guidance on subsea metrology - zupt, llc · pipeline interconnections are required to join subsea...

35
Guidance on Subsea Metrology IMCA S 019 February 2012 AB International Marine Contractors Association www.imca-int.com

Upload: others

Post on 12-Feb-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

Guidance on

Subsea Metrology

IMCA S 019February 2012

AB

International Marine

Contractors Association

www.imca-int.com

Page 2: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

AB

The International Marine Contractors Association (IMCA)

is the international trade association representing offshore,

marine and underwater engineering companies.

IMCA  promotes  improvements  in  quality,  health,  safety,

environmental and technical standards through the publication of

information  notes,  codes of  practice  and  by other  appropriate

means.

Members  are  self-regulating  through  the  adoption  of  IMCA

guidelines  as  appropriate.   They  commit  to  act  as  responsible

members by following relevant guidelines and being willing to be

audited against compliance with them by their clients.

There are two core activities that relate to all members:

u Competence & Training

u Safety, Environment & Legislation

The Association is organised through four distinct divisions, each

covering  a  specific  area  of members’  interests:  Diving, Marine,

Offshore Survey, Remote Systems & ROV.

There  are  also  five  regional  sections  which  facilitate  work  on

issues  affecting  members  in  their  local  geographic  area  –

Asia-Pacific, Central & North America, Europe & Africa, Middle

East & India and South America.

IMCA S 019

This guidance has been produced by IMCA, under the direction

of  the Offshore  Survey Division,  by  Simon Barrett  and  Jose M

Puig of DOF Subsea UK, with the assistance of Keith Vickery of

ZUPT and Frank Pritz of Parker Maritime ASA.

This guidance has undergone technical review by members of the

the OGP (the International Association of Oil & Gas Producers)

Geomatics Committee.

www.imca-int.com/survey

The information contained herein is given for guidance only and endeavours to

reflect best industry practice. For the avoidance of doubt no legal liability shall

attach to any guidance and/or recommendation and/or statement herein contained.

© 2012 – International Marine Contractors Association

Page 3: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

Guidance on Subsea Metrology

IMCA S 019 – February 2012

1 Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

2 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

3.1 Terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

4 Subsea Metrology Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

4.1 Typical Required Accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

5 Subsea Metrology Survey Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

5.1 LBL Acoustic Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

5.2 Diver Taut Wire Metrology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

5.3 Digital Taut Wire Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

5.4 Photogrammetry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

5.5 INS Metrology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

5.6 Subsea Metrology Systems Compared  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

6 Subsea Metrology Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

6.1 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

6.2 Reporting and Documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

7 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Appendices

A Dimensional Control Requirements for Metrology . . . . . . . . . . . . . . . . . . .27

A1 Rotation of Dimensional Control Offsets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

B Typical Subsea Metrology Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

C Comparison of Subsea Metrology Systems . . . . . . . . . . . . . . . . . . . . . . . . . .31

Page 4: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 1

Subsea metrology is the process of acquiring accurate and traceable dimensional measurements for the design

of subsea structures, primarily interconnecting pipelines.  Pipeline interconnections are required to join subsea

assets  to  complete  the  flow  of  hydrocarbons  from  the  reservoir  to  processing  and  storage  facilities.

The objective  of  the  subsea metrology  survey  is  to  determine  accurately  the  relative  horizontal  and  vertical

distance between subsea assets, as well as their relative heading and attitude.  This information is then used by

pipeline engineers to design connecting pieces to join the assets together.  This document explores five of the

most common subsea metrology techniques related to interconnecting pipelines – long baseline (LBL) acoustics,

diver taut wire, digital taut wire, photogrammetry and inertial navigation systems (INS).

The purpose of the document is to:

u Describe, compare and contrast the techniques;

u Provide information on the techniques which may be useful to surveyors and surveying organisations; vessel

personnel (marine, diving, ROV, etc.); design engineers, fabricators and client organisations.  An example is the

accuracy of the metrology and how this  impacts  fabrication tolerances/fit of the  interconnecting pipeline,

where lack of fit influences the ability to install and create a pressure tight joint as well as possibly influencing

the working life of the interconnection.

Long baseline (LBL) acoustics is the most commonly used subsea metrology technique in use today.  This

method  is most widely used because  it  is adaptable, has redundancy and the results can be processed within

hours.  It is also attractive because the results can be referenced to an absolute datum.  The disadvantages are

that it is susceptible to subsea noise and it is equipment and time intensive.

Diver taut wire metrology is essentially a tape measurement of the direct distance between hubs.  This method

was the first subsea metrology procedure employed by divers and was designed primarily for diver operations

on horizontal spools.  It is still widely used.

Digital taut wire is a more sophisticated version of the diver’s tape measurements.  Additional sensors provide

a more accurate distance measurement; depth is also resolved with pressure sensors and relative hub attitude

with digital inclinometers.  However it still requires line of sight and is not redundant.  There is a limitation on

the length of spool measured once the weight of the wire causes sagging giving a linear distance error.

Photogrammetric survey has only recently been developed successfully for subsea metrology applications.

The basis of photogrammetry  is  to build a three-dimensional model based on a sequence of two-dimensional

photographs.  Measuring bars placed on the seabed and reflective markers on the structures provide scaling and

reference.  The processed images are used to derive a three-dimensional model of the positions of the hubs, the

seabed and any other points of interest on the subsea structures.  The main advantage of this system is that in a

single survey a very high quantity of  information can be gathered.  The image processing required makes very

intensive demands on computer time.  Photogrammetry requires good subsea visibility.

1

Executive Summary

Page 5: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

INS metrology is relatively new to the offshore industry.  The use and availability of inertial navigation systems

has greatly increased in recent years.  Inertial navigation systems (INS) use three accelerometers and three gyros

to compute a position based on a known start point and the measured changes in velocity and attitude.  Unaided

INS do not need an outside signal or reference to compute a position; because they are self-contained they do

not require line of sight, nor are they affected by poor subsea visibility or a noisy subsea acoustic environment.

The main drawback of  INS metrology  is that  inertial sensors have drift associated to them.   This sensor drift

increases over time and requires some form of correction, generally provided by input from other positioning

systems.

