (as given p r e v i o u s l y ) ,

    ~ p e y e r ' s LEG formula t ion minimizes E ,ex,(lt,J

    where p i s a scalar. The dynamical model i s aga in l i n e a r . Speyer used a Kalman f i l t e r t o o b t a i n e s t i m a t e s of S t a t e v a r i a b l e s f o r feedback. H i s c o n t r o l l e r d id n o t en joy a s e p a r a t i o n p r i n c i p a l ; c o n t r o l ga ins depended upon the f i l t e r s t a t e covar iance . Speyer ' s LEG c o s t f u n c t i o n a l had t h e e f f e c t of very h e a v i l y weighing l a r g e excurs ions and thus reduced t h e t a i l s of t h e t e rmina l m i s s d i s t r i b u t i o n .

    { 4

    Youngblood (1977) used very s i m p l i f i e d l i n e a r dynamics t o compute i n n e r launch boundaries. Youngblood's r e p o r t c o n t a i n s a d e s c r i p t i o n of t h e F le tcher -Powel l f u n c t i o n a l op t imiza t ion method.

    F i ske developed a number of guidance and esti- mat ion schemes based upon LQG formula t ions wi th vary ing degrees of model complexity. form s o l u t i o n s f o r t h e c o n t r o l l e r s are g iven i n t h e r e p o r t , a l lowing one t o examine t h e e f f e c t of model parameters on the ga ins . F i ske also p r e s e n t s a s t o c h a s t i c guidance law, wherein the t a r g e t acce l - e r a t i o n i s assumed t o be a f i r s t o r d e r system d r i v e n by whi te no ise . In a d d i t i o n , a non l inea r law, based upon n u l l i n g p ro jec t ed miss d i s t a n c e over a s i n g l e c o n t r o l i n t e r v a l was given. York and P a s t r i c k (1977) looked a t t h e problem of mini- mizing t h e t e rmina l m i s s d i s t a n c e and t h e d e v i a t i o n of t he m i s s i l e from a d e s i r e d o r i e n t a t i o n a t t h e f i n a l t i m e . t h a t had f i n i t e t ime de lay . In f a c t , t h e i n c r e a s e and dec rease i n time de lay had i n t e r e s t i n g r ami f i - c a t i o n s on t h e s o l u t i o n . The ang le of a t t a c k assumption was i n v e s t i g a t e d and , a l though not so lved a n a l y t i c a l l y i n c losed form, t h e system was der ived .

    The c losed

    L/

    A f o w l a t i o n was g iven f o r a sys tem

    For completeness, t h e fo l lowing example sum- mar izes a t y p i c a l op t imal c o n t r o l law fo- la t ion. The geometry of t h e t a c t i c a l m i s s i l e - t a r g e t pos i - t i o n i s g iven i n F igu re 10 . Assume t h a t t h e ang le o f a t t a c k i s sma l l and thus can be neglec ted ( t h i s assumption w i l l be cons ide red l a t e r ) , and choose the f a l lowing set o f v a r i a b l e s :

    where Yd is t h e p o s i t i o n v a r i a b l e from t h e m i s s i l e

    t o t h e t a r g e t p ro j ec t ed on t h e ground;

    p o s i t i o n v a r i a b l e of t h e t a r g e t ;

    Y t i s t h e i Ym is t h e

    p o s i t i o n y a r i a b l e of t h e missile p ro jec t ed on t h e ground;

    t o t h e t a r g e t v e l o c i t y p r o j e c t e d on t h e ground; AL i s t h e l a t e r a l a c c e l e r a t i o n o f t h e m i s s i l e ; 0 is t h e body a t t i r u d e angle of the missile; and a is t h e ang le of a t t a c k of t h e m i s s i l e shown i n F igu re 10.