2 IMCA S 019

Page 6: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 3

CAD Computer aided design

C-O Computed minus observed correction

CTD Conductivity, temperature and depth sensor

DSP Digital signal processing

DVL Doppler velocity log

DWG Drawing

DWPLEM Deep water PLEM

EDM Electronic distance measurement

FOG Fibre-optic gyro

IEEE Institute of Electrical & Electronic Engineers (UK)

IMCA International Marine Contractors Association

IMU Inertial measurement unit

INS Inertial navigation system

ISA Inertial sensor assembly

LBL Long baseline

OP Observation point

PLEM Pipeline end manifold

PLET Pipeline end termination

QC Quality control

RLG Ring laser gyro

RMS Root mean square

2

Glossary

Page 7: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

ROV Remotely operated vehicle

SVP Sound velocity profile

TRF  Terrestrial reference frame

UTM Universal Transverse Mercator

USBL Ultra short baseline

UNESCO United Nations Educational, Scientific, and Cultural Organization

σ Sigma.  Represents one standard deviation from the mean

4 IMCA S 019

Page 8: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 5

This document provides guidance on the most commonly used subsea metrology techniques in use today.  These

are  long  baseline  (LBL)  acoustics,  both  diver  taut  wire  and  digital  taut  wire,  photogrammetry  and  inertial

navigation  systems  (INS).    It  covers  the  basics  of  subsea  metrology,  engineering  requirements,  the  different

methods and technologies, and some of the advantages and limitations of each technique.  The document does

not compare or evaluate different manufacturers’ products or services, or the specific performance of systems,

and does not endorse or recommend a specific type, model or make of system.  However, it should be noted

that the use of diagrams and references to proprietary elements and systems may be necessary in a specialised

technology such as acoustic positioning.

LBL  acoustic  systems  and  techniques  are  covered  in  more  detail  as  these  systems  are  generally  the  most

adaptable and most widely used in the industry today.  However, it should be noted that the pace of technical

change and on-going development of deep water fields means that other subsea metrology methods are being

developed, including photogrammetric metrology and INS metrology.

The  objective  of  subsea  metrology  is  to  determine  accurately  the  relative  horizontal  and  vertical  distance

between  subsea  assets,  as  well  as  their  relative  heading  and  attitude.    Most  commonly  this  is  for  pipeline

connections and the document uses this work as an example throughout.  The information determined by subsea

metrology  is  then used by pipeline engineers to design a connecting piece to  join the assets together.   These

connecting pieces are fabricated from steel allowing for some flexibility; however they require tight fabrication

tolerances to ensure they meet their intended design life.  Their design is twofold.  The primary aim is to connect

the pipeline terminations; however pipeline sections stretch and contract due to changes  in  temperature and

pressure  of  the  hydrocarbon  products  being  conveyed.    The  stresses  of  these  movements  focus  on  the

interconnection  points,  so  flexibility  is  also  built-in,  by  designing  connecting  pieces with one or more  bends.

Construction  tolerances vary with each  subsea design but normally  are  in  the order of  a decimetre  for hub

positions and one degree of arc in attitude.

It is often the case that the connecting pieces are the last sections of the pipeline to be fitted and one of the final

steps before first hydrocarbon production.  For this reason, it  is  important that subsea metrology surveys are

carried out in a timely and accurate manner.  If the connecting pieces are not to the required specification and/or

do not fit correctly, they can have a significantly reduced life span or can cost days of a construction vessel’s time

to repair.

Historically, the first subsea metrology procedure employed was a diver with a tape measure working from flange

to  flange.   However,  increasing requirements  for greater accuracy and the tighter construction tolerances  for

deep water  field developments,  combined with  the  limitations on depth experienced by divers,  have brought

about alternative and higher accuracy subsea metrology methods.

3

Introduction

Page 9: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

3.1 Terminology

Some of the most common terminology associated with subsea metrology is outlined here.  Terminology may be

subject to change owing to the swift development of technology and practice in the subsea engineering industry.

Subsea infrastructure designs, tolerances, installation and survey requirements, even nomenclature, all are subject

to change.

u Hubs refer to the ends of interconnecting pipelines which are joined to the subsea assets by hub connectors.

Hubs are connectors that are closed together and sealed using external hydraulic pressure rams; these are

of modern design  and were developed  for  deep water ROV-aided  installation.    For  the  purposes of  this

document we will refer to all connectors as hubs;

u Flange is the term sometimes used for a hub connection that is achieved through bolting together the hubs.

These are older solutions developed for diver-aided installation.

The vertical separation of the hubs defines two widely used terms for pipeline interconnections.  If much of the

length of interconnecting pipe runs horizontally along the seabed it is called a spool, if the pipe inflection design

is vertical it is called a jumper.

u Spools are normally a shallow water design that allows for protection covers to be fitted to subsea assets to

guard against fishing activities like trawling.  They normally rest on the seabed;

u Jumpers are used in deep water fields where protection covers are not needed.  The jumper is designed in

the vertical and normally does not rest on the seabed, hence the name, because the pipe piece appears to

jump from one structure to the other.

Figure 1 – Example of vertical jumpers

Figure 2 – Example of a horizontal spool

6 IMCA S 019

Page 10: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 7

Subsea metrology surveys are used to determine the relative three-dimensional position and attitude of the hubs

and the depth of the seabed relative to the hubs, along with a spool route profile or bathymetric information.

Absolute positioning of the hubs is not necessary because it is only necessary to know the three-dimensional

range and bearing from one hub to another.

A primary issue is establishing from where on the structure measurement should start.  Ideally this should be as

close as possible to the hub centre.  However, this is not always practical or even possible.  The hub might have

a pressure cap,  the  instrument package might be  too big  to  fit on  to  the hub or access  to  the hub might be

restricted by the frame of the structure, etc.  Therefore an offset sensor mount is created, called the observation

point  (OP).    It  should  be  noted  that  photogrammetric  techniques  do  not  require  a  sensor  mount  on  the

structure;  only  reflectors  are  placed  on  the  structures,  unless  the  hubs  have  restricted  access  and  are  not

accessible by ROV.  The actual measurement instrument (the camera system) is mounted on the ROV.  For all

other metrology techniques an offset observation point is generally required.  There are many different solutions

for mounting  sensors,  depending on  the  instrument  –  how much  it weighs, what measurement  procedure  is

required, etc.  For many subsea applications the most widely used solution is a female receptacle on the structure

and the instrument mounted on a male stab.

It  is normal practice  to have one of  the hubs  in  the pair  as  the  spool datum; hub differences and angles  are

computed  relative  to  this  datum hub.   There  are many  criteria  for  spool  reporting;  the most widely  used  is

direction of flow.  The hub that is first in the direction of flow of the pipeline is selected as the datum hub.  This

criterion changes from project to project and is sometimes a subjective selection.

Care should be taken when selecting an offset observation point.  There are two main priorities:

u minimising the offset distance;

u accessibility for ROV or diver.

A  precise  and  known  relationship  between  metrology  sensors  and  hub  reference  points  is  critical  to  the

metrology  process.   This  requires  both  appropriate mechanical  interfaces  and  specific  high  accuracy onshore

measurements to enable the computation of metrology values from sensor observations.  Dimensional control

surveys are discussed in Appendix A. 

As far as possible, interfaces for sensors should be pre-built into the structure rather than retro-fitted once the

structure is subsea.  Dimensional control offsets can only be applied accurately if structure heading, pitch and roll

is determined accurately once installed subsea.  This needs to be considered in the error budget.

4

Subsea Metrology Requirements

Page 11: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

The inaccuracy of the heading, pitch and roll measurement results in inaccuracy when calculating the observation

point to hub offset in the terrestrial reference frame (TRF).  This effect behaves like a lever arm; the bigger the

offset  the bigger  the  inaccuracy.   This  is why placing  the  instrument mount as close as possible  to the hub  is

important.  This effect should always be considered when calculating error budgets. 

Figure 3 – The lever arm effect of angular accuracy on estimation of position

The  instrument  mounting  arrangement  should  be  as  robust  and  rigid  as  possible.    Each method  requires  a

different  mounting  mechanism  that  is  mostly  tailor-made  for  each  metrology  project.    Some  examples  of

instrument mounting solutions are presented here.

Figure 4 – The metrology observation point should be mounted as close as possible to the hub

Figure 5 – Examples of male metrology stabs and female receptacle

8 IMCA S 019

Page 12: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 9

As discussed, there are two types of spool design defined by their vertical design.  In general, horizontal spools

are connected with horizontal hubs; vertical  spools are connected  to upright or vertical hubs.   However,  the

different  hub  arrangements  have  distinct  survey  requirements  associated with  the  engineering  design  of  the

spool.

In general a metrology survey should determine:

u the hub to hub true slant range;

u the hub to hub depth difference;

u the attitude of each hub (heading, pitch and roll);

u spool azimuth, relative or absolute;

u spool approach angles;

u altitude of the hubs above seabed;

u vertical profile along spool/jumper route.

And, depending on the hub verticality, the survey should determine:

u horizontal hubs:

– if the hub is self-rotating or does not have a roll datum, then only heading and pitch of the hubs are

required

– the approach angles of the spool relative to the perpendicular hub faces are critical.  They influence the

structure hub to spool hub alignment.  Poor alignment will result in a poor or failed hub to hub seal or

even in some cases a complete spool misfit;

u vertical hubs:

– the flat horizontal face of the hub requires determination of pitch and roll, however unless the spool

has some sort of key or foot rest, heading has no meaning for the hub face

– because  the hub heading has no  reference,  resolution of  the  spool  approach  angles  to  the hub  face

requires less accuracy than for horizontal spools.

4.1 Typical Required Accuracies

The  error  budget  for metrology  depends  on  permissible  hub misalignment  defined  by  spool  stress  analysis,

connector make-up capabilities and spool fabrication tolerance.  The accuracy required depends on the subsea

connector technology, however nominal accuracies can be stated as:

Table 1 – Typical required accuracies

Point X Y Z Pitch Roll Heading

Unit mm mm mm Degrees Degrees Degrees

Hub to hub relative distances 50 to 150 50 to 150 50 to 150

Hub to hub relative angles 0.5 to 1.0 0.5 to 1.0 0.5 to 2.0

Page 13: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

10 IMCA S 019

Page 14: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 11

5.1 LBL Acoustic Metrology

Acoustic metrology is the most commonly used technique in use today.  It is a flexible technique; the equipment

is  extensively  available,  supported  by  the majority  of  offshore  survey  contractors  and  is  not  solely  used  for

metrology.    Long  baseline  (LBL)  techniques  are  employed  to  provide  an  accurate  hub  to  hub  range.

A pressure/depth survey then determines the hub depths, and subsea gyros and instrumented transponders are

used  to measure  the  hub  pair’s  attitudes.   An  accurate  determination  of  the  speed  of  sound  in  seawater  is

essential to the accuracy of this metrology method.  Direct measurement is  favoured using a real time sound

velocity  probe.    If  calculating  the  speed  of  sound  from  conductivity,  temperature  and  depth  sensor  (CTD)

measurements, care should be taken to use the correct speed of sound equation for the working depth.

Figure 6 – Hub to hub range

This method is most widely used because it is adaptable, has redundancy and the results can be processed within

hours.  Arrays can be pre-planned to encompass multiple metrologies and seabed structures.  It is also attractive

because the results can be referenced to an absolute datum.  Another advantage is the equipment may already

be  in  use  for  structure  installation  so  a  separate  mob  of  equipment  and  personnel  may  not  be  necessary.

The disadvantages are that it is susceptible to subsea noise and it is equipment and time intensive.

Further information on LBL techniques for deep water positioning, including an appendix on the speed of sound

in water, can be found in IMCA S 013 – Deepwater acoustic positioning.

5

Subsea Metrology Survey Methods

Page 15: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

5.1.1 LBL Array Design

The main consideration for array design is that the baselines are of similar lengths and similar acoustic

travel time, so that the scaling error in the uncertainty in speed of sound measurement then results in

similar baseline inaccuracy.  In other words, the longer the two-way travel time the greater the effect of

inaccurate speed of sound.  Thus unnecessarily long baselines introduce more error to distribute in the

least squares solution.   A geometric shape with sides of  lengths similar to the hub to hub baseline  is

desirable.    A  minimum  of  five  transponders  is  necessary  to  provide  sufficient  redundancy  to

mathematically detect an erroneous baseline  in the array.   A  four transponder array, referred to as a

braced quadrilateral, does not have enough observational redundancy to determine mathematically which

baseline is erroneous in the array.

A typical metrology array is then composed of two transponders, one at each of the hubs, and three

seabed transponders.  The seabed transponders should ideally be placed in suitable stands to provide

sufficient height and immobility for optimal line of sight.  One of the seabed transponders can even be

placed  approximately  10m  along  the  pipeline  to  provide  an  acoustic  pipeline  or  structural  heading.

A known baseline length on a structure can also provide an independent acoustically derived estimate

of the speed of sound in seawater.  An acoustic network solution of this design provides a good ratio of

observational redundancy to cost.

Sometimes the braced quadrilateral  is cost-effective especially in places with good hub to hub line of

sight.  The need to determine accurately which baseline is erroneous by using a five transponder array

might  be  more  time  consuming  than  using  a  braced  quadrilateral.    In  the  case  of  a  bad  baseline,

sometimes reconfiguring the array and re-measuring affected baselines might be quicker.  Having more

transponders in an array means more baselines to measure and especially more transponder depths to

determine in the depth loops.

Figure 7 – Typical array design for LBL metrology

12 IMCA S 019

Page 16: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 13

Figure 8 – The braced quadrilateral

Figure 9 – Seabed tripods

5.1.2 Stages in an LBL Metrology Survey

The main stages of an LBL metrology survey are planning, preparation, execution and reporting:

u planning  – The overall methodology  is  designed  and  proposed  to  the  client.   This methodology

should consider all possible error sources and contain an error propagation budget, and also take

account of any schedule and resource constraints;

u preparation:

– all instrument mounting hardware and seabed transponder tripods are sourced/fabricated

– after  all  hardware  has  been  installed  on  structures  to  construct  or  define  the  metrology

observation point then a dimensional control survey should be carried out to determine the

relationship of this point to the hub and to any other parts of the structure

– calibration of instruments and offset determination

– prior to the offshore phase of the operation all subsea gyros must be calibrated for relative

and absolute C-O values

Page 17: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

– offsets for transponder heights and quartz pressure sensor heights must also be determined

– subsea trials as necessary

– sometimes it is advantageous to test the docking system for the instruments in a controlled

environment;

u execution;

u reporting and quality control.