    Yd is the d e r i v a t i v e o f Yd, t h e missile

    F igure 10, Geometry of T a c t i c a l Missile Targe t P o s i t i o n s

    Th i s op t imal c o n t r o l problem w i l l have a con- t r o l l e r of t h e form

    where Cy, C?, CO,

    c i e n t s chosen t o minimize t h e c o s t f u n c t i o n a l

    are t ime-varying c o e f f i -

    t f

    J = Yd( t f ) + y B ( t f ) + B u 2 ( t ) d t 1 (12) 0

    For t h e case where t h e ang le o f a t t a c k probably cannot be ignored e . g . , f o r t h e l a r g e r t a c t i c a l missile, t h e system of equa t ions should inc lude t h e a n g l e of a t t a c k a. I n a d d i t i o n , because it i s f e a s i b l e t o achieve only a small a n g l e of a t t a c k a t impact, a r easonab le performance index t o be mini- mized would seem t o he

    f t

    2 2 u 2 ( t ) d t . 2 J = c lYd( t f ) + c2e ( t f ) + c3a ( t f ) + c4

    t o

    (13)

    The performance o b t a i n a b l e from t h e op t ima l guidance l a w formulated and s imula ted f o r Equat ion (13) was comparabla and even b e t t e r than t h e PNG law i n terms of m i s s d i s t a n c e . Add i t iona l ly , it had t h e added f e a t u r e of meeting a c o n s t r a i n t o r t h e impact ang le which t h e F'NG law could not ach ieve . v i a s i m u l a t i o n on an a l l - d i g i t a l 6-DOF m i s s i l e s i m u l a t i o n t o be w i t h i n 1 deg of t h e d e s i r e d impact ang le and wi th in 1 f t of t h e d e s i r e d m i s s d i s t a n c e . Other r e s e a r c h e r s have co r robora t ed these r e s u l t s .

    The performance of any r e a l i s t i c op t imal con-

    I n p a r t i c u l a r t h e impact angle was shown

    t r o l law i n a m i s s i l e a p p l i c a t i o n i s dependent on the e s t i m a t i o n of f i n a l time o r , e q u i v a l e n t l y , o n

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • t ime-to-go. T y p i c a l l y , an e s t i m a t e o f t h e range between t h e t a r g e t and m i s s i l e , and t h e r a t e o f change of t h i s range are ob ta ined from rada r or o t h e r ranging d e v i c e s ; t h e t ime-to-go e s t i m a t e is t h e n c a l c u l a t e d . T h i s e s t i m a t e works q u i t e we l l as long as t h e range and r ange - ra t e i n fo rma t ion a re accu ra t e . I n many i n s t a n c e s , however, t h e d a t a are contaminated by n o i s e e i t h e r c o v e r t l y , as i n t h e case of r a d a r j a m i n g d e v i c e s , or by t h e pro- c e s s i n g e l e c t r o n i c s . T h i s a d v e r s e l y impacts the e s t i m a t e of t ime-to-go and t h e op t ima l c o n t r o l law, and m i s s i l e performance s u f f e r s . P a s t r i c k and Yark (1977) p r e s e n t a d i s c u s s i o n of s e v e r a l a s p e c t s o f t h e problem i n t h e c o n t e x t of a r e a l i s t i c a p p l i c a - t i o n and p rov ide a n a l y t i c computer a lgo r i thms f o r i t s s o l u t i o n , as w e l l as a closed-form r e s u l t . Another more r e c e n t a t t empt t o e s t i m a t e t ime-to-go was made by Fiske. He also addres ses t h e p o s s i b i l i t y o f o b t a i n i n g t h i s v a r i a b l e by an i n t e n s i t y ranging technique.

    Another d i f f i c u l t y with op t ima l guidance laws i s t h e i r s e n s i t i v i t y t o i n i t i a l c o n d i t i o n s , as shown by York (1978). The pr imary message t h e r e i n i s t h e s t r o n g need f o r a c c u r a t e modeling of t h e system and the importance of the s e l e c t i o n of numerical q u a n t i t i e s f o r t h e elements of t h e weight- i ng m a t r i c e s i n t h e performance index.

    O the r Guidance Schemes

    Whiting and Jobe (1972) cons ide red u s i n g a " v i r t u a l t a r g e t " approach t o guidance fo r a s h o r t range a i r - to -g round m i s s i l e .

    P o u l t e r and Anderson (1976) cons ide red a non- l i n e a r d i f f e r e n t i a l game framework t o d e r i v e an opt imal s t e e r i n g l a w f o r a t e rmina l homing m i s s i l e . I n a p r i o r pape r , Anderson (1974) gave a method of upda t ing a d i f f e r e n t i a l game s o l u t i o n v i a l i n e a r i z e d two-point boundary v;lue problems.

    For background m a t e r i a l , Froning and Gieseking (1973) gave a d e s c r i p t i o n o f a u t o p i l o t s t e e r i n g mechanisms f o r bank-to- turn m i s s i l e s . Gido, J a f f e , and Wilson (1974) provided computer programs t o produce a u t o p i l o t des igns u s i n g b o t h c l a s s i c a l (PNG) and modern (LQG) fo rmula t ions . George (1974) d i s - cussed t r e n d s i n IMU, guidance and c o n t r o l hardware.

    Mahmoud (1977) desc r ibed a d u a l l e v e l , h i e r - a r c h i c a l o p t i m i z a t i o n scheme based on i n v a r i a n t imbedding which is used t o o b t a i n approximate solu- t i o n s t o many non l inea r c o n t r o l problems. and Vlach (1977) p re sen ted a new augmented p e n a l t y f u n c t i o n approach t o opt imal c o n t r o l problems. T h e i r fo rmula t ion i s a p p l i c a b l e t o f i n i t e dimen- s i o n a l o p t i m i z a t i o n problems with t e rmina l c o n s t r a i n t s .

    Connor

    d

    Lansing and B a t t i n (1965) p re sen ted m c h back- ground m a t e r i a l on random processes a p p l i e d t o automatic c o n t r o l . R a d b i l l and McCue (1970) pro- vided background m a t e r i a l on q u a s i - l i n e a r i z a t i o n methods i n s o l v i n g coupled n o n l i n e a r two-Point boundary va lue problems.

    Ch in ' s book on m i s s i l e d e s i g n (1961) has a s e c t i o n on m i s s i l e t r a n s f e r f u n c t i o n s which i s very u s e f u l i n a s s e s s i n g t h e c o n t r i b u t i o n of aerodynamic f a c t o r s and c o n t r o l s u r f a c e s t o m i s s i l e motion. Goodstein (1972) provided an overview of m i s s i l e c o n t r o l system development and, i n t h e same AGAIU) r e p o r t , Acus (1972) p re sen ted a d e s c r i p t i o n and comparison of i n e r t i a l guidance technology f o r t a c t i c a l m i s s i l e s .

    111. Discuss ion

    A survey has been made of guidance laws app l i ed t o s h o r t range t a c t i c a l m i s s i l e s , and they have been organized i n t o f i v e c a t e g o r i e s f o r convenience of d i s c u s s i o n .

    To b e t t e r p l a c e them i n r e l a t i v e p e r s p e c t i v e , F igu re 11 p r e s e n t s t h e hardware requirements f o r mechanizing them. Though t h e concepts are reason- a b l y s e l f exp lana to ry , i t should be noted t h a t t h e BR and CLOS concep t s are conf igu red wi th a f t sensor and o p t i c s while t h e o t h e r s are forward. Also, t h e opt imal guidance scheme sugges t s t h e need f o r a microprocessor t o hand le t h e more complex guidance a lgo r i thms .

    Guidance concept c o n f i g u r a t i o n comparisons dep ic t ed i n t h e Table f e a t u r e t h e r e l a t i v e c o s t and o t h e r items t h a t show complexity and performance. With t h e excep t ion of t h e microprocessor requirement

    OPTICS SENSOR AND OPTICS

    c MAIN BODY + M A I N BODY SENSOR AND OPTICS

    f FINS c

    C SENSOR AND r8\ OPTICS r 2 D O F G Y R O

    .-MICRO- PROCESSOR

    - M A I N BODY

    Figure 11. Ins t rumen ta t ion Conf igu ra t ion Concepts

    7

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • 8

    3Nd

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • R. B . Asher and J . H. Matuzewski, "Optimal Guidance E . P. Cunningham, "Lambda Mat r ix Terminal Con t ro l of F i n i t e Bandwidth Systems with Zero Terminal Miss," f o r M i s s i l e Guidance," J. S p a c e c r a f t and Rockets,

    pp. 119-121, Jan. 1968. J o i n t Auto. Con t ro l Cbnf. , pp. 4-10, 1974.