5.1.3 Equipment List

Using the example of a five transponder metrology array using closed loop pressure surveys, a typical

equipment list may be as follows (no spares are considered):

u three seabed transponders;

u two inclinometer transponders;

u quartz or piezoresistive pressure sensor;

u CTD probe; 

u direct read sound velocity sensor;

u ROV acoustic transceiver;

u surface command unit and processing software;

u metrology tooling (stabs, handles, frames, work basket, etc.);

u one subsea gyro;

u online survey computer;

u offline computer with CAD package.

5.1.4 Acoustic Metrology Computation

The elements defined in a metrology computation are the following:

u depth determination of observation point from the depth loops;

u least  squares  adjustment  of  acoustic  array  holding  depth  to  pressure  transducer  observational

accuracy (normally 5cm), the same as the baseline weights;

u process attitude data per metrology observation point and compute average heading, pitch and roll

for each structure;

u compute  observation  point  co-ordinates  from  associated  transponder  co-ordinates,  observed

structure attitude and transponder height offset;

u compute hub co-ordinates;

u compute spool dimensions.

5.1.5 System Accuracy

Nominal accuracies (excluding error related to offset computations between sensors and hub reference

points) can be stated as:

Table 2 – Acoustic metrology – system accuracy

Measurement Accuracy

Distance Current DSP LBL acoustic systems offer accuracies of better than 5cm

Depth Quartz pressure sensors can support highly precise relative depth measurements

to provide an uncertainty of approximately 5cm in 1000m water depth

Attitude Manufacturer dependent, but better than required accuracies for metrology

14 IMCA S 019

Page 18: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 15

5.2 Diver Taut Wire Metrology

Taut wire metrology is essentially a tape measurement of the direct distance between hubs.  Often the taut wire

mounting system is offset from the hubs, and so will require additional tape offset measurements from the wire

datum to the hub datum.

The metrology system consists of two ‘jig’ plates with protractor markings etched on them, mounted directly

above each of the hubs in a stab-receptacle assembly or bolted onto one of the flange bolts.  One jig plate is the

anchor and the other is the reel jig.  The plates are used to measure the wire departure angle relative to hub

headings.

The reel or winch has a device that can measure how much cable has been paid out, or the wire itself is marked

off.  The jigs have to be levelled and aligned with their respective hub headings; the diver offset measurement also

has to be aligned with the vertical and horizontal as much as possible.  The wire is paid out, anchored and then

tensioned by a hand cranked winch.  The readings of distance and departure angle are then observed by the diver.

This method was the first subsea metrology procedure employed by divers and was designed primarily for diver

operations on horizontal spools.  It is still widely used.

Additional measurements may include:

u depth survey of the hubs using appropriate pressure sensors;

u diver hand-held inclinometer measurements of the inclination of the hub faces;

u absolute heading and pitch of the hubs using subsea gyros mounted at the observation point;

u locking  the  wire,  recovering  the  wire  to  deck  and  taking  an  independent  measurement  to  confirm  the

distance.

The biggest drawbacks of the diver taut wire method are:

u it requires direct line of sight (uneven seabed should be evaluated prior to operations);

u it has little redundancy;

u it cannot be used in deep water and needs good visibility;

u readings depend on the observational abilities and consistency of the divers (though potential errors can be

mitigated by using different divers to read off the angle and distance values).

Figure 10 – Examples of a diver taut wire system with jig plates graduated similar to a protractor

The accuracy of the diver taut wire method depends on the correct alignment of the jigs and the accuracy with

which the length of taut wire deployed can be measured.  Sagging of the taut wire will increase with length.  This

degrades the accuracy of direct distance measurement.  Further error sources are the elasticity of the wire under

tension, and contraction of the wire due to temperature changes.

5.2.1 Equipment List

u taut wire anchor jig;

u taut wire reel jig;

u taut wire jig to hub adaptor plates;

Page 19: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

u spirit level;

u tape measure;

u folding rule;

u installation tools such as torque wrenches, bolts, cargo strops etc.;

u additional measuring equipment such as quartz or piezoresistive pressure sensor system, hand-held

inclinometer, etc.

5.2.2 Method Accuracy

It  is  very  difficult  to  generalise  the  accuracy  of  the  taut  wire  system.    Generally  such  systems  are

sufficiently accurate for spool lengths less than 10m for a straight spool, but have been successfully used

for spool lengths in excess of 30m.

5.3 Digital Taut Wire Metrology

The  digital  taut  wire method  is  a more  sophisticated  version  of  the  diver’s  tape measurements.   Additional

sensors provide a more accurate distance measurement; depth is also resolved with pressure sensors and relative

hub attitude with digital inclinometers.  However it still requires line of sight and is not redundant.  It has been

primarily developed for ROV operations, but can be diver operated.  The tension of the wire is measured digitally

and is calibrated before each deployment.  The system can also measure vertical and horizontal wire departure

angles, and the inclination of the hub is measured with digital inclinometers inside the sensor package.  The system

has  the  same  anchor-reel  principle  as  does  the  diver  taut wire  technique;  however  the  system  needs  to  be

powered via the ROV or a dedicated umbilical.

Figure 11 – Side view of digital taut wire measurements and related metrology computations

16 IMCA S 019

Page 20: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 17

Figure 12 – Top view of digital taut wire measurements and related metrology computations

The digital taut wire method can also be augmented with pressure sensor measurements and gyro observations

of hub attitude.  The digital taut wire metrology method can resolve:

u slant range;

u horizontal distance;

u hub height difference;

u pitch of the hubs.

5.3.1 Equipment List

u two sets of metrology docking systems, pre-installed at each end of the spool;

u two digital taut wire measuring units;

u one online computer;

u one offline computer.

5.3.2 Accuracy of the System

Nominal accuracies (excluding error related to offset computations between sensors and hub reference

points) for currently available systems are:

Table 3 – Digital taut wire systems – typical accuracy

5.4 Photogrammetry

Photogrammetric survey methods have been around for some time, but have only recently been developed for

use in subsea metrology.  The basis of photogrammetry is to use triangulation to build a three-dimensional model

based on a sequence of two-dimensional pictures.  By taking photographs from at least two different locations,

so-called ‘lines of sight’ can be developed from each camera to points on the object.  These lines of sight or rays

are mathematically intersected to produce the three-dimensional co-ordinates of the points of interest.

Measurement Accuracy (up to 100m spool) Resolution

Taut wire distance Error of 1mm per metre measured 0.002m

Azimuth angle ±0.5º ±0.1º

Elevation difference ±0.03m ±0.01m

Pitch and roll ±0.25º ±0.1º

Page 21: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

A specialised multi-camera system is deployed on an ROV and sequences of photographs are taken along the

intended spool route.  Measuring bars placed on the seabed and reflective markers on the structures provide

scaling and allow references in the picture sequence.  The images are processed using software to derive a three-

dimensional model of the positions of the hubs, the seabed and other points of interest on the subsea structures.