    R. B. Asher and J. H. Matuzewski, "Optimal Guidance f o r Maneuvering T a r g e t s , " J. Spacec ra f t and Rockets, pp. 204-206, March 1974.

    M . Athans, "The S t a t u s o f Optimal Con t ro l Theory and A p p l i c a t i o n s f o r D e t e r m i n i s t i c Systems," IEEE Trans . Auto. C o n t r o l , pp. 580-596, J u l y 1966.

    M . Athans, "On Optimal A l l o c a t i o n and Guidance Laws for L i n e a r I n t e r c e p t i o n and Rendeivous Problems," IEEE Trans. Aerospace and E l e c t r o n i c Systems, pp. 843-853, Sep t . 1971.

    E . I. Axelband and F. W . Hardy, "Quasi Optimum Pro- p o r t i o n a l Navigat ion," 2nd H a w a i i I n t . Conf. Sys . Sc i ences , pp. 417-421, 1969.

    E . I . Axelband and F. W . Hardv. "ODtima1 Feedback _, . Missile Guidance," 3rd H a w a i i 1 C . Conf. Svs. S c i e n c e s , pp. 874-877, 1970.

    E . C . B a l b i r n i e , L . P . S h e p o r a i t i s and C. W. Merriam, 'Werging Convent ional and Optimal Con t ro l Techniques f o r P r a c t i c a l M i s s i l e Terminal Guidance," A I A A Guidance and Con t ro l Conf., A I A A paper 75-1127, 1975.

    G . Bashein and C. P. Neuman, "Linear Feedback Guid- ance f o r I n t e r c e D t i o n and Rendezvous i n a S t o c h a s t i c Environment," 1st H a w a i i I n t . Conf. Sys. Sc iences , pp. 654-657, 1968.

    S. M . B r a i n i n and R . B. McGhee, "Optimal Biased P r o p o r t i o n a l Navigat ion," IEEE Trans. Auto. Con t ro l , pp. 440-442, Aug. 1968.

    A. S . Bratus, "Approximate S o l u t i o n o f Bel lman's Equa t ion for a Class o f O p t i m a l Terminal S t a t e Con t ro l Problems,' ' J. ADpiied Math and Mechanics, Vol. 37, NO. 3 , pp. 396-407, 1973.

    A . E . Bryson, Jr., "App l i ca t ions o f Optimal Con t ro l Theory i n Aerospace Engineer ing," 1 0 t h A I A A Minta Martin Memorial L e c t u r e , Cambridge, Mass., 1966.

    A . E . Bryson, J r . , W. F . Denham and S. E . Dreyfus, "Optimal P r o g r a m i n g Problems w i t h I n e q u a l i t y Con- s t r a i n t s I: Necessary Cond i t ions f o r Ex te rna l Solu- t i o n s , " A I A A J o u r n a l , pp. 2544-2550, NO". 1963.

    C . S . Chang, "A Terminal Guidance Theory Using Dynamic P r o g r a m i n g Formulat ion," A I A A J o u r n a l , pp. 912-916, May 1970.

    A . A . C h i k r i i , "Nonlinear Problem of Evasion o f Con tac t with Terminal S e t of ComDlex S t r u c t u r e . " 3 . Applied Math and Mechanics, Vol. 39, No. 1, pp. 3-11, 1975.

    S. S. Ch'in, M i s s i l e Confirnuration Design, McGrau- H i l l , pp. 130-154, 1961.

    3 . Clemow, M i s s i l e Guidance, Temple P r e s s Un l imi t ed , London, 1960.

    M. A. Connor and M. Vlach, "A New Augmented Pena l ty Funct ionTechniqued f o r Optimal Con t ro l Problems," J. Opt imiza t ion Theory and App l i ca t ions , pp. 39-49, Jan. 1977.

    W. F. Denham, "Range Maximization of a Surface- to- S u r f a c e Missile with In -F l igh t I n e a u a l i t v Con-

    i/ -

    s t r a i n t s , " J. S p a c e c r a f t and Rockets , pp. 78-83, Jan. 1964.

    W. F . Denham and A . W. Bryson, Jr . , "Optimal P m - g r a m i n g Problems w i t h I n e q u a l i t y C o n s t r a i n t s 11: S o l u t i o n by S t e e p e s t Descent ," A I A A J o u r n a l , pp. 25-34, Jan. 1964.

    J. J . Deyst and C . F. P r i c e , "Optimal S t o c h a s t i c Guidance Laws for T a c t i c a l M i s s i l e s , " J. Spacec ra f t and Rockets , pp. 301-308, May 1973.

    R . E . Dickson and V . Garber, "Optimum Rendezvous, I n t e r c e p t and I n j e c t i o n , " A I A A Journal, pp. 1402- 1403, J u l y 1969.

    P . H. F i ske , "Advanced D i g i t a l Guidance and Con t ro l Concepts f o r Air- to-Air T a c t i c a l M i s s i l e s , " The A n a l y t i c a l Sc iences Corpora t ion Technical Report , Dec. 1977.

    H. D . Froning and D . L. Gieseking, "Bank t o Turn S t e e r i n g f o r Highly Maneuverable M i s s i l e s , " AIAA Guidance and Con t ro l Conf. , A I A A paper , 73-860, 1973.

    Y . Gemin, "Polynomial Approximations i n Pe r tu rba - t i o n a l Nav iga t ion and Guidance Schemes," Advanced Problems and Methods f o r S p a c e f l i g h t Op t imiza t ion , e d i t e d by B. F. d e Veubeke, Pergamon P r e s s , Oxford, pp. 13-24, 1969.

    L. C . George, "Missile Guidance and C o n t r o l System Design Trends," SAE Nat iona l A ~ ~ o s D ~ c ~ Engineer ing and Manuf. Meeting, S A 3 paper 740873, 1974.

    J . F. Gido, R. C. J a f f e and R. 6. Wilson, "Merging Convent ional and Modern Con t ro l Techniques f o r P r a c t i c a l Missile Autop i lo t Design," A I A A Mechanics and Con t ro l o f F l i g h t Conf. , A I A A paper 74-911, 1974.

    R . Goodstein, "Development of Con t ro l System Require- ments," AGARD Report: Guidance and Con t ro l of Tac- t i c a l M i s s i l e s , May 1972.

    R . Goodstein, "Guidance L a w A p p l i c a b i l i t y t o M i s s i l e

    i/

    Closing," AGARD Report: T a c t i c a l Missiles, May 1972.

    Guidince and Con t ro l of

    P. C . Gregory, "General Cons ide ra t ions i n Guidance

    P . C. Gregory, P . B. T e e t s and B . 6 . Lee, "Guidance, Navigat ion and Con t ro l , " Space/Aeronautics, pp. 61- 66, J u l y 1969.

    K. V . G r i d e r , W. E . Jo rdan and M. K i m , "Suboptimal Guidance f o r A t t i t u d e Angle Constrained F l i g h t T r a j e c t o r i e s , " 6 t h Hawaii l n t . Conf. Svs. Sc iences , pp. 455-457, 1973.

    M. Guelman, "A Q u a l i t a t i v e Study of P r o p o r t i o n a l Navigat ion," IEEE Trans. Aerospace and E l e c t r o n i c u, pp. 337-343, J u l y 1971. d

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • M. Guelman, "Proportional Navigation with a Man- euvering Target," IEEE Trans. Aerospace and Elec- tronic Systems, pp. 364-371, May 1972.

    '< , M. Guelman, "The Closed Form Solution of True Pro- - portional Navigation," IEEE Trans. Aerospace and Electronic System, pp. 472-482, July 1976.

    G. L. Harmon, K. E. Kent and W. P. Purcell, "Optimal Bang-Bang Guidance System," Western Elec- tric Show and Convention, Part 5, paper 19.1, 1962.

    Y. C. Ho, "Optimal Terminal Maneuver and Evasion Strategy," SIAM J. Control, Vol. 4, No. 3, pp. 421- 428, 1966.

    Y. C. Ho, A. E. Bryson, Jr. and S. Baron, "Differ- ential Games and Optimal Pursuit-Evasion Strate- gies," IEEE Trans. Auto. Control, pp. 385-389, Oct. 1965.

    R. M. Howe, "Guidance," Chapter 19 appearing in System Engineering Handbook, ed. by R. E. Machol, W. P. Tanner. Jr. and S. N. Alexander. McGraw-Hill. NY 1965.