The main advantage of these systems is the potential high accuracy of the results.  The disadvantages are the very

intensive demands on computer time, the requirement for good visibility and specialist personnel and equipment.

5.4.1 Photogrammetric Metrology Computation

Photography represents the real three-dimensional world in two-dimensional images.  Photogrammetry

aims  to  reverse  the  photographic  process  and  reconstruct  a  three-dimensional  model  from

two-dimensional  images.    Some  information  is  lost  in  the photographic process, primarily  the depth.

For this  reason,  the  three-dimensional  world  cannot  be  reconstructed  completely  from  just  one

photograph.   As  a  theoretical minimum,  two  different  photographs  are  required  to  reconstruct  the

three-dimensional world, and in practice, the solution is to take many more photographs and use the

extra information in them to improve the process.  The end result of photogrammetry is a dataset of

three-dimensional co-ordinates produced from measurements made on multiple photographs.

The  principle  of  triangulation  is  used  to  produce  three-dimensional  point  measurements.

By mathematically intersecting converging lines in space, the precise location of any given point can be

determined.    In  the  case  of  theodolites,  two  angles  are  measured  to  generate  a  line  from  each

theodolite.  However, photogrammetry can measure multiple points at a time with virtually no limit on

the  number  of  simultaneously  triangulated  points.    In  the  case  of  photogrammetry,  it  is  the

two-dimensional  (X  and Y)  location  of  a  target  on  the  image  that  is  measured  to  produce  a  line.

By taking  photographs  from  at  least  two  different  locations  and measuring  the  same  target  in  each

photograph a line of sight is developed from each camera location to the target.  If the camera position

and  aiming  angles  (together  called  the  orientation)  are  known,  the  lines  can  be  mathematically

intersected to produce the XYZ co-ordinates of each targeted point.  Obtaining the camera position

and aiming angles is a process referred to as resection.

The process of resection uses previously surveyed scale bars or known coded targets on the subsea

structures.    Photogrammetric metrology  is  therefore  a  technique  that  relies  heavily  on  dimensional

control.   Resection requires knowledge of both the position of  the camera and also the direction  in

which it is aimed.  Therefore six values are required to define any given photograph – three co-ordinates

for position and three angles for the aiming direction.  Additionally the resection can be strengthened

by the addition of attitude and pressure sensor information at the camera location.  A good resection

requires  at  least  twelve well-distributed points  in  each photograph.    If  the XYZ co-ordinates of  the

points on the object are known, the orientation of the camera can then be derived.

The cameras need to be precisely calibrated to remove errors.  The triangulation of the measured points

is then solved iteratively using the least squares technique using known points like scale bars, control

points,  the  camera  calibration  values  and,  very  importantly,  a  ‘first  guess’  orientation  for  each

photograph.

At the end of the photogrammetry process a three-dimensional model is constructed that has:

u XYZ co-ordinates (and accuracy estimates) for each point;

u XYZ co-ordinates and three aiming angles (and accuracy estimates) for each picture.

The accuracy of a photogrammetric measurement depends on several inter-related factors.  The most

important of these factors are:

u the resolution and quality of the camera;

u visibility;

u the size of the object being measured;

u the number of photographs taken;

u the geometric layout of the pictures relative to the object and to one another.

18 IMCA S 019

Page 22: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 19

5.4.2 Equipment List

Marking equipment consists of single markers and scale bars.  The scale bars may be single or connected

into  frames, and may vary  in  length up  to several metres.   Single markers can be used separately or

connected  to  frames  to  enable many markers  to  be  fitted  to  structures  at  once.   Markers may  be

installed and surveyed onshore to save vessel time offshore.

Flexible  markers  (and  single  markers)  can  be  used  to  determine  cylindrical  diameter,  ovality  and

centreline.

A photogrammetric survey spread generally consists of:

u camera system with appropriate lighting and flash operated by diver or ROV;

u deployment basket with metrology marking equipment;

u inclinometer;

u depth sensors;

u processing PC and software.

Figure 13 – Subsea structure marked onshore before installation

Figure 14 – Flexible markers installed onto subsea structure

5.4.3 System Accuracy

The accuracy for any point measured to artificial targets is usually 2mm in 10m or better.  The accuracy

for all measured points is equal in all three axes.

Depth sensors and inclinometers are used to establish accurately the horizontal plane and hub angles.

Hub angles are within ±0.2º.

u Image QC – Initial  image QC is done by uploading a test  image to check sharpness,  lighting and

other camera settings.  Subsequent images are stored subsea on the camera’s onboard computer

Page 23: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

until the task is complete.  A ‘thumbnail’ for every image can be uploaded to the surface or topside

computer for visual QC.  Final image QC, checking for sharpness, overlap and coverage, takes place

on  the  topside  computer.   No marking  equipment  should  be moved before  this QC process  is

complete;

u Data QC – Software is used to perform a statistical QC evaluation of the accuracy of measurement

of  the  spool  length  and  the  accuracy  of  hub  position  and  angle  measurements.    In  the  three-

dimensional  photogrammetry  model,  data  is  checked  against  independent  readings  from

inclinometers and depth;

u Limitations – Visibility is a key limiting factor in photogrammetric metrology.  Visibility should ideally

be at  least 3m.   At  this distance most of  the coded targets used on  the markers and scale bars

should be detected automatically.  The visibility should be good enough for the image to cover the

width of the spool route marking, and for the targets to be discovered in the images.  In low visibility

conditions, it may be necessary to position the camera closer to the survey route and take more

photographs.   Accuracy may  not  be  significantly  compromised,  but more  time  and work will  be

required to process and deliver the results.  Processing time is also a potential limitation, owing to

the large volumes of data involved.

5.5 INS Metrology

Inertial navigation system (INS) metrology is relatively new to the offshore industry, and the use and availability

of  such  systems  has  greatly  increased  in  recent  years.   The  principle  involved  is  to  use  three  orthogonal

accelerometers  measuring  linear  acceleration  in  the  X, Y  and  Z  plane,  combined  with  three  orthogonal

gyroscopes measuring angular velocity  likewise.   Mathematical processing of  the output of  these  instruments,

given initial values for position and velocity, makes it possible to track the position and orientation of a device.

INS navigation is broadly similar to dead reckoning, except that instead of using a constant velocity, heading and

elapsed time to compute position, the measured real time changes in velocity and attitude are used to compute

a real time position.  The actual combination of sensor outputs and position computation is very sophisticated

and is based on both inertial sensor propagation algorithms and Kalman filtering.  Inertial navigation systems are

self-contained and do not need an outside signal or external reference to compute a position.   However,  the

biggest drawback of inertial navigation systems is that without external references they are subject to cumulative

errors; small errors  in the measurement of acceleration and angular velocity are  integrated  into progressively

larger errors in velocity, which are compounded into still greater errors in position.  This INS drift increases with

the time since an external reference position was last input.  In order to maintain accuracy and mitigate these

cumulative errors, INS technology offshore is generally used in conjunction with other positioning systems in a

hybrid or aided form.  Data input from existing positioning systems is used to augment INS data to provide a

more robust and accurate overall positioning solution than would be possible with the use of any single system.