    S. S. Hu and M. L. Thompson, "A Direct and Analyti- cal Solution for Space Flight Guidance Functions," AIAA Aerospace Sciences Meetins, 1966.

    L. A. Irish, "A Basic Control Equation for Rendez- vous Terminal Guidance," IRE Trans. Aerospace and Navigational Electronics, pp. 106-113, Sept. 1961.

    W. H. Ito and J. E. Tushie, "P-Matrix Guidance," AIAA/ION Astrodvnamics Guidance and Control Conf., Aug. 1964.

    A. Ivanov, "Radar Guidance of Missiles," IEEE Inter- national Conf., pp. 321-335, 1975.

    J. E. Kain and D. J . Yost, "Command to Line-of- Sight Guidance: Problem," AIAA Guidance and Control Conf., AIAA paper 76-1956, 1976.

    J. E. Kain and D. J . Yost. "Tareet Estimation in an

    iJ

    A Stochastic Optimal Control

    - ECM Environment," J . Spacecraft and Rockets, pp 492-498, AUg. 1975.

    M. Kim and I:. V. Grider, "Terminal Guidance for Impact Attitude Angle Constrained Flight Trajec- tories," IEEE Trans. Aerospace and Electronic u, pp. 852-859, Nov. 1973. P. V. Kokotovic and R. S. Rutman, "Sensitivity of Automatic Control Systems (Survey) , ' I Automation and Remote Control, pp. 727-749, April 1965.

    J . H. Laning, Jr. and R. H. Battin, Random Processes in Automatic Control, McGrav-Hill, pp. 239-247, 1965.

    E. B. Lee, "Recent Development in the Theory of Optimal Control and Their Application," Proc. Technical Seminar on Guidance and Control, Hunts- ville, Alabama, Aug. 1969.

    I . Lee, "Optimal Trajectory, Guidance and Conjugate Points," Information and Control, pp. 589-606, 1965.

    W

    M. H. Liu and K. W. Han, "Model Reduction of a Non- linear Control System," J . Spacecraft and Rockets, pp. 786-788, Dec. 1975.

    A. S. Locke, Guidance, D. Van Nostrand Co. Princeton, 1955.

    D. F. McAllister and E. E. Schiring, "Optimizing Thrust Vector Control for Short Powered Flight Maneuvers,'' appearing in Space Electronics Symposium, ed. by C. M. Wong, American Astronautical Society, 1965.

    B. A. McElhoe, 'Minimal-Fuel Steering for Rendezvous Homing Using Proportional Navigation," American Rocket Society Journal, pp. 1614-1615, Oct. 1962.

    J. A. Mever and J . 6. Bland. "Minimm Information Terminal Homing Guidance," Nat. Elect. Conf., pp. 703-708, Oct. 1966.

    J. F. Muller, "Synthesis of a Guidance System for a Short Range Infantry Missile," J. Spaceciaft and -, pp. 314-317, March 1969. S. A. Murtaugh and H. E. Criel, "Fundamentals of Proportional Navigation," IEEE Spectrum, pp. 75-85, Dec. 1966.

    N. Nagarajin, "Discrete Optimal Control Approach to a Four Dimensional Guidance Problem Near Terminal Areas," Int. J . Control, pp. 277-288, Aug. 1974.

    G. J . Nazaroff, "An Optimal Terminal Guidance Law," IEEE Trans. Auto. Control, pp. 407-408, June 1976.

    N. J. Niemi, "Investigation of a Terminal Guidance System for a Satellit; Rendezvous," AIAA Journal, pp. 405-411, Feb. 1963.

    B. Paiewonsky, "Optimal Control: A Review of Theory and Practice," AIAA Journal, pp. 1985-2006, Nov. 1965.

    H. L. Pastrick, "Filtering Inertial System Errors to Improve Terminal Sector Navigation," Proc. South- eastern Symp. SYS. Theory, 1974.

    H. L. Pastrick and R. J . York, "On the Determination of Unspecified t, in a Guided Missile Optimal Con- trol Law Application," Proc. 1977 IEEE Conference on Decision and Control, 1977.

    C. Pfeiffer, "A Successive Approximation Technique for Constructing a Near-Optimum Guidance Law," Astronautical Conf.. Astrodynamics, Guidance and Control. Miscellanea, pp. 285-291, 1967.