More  advanced military  specification  gyros  and  accelerometers  with  smaller  drifts  and  biases  are  becoming

available for civilian applications.  However, most INS used in offshore metrology applications have a drift rate of

the order of one nautical mile per hour.  Such systems are referred to as ‘navigation grade’ systems.

INS can be shown to demonstrate the required levels of accuracy for metrology in spools up to 85m long, though

of course a more important limitation will be the time taken for data acquisition in order to minimise INS drift.

Further advantages that can be expected are:

u a reduction in operation times;

u impervious to noise generated by surrounding operations such as drilling;

u unaffected by acoustic channel management which can constrain operations in busy field developments;

u can circumvent problems with line of sight and poor visibility.  Obstacles can be ‘flown around’.

INS  metrology  has  great  potential  for  future  development  and  refinement,  and  is  a  potential  alternative  to

conventional LBL acoustic metrology.  Both stand-alone and combined or hybrid systems (those that combine

acoustic range from a seabed reference station with INS navigation) are available.

As INS technology was developed primarily for defence applications, it should be noted that in some countries

its use, import and export can be tightly controlled or even restricted.

20 IMCA S 019

Page 24: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 21

5.5.1 System Description and Calibration Considerations

The  sensors  used  to  measure  inertial  acceleration  and  rotation  are  included  within  an  inertial

measurement unit (IMU).  Most IMUs used for metrology today are ‘strap-down’ IMUs.  Older systems

may have used gimballed IMUs.

Gimballed IMUs can be very reliable, accurate, and relatively low cost.  However, they are mechanically

complex and are expensive  to maintain and calibrate.    In ‘strap-down’  IMUs,  the accelerometers and

gyros are ‘strapped down’ on the vehicle or device being positioned and software is used to keep track

of orientation.  This method reduces the size, cost, power consumption and complexity of the system.

An IMU consists of:

u three accelerometers that directly measure acceleration in three orthogonal axes;

u three gyros that directly measure rate of rotation in three orthogonal axes.

The outputs that are propagated through the navigation solution are the change in rate of rotation and

the change in acceleration.  At the system design level many parameters are critical to precise inertial

navigation.  These include, but are not limited to, the rate at which the IMU is sampled, the method used

to translate this data to the required navigation reference frame, temperature compensation, the quality

of the gravity model and orthogonality misalignment.

The gyro component within the INS usually defines the term used to describe a given INS.  The leading

technologies used in subsea INS equipment are fibre-optic gyro (FOG) and ring laser gyro (RLG).

A typical INS consists of:

u an IMU;

u navigation  computer  to  calculate  the  gravitational  acceleration  (not  directly  measured  by  the

accelerometers) and process data from the sensors within the IMU in order to compute a position;

u user interface;

u power supplies.

The unaided navigation solution delivered by an INS is referred to as free inertial navigation.  It is subject

to drift, which will  increase  the  longer  the  INS  runs without  any position  correction.   A number of

different methods can be used to control this drift. In many cases the data from the sensors is combined

with or augmented by external data.  The most common techniques in use are:

u Doppler velocity log (DVL) – The DVL provides body reference frame velocity data that can be used

to constrain the position drift of the INS solution.  Very precise alignment between the DVL and

the IMU has to be calibrated and maintained;

u Depth – The gravity model of an INS solution usually causes a slightly larger error in the vertical

than  in the horizontal.   A precise relative pressure transducer can constrain this vertical error  if

integrated correctly.  Variations in seawater density during the survey can affect the value measured

by such sensors as a variation in density will translate into a perceived variation in depth;

u Acoustic ranges – Acoustic ranges can be used to constrain the position drift of an INS solution.

In this case the relative station co-ordinates of transponder  locations will need to be accurately

determined as well as the depth of the transponders and the speed of sound in water.  A variety of

INS metrology solutions  is available which use additional acoustic ranging.   These are sometimes

referred to as ‘hybrid’ solutions or ‘sparse LBL’;

u Zero velocity update – If an IMU is held stationary with respect to the earth – i.e. has zero velocity

– then the system software, allowing for the earth’s rotation, can remove the drift or error in the

accelerometer or gyro sensor data.  This method of drift control is very powerful but requires the

unit to be stationary for a period of time which will depend on the software configuration and many

other variables.  Typically this might be for 10-30s or potentially for several minutes.

Before an  INS survey can be carried out, calibration or alignment needs to take place.   This process

consists of:

u Levelling – The accelerometers within the INS are used to orient the system with respect to gravity;

u Coarse alignment – The gyros are used to find the direction of earth’s rotation;

Page 25: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

u Fine alignment  – Once coarsely aligned, a very precise estimate of all biases, scale factors and other

elements within the Kalman filter are computed.

If sensor aiding is used the reference frame of the sensors used should be aligned as close as possible

to that of the IMU.  Any residual misalignment can be computed using a Kalman filter.

5.5.2 Equipment List

A typical INS metrology system may consist of:

u the INS sensor package including aiding sensors; this system can be connected to surface through

a dedicated ROV data port.  The data can be seen in real time and logged on a positioning computer.

Power for the INS sensor is generally drawn from the ROV;

u mounting hardware – stabs or docking frames;

u INS online computer;

u INS offline processing computer.

5.5.3 The INS Metrology Computation

The end result of an INS metrology is a listing of positions, depths and attitudes.  Each segment of the

survey should be  logged as an  independent data file.   Depth will be resolved using either the  inertial

navigation vertical position solution or by using a pressure sensor in a depth loop.  However, if the INS

system is depth aided or  if  the pressure sensor  is run simultaneously to the  INS, then the  loops are

inherent in the INS positioning loop procedure.

If the INS is depth aided then a tidal correction method should be used as part of the data processing.

All the data should be cleaned for spikes and ‘bad’ entries and then optimally smoothed to compute the

final positioning loop results.  An average and standard deviation for hub or observation point location

is computed.

If  the metrology  observation  point  is  offset  to  the  hub,  the  dimensional  control  offsets  along  with

observed structure attitude must be used to compute the hub datum co-ordinates.  See Appendix A.

5.5.4 System Accuracy

It  can be difficult  to  find published values  for  INS  system performance and accuracy  that have been

benchmarked against a standard or based on a rigorous statistical methodology.  However the operator

can  compare  direct  measurements  using  two  LBL  transducers  ranging  between  themselves.   This

provides a check for the INS distance measurement and therefore confirms the system accuracy.  Once

confidence has been established with the system no further checks should be required.

5.6 Subsea Metrology Systems Compared

Every  spool  design  is  different,  and  hence  every metrology  project  is  different.   There may  be  one or more

metrology techniques which provide an optimal solution.  There are a number of  influencing factors,  including

required spool metrology accuracy; water depth; vessel availability; costs and client preference.  A table which

summarises the main advantages and disadvantages of the main metrology methods described in this document

is found at Appendix C.

22 IMCA S 019

Page 26: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 23

6.1 Computations

The main elements of a spool metrology computation are outlined in the following table:

Table 4 – Main elements of the subsea metrology calculation

Horizontal

position of the

hubs

Each  hub  position  is  computed  from  its  associated  observation  point  co-ordinates,determined  from  the  INS  positioning  loop,  from  the  three-dimensionalphotogrammetric model or from the LBL least squares adjustment.

The hub co-ordinates are computed from the OP datum co-ordinates by adding theattitude rotated dimensional control offsets.

The co-ordinates should be reported to at least centimetre precision.

Depth of the hubs The depth of the hubs should be computed from the depth determined for OP datum.The attitude rotated dimensional control vertical offset is then applied to compute thehub depth.  The depth co-ordinate should be reported to centimetre precision.

It is good practice to compute a hub-to-hub depth difference, relative to the datum hub.A positive difference is a deeper datum hub, negative, a shallower datum hub.

Depth of seabed

along intended

spool route

A  seabed  profile  survey  is  an  important  part  of  any metrology  survey.   The  seabedprofile  is normally computed in absolute depth; however computation of the relativedepth difference to the datum hub is also good practice.  Reference should be made toany compensation due to tidal changes at the time of the survey.

Attitude of the

hubs

Measured attitude at the OP is combined with the pitch and roll dimensional controloffsets.  Both sets of attitudes need to be in the same reference frame. Rotation shouldbe carried out using a co-ordinate rotation matrix.

The hub attitude is then reported in the desired heading by a further rotation.  Pitch,roll and heading should be reported to decimal degrees.

Heading is normally reported in grid.  Clarification may be required whether headingdata  is  grid  north  or  true  north.    Pitch  and  roll  convention  should  also  be  clearlyspecified.

Hub-to-hub slant

and horizontal

range

These values are directly computed from the computed hub co-ordinates.  Normallyreported in millimetres.

Spool azimuth The bearing of  the  spool computed  from the hub co-ordinates.   Normally  reportedrelative to datum hub.

Angle of the spool

approach

These parameters are calculated normally only for horizontal spools, they are definedas  the  angle  difference  between  spool  azimuth  and  hub  headings.     The  standardterminology is to call the alpha angle the difference between the datum hub and spoolazimuth.  The beta approach angle is relative to the opposing hub.

6

Subsea Metrology Deliverables

Page 27: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

6.2 Reporting and Documentation

Subsea metrology reporting requirements may differ depending on which metrology method is used, and should

be agreed upon beforehand by  the client  and  the  service provider.   A  typical  subsea metrology  report might

contain the following:

u computed spool dimensions:

– hub-to-hub horizontal distance

– hub-to-hub slant range

– hub-to-hub depth difference

– connection point attitudes

– spool azimuth

– spool approach angles if spool is horizontal;

u computed hub XYZ co-ordinates and attitude if the methodology resolves them;

u details of computation method depending on client requirements;

u all recorded survey data in electronic format if applicable;

u appropriate drawings/charts.   A typical metrology chart should  include the spool name, drawing numbers,

author, date, client company, service provider, and may consist of four panels:

i) a plan  view of  the  subsea  structures  and  the  intended  spool  route,  either  a  schematic or using  real

co-ordinates,  showing  the  spool  azimuth,  horizontal  true  distance  and  the  approach  angles  (if  a

horizontal spool)

ii) a  depth  profile  of  the  spool  route with  the  depths  of  the  hubs  relative  to  the  seabed.   The  depth

difference is also normally indicated

iii) a schematic diagram of the hub attitudes with the attitude convention clearly stated, both graphically

and numerically

iv) an information section or key containing a summary of spool dimensions and hub attitudes, co-ordinate

and attitude conventions, and information such as map projection name and datum, measuring system

(i.e. metric, imperial), vertical datum and other geodetic information.

Once the report is delivered to the client, this is only the start of the process of fabricating and installing the

spool pieces required.  A typical outline of the steps in this process might be:

u report issued offshore to client (contractor);

u checking of metrology results by contractor survey representative;

u metrology results issued to project team, and thence to drawing office;

u drawing office produces scaled layouts, from which are produced isometric drawings;

u isometric drawings checked by project team and passed onto fabrication contractor;

u fabrication contractor makes spool piece (dimensional control, setting out etc.);

u on-site checks by contractor quality assurance/quality control engineers;

u final gross error check on fabricated spool piece;

u full dimensional control survey and as-built drawings (preferable, but not always done).

An example is shown at Appendix B.

24 IMCA S 019

Page 28: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 25

u Chen C-T and Millero, FJ.  Speed of sound in seawater at high pressures, Journal of the Acoustical Society of

America, 1977

u Fofonoff, JR and Millard, RC.  Algorithms for the computation of the fundamental properties of seawater. UNESCO

technical papers in marine science.  No. 44, UNESCO, 1983

u Ghilani, CD and PR Wolf.  Adjustment Computations. Spatial Data Analysis. John Wiley & Sons, INC, 2006

u Grewal, MS, LR Weill and AP Andrews.  Global Positioning Systems, Inertial Navigation and Integration.  Second

Edition. John Wiley & Sons, 2007

u Leroy, CC and F Parthiot.   Depth-pressure relationship in the oceans and seas (J. Acoust. Soc. Am) 103, no. 3

(1998): 1346-1352

u Pike, JM, and FL Beiboer.  A comparison between algorithms for the speed of sound in seawater.  The Hydrographic

Society, Special Publication, 1993

u Wong, GSK, and S Zhu.  Speed of sound in seawater as a function of salinity, temperature and pressure (J Acoust.

Soc. Am.) 97, no. 3 (1995): 1732-1736

u Further reading:

– IMCA S 013 – Deep water acoustic positioning

– IMCA D 014 – IMCA international code of practice for offshore diving

– IMCA R 004 – Code of practice for the safe and efficient operation of remotely operated vehicles

7

References and Further Reading

Page 29: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

26 IMCA S 019

Page 30: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 27

The dimensional control surveys are normally carried out using conventional land survey techniques based on

electronic distance measurement  (EDM).   A standard resection survey methodology should be used, where a

reference co-ordinate system is set up using five or more visible control points and at least two distinct set up

locations.  A least squares routine is then used to determine all points of interest on the structure, primarily the

spatial and attitude relationship between the hub and the metrology observation point.  Circle fit methodology

should be used to determine best fit centres for hubs, receptacles, buckets, etc.

Before the dimensional control survey is established, a clear definition of the following is required:

u the native co-ordinate system of the structure;

u metrology observation point or instrument mounting frame native co-ordinate system;

u attitude convention.

It is advantageous to define these reference systems from the dimensional control survey and adhere to them

throughout metrology operations.  This standardisation reduces the risk of operator error.