    D. L. Pitman, "Adjoint Solutions to Intercept Guid- ance," AGARC Report: Guidance and Control of Tac- tical Missiles, May 1972.

    J. E. Potter, "A Guidance-Navigation Separation Theorem," AIAA/ION Astrdynamics Guidance and Control Conf., Aug. 1964.

    R. A . Poulter and G. M. Anderson, "A Guidance Con- cept for Air-to-Air Missiles Based on Nonlinear Differential Game Theory," National Aerospace Elec- tronics Conf., pp. 605-9, 1976.

    10

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9

  • D. L. Quam, W i s s i l e Aerodynamic S e n s i t i v i t y Ana lys i s , " A I A A P r e p r i n t , 1978.

    J . R. R a d b i l l and G . A . McCue, Q u a s i l i n e a r i z a t i o n and Nonlinear Problems i n F l u i d and O r b i t a l Mechanics, American E l s e v i e r , New York, pp. 1-21, 1970.

    E . R . Rane. "A Comnent on Closed-Looo Ontimal Guid- I, L .

    ance Systems,' ' IEEE Trans. Auto. Con t ro l , pp. 616- 617, J u l y 1966.

    A . 6. Rawling, "On Nonzero Miss Dis t ance , " J. S p a c e c r a f t and Rockets , pp. 81-83, Jan. 1969.

    A . G . Rawling, " P r e d i c t i o n o f Terminal V a r i a b l e s i n Homing," J. S p a c e c r a f t and Rockets , pp. 764-766, June 1970.

    A. G . Rawling, "Nonlinear ProNav and t h e Minimum Time t o Turn," J. S p a c e c r a f t and Rockets, pp. 198- 201, F e b m a r y 1971.

    R. W. Rishel, "Optimal Terminal Guidance o f An Air t o S u r f a c e M i s s i l e , " A I A A Guidance. Con t ro l and F l i s h t Dynamics Conference, Aug. 1967.

    D. M . Salman and W. Heine, "Reachable S e t s Ana lys i s - An E f f i c i e n t Techniaue f o r Performina In t e rceDto r / . . Sensor Tradeof f S t u d i e s , " A I A A Guidance and C o n t r o l Conf., A I A A paper 72-825, 1972.

    C. E . S e a l and A. R . Stubberud, "F ina l Value Control Systems," appea r ing i n Advances i n C o n t r o l Systems Theory and App l i ca t ion , Vol. 8 , pp. 23-52, 1971.

    L . P. S h e p o r a i t i s , E. C . B a l b i r n i e and G . A . Liebne r , " P r a c t i c a l Optimal S t e e r i n g f a r Missile Terminai Guidance," AIM Guidance a i d Con t ro l Canf., A I A A paper 76-1917, 1976.

    J . S h i n a r , "Divergence Range o f Homing M i s s i l e s , " Israel J . T e c h n o h a , pp. 47-55, Vol. 14, 1976.

    G . M. S i o u r i s , "Comparison Between P r o p o r t i o n a l and Augmented P r o p o r t i o n a l Navigat ion," Nachrichten- t echn i sche Z e i t s c h r i f t , pp. 278-280, J u l y 1974.

    6. L. S l a t e r and W. R. Wells , "Optimal Evasive T a c t i c s Against a ProNav M i s s i l e with Time Delay," J. S p a c e c r a f t and Rockets, pp. 309-313, May 1973.

    K . Smith, " A Comparison of t h e Con t ro l Problems of Missiles and Manned A i r c r a f t , " J. Royal Aeronaut ical u, pp. 177-185, March 1962. J . L. Speyer , "An Adaptive Terminal Guidance Scheme Based on an Exponen t i a l Cost C r i t e r i o n wi th Applica- t i o n t o Homing M i s s i l e Guidance," IEEE Trans . Auto. Control, pp. 371-375, June 1976.

    J. L . Speyer , "A S t o c h a s t i c D i f f e r e n t i a l Game wi th C o n t r o l l a b l e S t a t i s t i c a l Parameters ," IEEE Trans . Sys. Sc iences and Cyberne t i c s , pp. 17-20, June 1967.