Overall and individual observation root mean square (RMS) from the best fit solution should always be provided

and  should  not  exceed  5mm.   The  dimensional  control  survey  results  should  be  presented  in  a  format  that

simplifies the metrology computation.  Normally this format is an offset from metrology observation point to the

hub in the metrology observation point natural reference frame.  Because we observe all measurements at this

point,  it  is  then  straightforward  to  rotate  the  dimensional  control  offsets  to  the  real  world  using  observed

attitude.  Computing the hub co-ordinates in real world co-ordinates is then simply an addition of observation

point co-ordinates and rotated dimensional control offsets.  The same applies for pitch and roll.

Table 5 – An example dimensional control report with observation point as datum

The  dimensional  control  survey  report  should  always  determine  heading,  pitch,  roll  and  distance  from  the

metrology observation point to all points of interest on the structure, even structure datum.  The report should

have a clear and traceable computational sequence on the resection least squares results, circle fit computations,

attitude  computations  and  any  other  technical  issues.   The  reference  system  and  attitude  convention  should

always be clearly stated.

A1 Rotation of Dimensional Control Offsets

The complexity of the metrology computation depends on the geometric relationship of the observation point

to the hub datum.  The dimensional control offsets from OP to hub are normally presented in the structures

natural co-ordinate frame, normally with structure level and heading north.

Once the structure  is  installed on the seabed,  the terrestrial reference  frame (TRF)  is  the simplest reference

frame we can measure relative to; thus the structure’s attitude measured with an IMU defines the relationship

between the structures reference frame and that of the earth.

Dimensional  control offsets must be rotated  to  the TRF by  the angles defined  from measured pitch,  roll  and

heading.  The rotation should be computed using Euler’s rotation theorem or quaternion rotations:

X1

= Hm

Pm

Rm

X0

Appendix A

Dimensional Control Requirements for Metrology

Location X (m) Y (m) Z (m) Heading (º) Pitch (º) Roll (º)

Metrology receptacle (central) 1.730 -10.676 1.780 -1.86 +0.19 -0.36

Metrology receptacle (NW) 0.000 0.000 0.000 0.00 0.00 +0.00

Structure centre (base) 2.494 -5.407 -3.763 - +0.56 +0.04

12” hub face (W2) -0.470 -6.685 -2.351 268.86 +0.71 +0.38

12” hub face (W4) -0.505 -4.261 -2.320 269.19 +0.62 +0.97

Page 31: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

Where X0=  (x

0, y

0, z

0)  are  the  original  dimensional  control  determined OP  to  hub  offsets  in  the  structure

reference  frame, Hmis  the heading rotation matrix, P

mis  the pitch rotation matrix and R

mis  the roll  rotation

matrix, as observed by the attitude measurements and X1are the new co-ordinates  in the TRF.  The order of

rotation is important.  The dimensional control offsets must first be rotated for pitch and roll and then heading.

The heading rotation must be last so that the original pitch and roll axes are not changed.

Defining  a  standard  co-ordinate  convention  and  making  sure  that  all  measurements,  offsets,  rotations  and

computations adhere to this convention is critical.

28 IMCA S 019

Page 32: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 29

Appendix B

Typical Subsea Metrology Diagram

Page 33: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

30 IMCA S 019

Page 34: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

IMCA S 019 31

Appendix C

Comparison of Subsea Metrology SystemsM

eth

od

Ad

van

tages

Dis

ad

van

tages

Eq

uip

men

tP

ers

on

nel

LBL acoustic

uWidely used and understood

uGood redundancy

uCan perform multiple

metrologies from one

deployment

u‘Line of sight’ not necessary

uCan be relative or absolute

uFlexible 

uSurvey contractors have great

experience in LBL acoustic

uEquipment and personnel

widely available

uMuch time and equipment

necessary

uData processing is complex

uThorough knowledge of speed

of sound in water required

uSubject to subsea noise

uRequires access to hub or

dimensionally controlled

observation point (OP)

uThree seabed transponders

uTwo inclinometer

transponders

uQuartz or piezoresistive

pressure sensor

uCTD probe

uDirect read sound velocity

sensor

uROV acoustic transceiver

uSurface command unit and

processing software

uMetrology tooling (stabs,

handles, frames, work basket,

etc.)

uOne subsea gyro

uOnline survey computer

uOffline computer with CAD

package

uOne online surveyor

uOne acoustic surveyor

uOne party chief

uOne data processor/charter

Diver taut wire

uFast deployment time

uSwift data processing

uDirect measurement

uLittle equipment required

uRequires ‘line of sight’

uLittle or no redundancy

uReadings depend on the

observational abilities of divers

uOnly provides relative

measurement of range and

bearing

uRequires access to hub or

dimensionally controlled OP

uOne metrology at a time

uTaut wire anchor jig

uTaut wire reel jig

uTaut wire jig to hub adaptor

plates

uSpirit level and tape measure

uFolding rule

uInstallation tools

uAdditional measuring

equipment

uDive team as appropriate

(IMCA D 014)

uSuperintendent or metrology

surveyor to oversee and direct

the operation

uOne data processor

uAdequate project-specific

personnel to enable work to

be carried out

Page 35: Guidance on subsea metrology - Zupt, LLC · Pipeline interconnections are required to join subsea assets to complete the flow of hydrocarbons from the reservoir to processing and

32 IMCA S 019

Meth

od

Ad

van

tages

Dis

ad

van

tages

Eq

uip

men

tP

ers

on

nel

Digital taut wire

uFast deployment time

uSwift data processing

uDirect measurement

uRequires ‘line of sight’

uLittle or no redundancy

uRelative measurement only

uRequires access to hub or

dimensionally controlled OP

uOne metrology at a time

uTwo sets of metrology docking

systems, pre-installed at each

end of the spool

uTwo digital taut wire

measuring units

uOne online computer

uOne offline computer

uSufficient digital taut wire

metrology surveyors to safely

cover the work

uOne party chief

uOne data processor 

Photogrammetry

uMultiple metrologies from one

measurement

uLots of information

uPositioning can be relative or

absolute

uDoes not require access to

hub

uMeasurement is indirect and

depends on computer

processing

uEquipment  and computer

intensive

uControl points require prior

installation and dimensional

control

uRequirement for good visibility

uSpecialist personnel required

uCamera system with

appropriate lighting and flash

operated by diver or ROV

uMarking equipment

uInclinometer

uDepth sensors

uOne party chief

uSufficient equipment operators

to safely cover the work

uOne QC/post processor

Intertial navigation

systems

uFast deployment and survey

time

uEasy metrology calculation as

hub or observation point co-

ordinates are resolved directly

by the INS

uPositioning can be relative or

absolute

uNot equipment intensive

uSubject to cumulative error

over time – INS drift

uAccuracy degrades with spool

length

uTechnology is controlled and

can require export licensing

uMeasurement is indirect and

depends on computer

processing

uRequires access to hub or

dimensionally controlled OP

uINS sensor package including

aiding sensors powered from

the ROV

uMounting hardware – stabs or

docking frames

uINS online computer

uINS offline processing

computer

uOne party chief

uSufficient inertial navigation

surveyors to safely cover the

work

uOne post processor/charter