    D . V . S t a l l a r d , "A M i s s i l e Adaptive Ro l l Au top i lo t w i t h a New Dither P r i n c i p l e , " IEEE Trans. Auto. -, pp. 368-378, J u l y 1966. D. V . S t a l l a r d , " C l a s s i c a l and Modern Guidance of Homing I n t e r c e p t o r M i s s i l e s , " Raytheon Co. Repor t , 1968.

    ~

    11

    D. V . S t a l l a r d , "Di sc re t e O p t i c a l Terminal Con t ro l w i th App l i ca t ion t o M i s s i l e Guidance," J o i n t Auto. Con t ro l Conf., pp. 499-508, 1972.

    'U A. M . S t e i n b e r g and K. Shmueli , "On t h e Terminal Con t ro l Problem," J. Opt imiza t ion Theory and Appli- a, Vo1. 11, pp. 313-320, March 1973. A , R. Stubberud, "Theory of P i t c h S t e e r i n g f o r Ascent Guidance," Nat . Space Navigat ion Meetin%, pp. 136-160, March 1967.

    L. A. Stockum and F . C . Weimer, "Optimal and Sub- op t ima l Guidance f o r a Short-Range Homing Missile," IEEE Trans. Aerospace and E l e c t r o n i c Systems, pp. 355-360, May 1976.

    A. I. T a l k i n , 'Iloming by S t e e p e s t Descent," IEEE Trans. Auto. C o n t r o l , pp. 136-137, Jan. 1966.

    W . Templeman, "Linear ized Impulsive Guidance Laws," A I A A J o u r n a l , pp. 2148-2149, Nov. 1965.

    L. Teng and P. L. Phipps, "App l i ca t ion of Nonlinear F i l t e r t o S h o r t Range Missile Guidance," & Nat iona l Aerospace E l e c t r o n i c s Conf . , pp. 439-449, 1967.

    R. Thibodeau and J . B. Sham. "PDM C o n t r o l Analvsis I ,

    Using the Phase Plane," J. S p a c e c r a f t and Rockets, pp. 1054-1057, sept. 1969. F. Tung, "An Optimal D i s c r e t e Con t ro l S t r a t e g y f o r Terminal Guidance," J o i n t Auto. Con t ro l Conf., pp. 499-507, 1965.

    J. T. Wagner and D . F. M c A l l i s t e r , "S impl i f i ed Per-

    American A s t r o n a u t i c a l S o c i e t y and ORSA, June 1969.

    R. S. Warren, C . F . P r i c e , A. Gelb, and W. E . VanderVelde, "Di rec t S t a t i s t i c a l E v a l u a t i o n of Non-

    formance Analysis of Space and Missile Guidance," U

    l i n e a r Guidance Systems ,Iq A I A A Guidance and Con t ro l Conf., A I A A paper 73-836, 1973.

    J. H. Whiting and J . W . Tube, "Vi r tua l Ta rge t S t e e r - i n s - A Unique Ai r - to -Ai r Su r face M i s s i l e T a r s e t i n s an: Guidance Technique," A I A A Guidance and Control ' Conf., A I A A paper 72-826, 1972.

    T. W. 3. Wong, "Guidance Systems f o r Air- to-Air Missiles," INTERAVIA, pp. 1525-1528, Nov. 1961.

    J. Youngblood, "Optimal Guidance of Air- to-Air M i s s i l e , " U n i v e r s i t y o f Alabama Report , NO". 1977.

    R. J . York and H. L. P a s t r i c k , "Optimal Terminal Guidance wi th C o n s t r a i n t s a t F i n a l T ime , " , J . Space- c r a f t and Rockets , pp. 381, June 1977.

    R. J. York, "Optimal Con t ro l f o r an Anti-Tank Weapon," F i n a l Report , U . S . Army MIRADCOM Con t rac t No. DAAK 70-78-M-0102, September 1978.

    Dow

    nloa

    ded

    by B

    eiha

    ng U

    nive

    rsity

    (CNP

    IEC

    - XI'A

    N BR

    ANCH

    ) on A

    pril 2

    4, 20

    13 | h

    ttp://a

    rc.aia

    a.org

    | DOI

    : 10.2

    514/6.

    1979-5

    9