guide for power prediction.doc

Upload: pagliaso

Post on 06-Jul-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Guide for power prediction.doc

    1/11

    TMR7 Experimental Methods in Marine Hydrodynamics

    Guide to scaling of resistance and prediction of full scale power 

    Ship data are found later in this document. Values of some coefficients used in the resistanceand power prediction are given here. There is also an enclosure with formulas used in the

    resistance and power prediction. hat you find here is a guide on how to use those formulas.

    !n this analysis it is recommended to use Excel or a similar tool.

    "or all speeds tested do as follows#

    $alculate total resistance coefficient C Tm$alculate residual resistance coefficient C  R% using C  BDm&'% ()k o&(.'*++% νm&(.'7,-('* m/0s

    $alculate full scale total resistance coefficient C Ts% using C  A&'.//1E'2. C  BDs&'% νs&(.(17-('

    * m/0s

    $alculate full scale resistance RTs 3 now you are done calculating full scale resistance4

    The open water test has 5een given to you as part of the model data. 6ou will need to

    interpolate in the open water diagram as part of the analysis of the propulsion test. This can 5e

    done manually on a printed diagram% or it can 5e done 5y in a spreadsheet or Matla5.

    description of how to do this in Excel follows.

    !mport the open water curve into Excel 8or similar9. $reate thirdorder polynomials of  J  as

    function of K T % and K Q as function of J . 6ou can do this 5y creating a graph with the curve%

    add a trend line% select polynomial as type of trend line% and select :display e;uation on

    graph

  • 8/17/2019 Guide for power prediction.doc

    2/11

    /

    TOWING TESTS

    SHIP RESISTANCE

    ENCL. >>E@A!B (

    REPORT *'(*//.''.'(

    DATE /''2'C('

    REF M/27,D

    The hull model is towed 5y the carriage at which the total resistance is measured at different speeds.

    The hull model is e;uipped with a rudder and a tripwire at station + 8(+9. The conversion from hull

    model 8m9 into ship 8s9 is made 5y using the form factor method. !n this method it is assumed that the

    total resistance can 5e divided into two parts% represented 5y the viscous resistance and the residuary

    8due to vorticity% wave ma=ing and wave 5rea=ing9 resistance 8$R 9. The viscous resistance is

    determined 5y multiplying the frictional resistance 8$"9 with a constant form factor 8= o9% which is

    identical for model and ship. "urther% it is assumed that the residuary resistance 8$R 9 is identical for

    model and ship.

    MODEL (m):

    Total resistance coefficient#   BDm AAm Rmo Fm

    mm

    m

    Tm

    Tm   C C C k C 

    S V 

     RC    ++++⋅=

    ⋅⋅

    =   9(8

    /

    / ρ 

    "rictional resistance coefficient#   /9/8log

    '7,.'

    −=

    nm

     Fm R

    C    8!TT$ 3 ,7 correlation line9

    Residuary resistance coefficient#   BDm AAm FmoTm Rm   C C C k C C    −−⋅+−=   9(8

    SHIP (s):

    Total resistance coefficient#   BDs AAs Ao F  Fs RmTs   C C C k C C C C    ++++⋅∆++=   9(898

    "rictional resistance coefficient#   /9/8log

    '7,.'

    −=

    ns

     Fs R

    Total resistance#  s s s

    TsTs   S V C  R   ⋅⋅⋅=  /

    /

     ρ 

    Effective power#('''

     sTs E 

    V  R P 

      ⋅=

    "orm factor#  2'.* 7,ok    ϕ ϕ = +   where   BT T 

     L

    C  FP  AP 

    L

     B⋅+=   98ϕ 

    ir resistance coefficient#S  AC  AA

    T''(.'   ⋅=

    Transom stern resistance coefficient#/0(

    /02

    98

    908'/+.'

     F 

     B BD

    S S C 

      ⋅=

    Roughness allowance#   [ ]   //(.' 22.C'2982(.(('  Fs s F    C V  ! C    ⋅−⋅⋅=∆

    here H & hull surface roughness in µ8('2 mm9. H&(,' µ.

    and Vs & ship speed in m0s

    Fnly ∆$" values G ' are used

  • 8/17/2019 Guide for power prediction.doc

    3/11

    PROPULSION TESTS

    ENCL. >>E@A!B /

    REPORT *'(*//.''.'(

    DATE /''2'C('

    REF M/27,D

    The hull model is supplied with a propelling machinery and a driving propeller. The rate of

    revolution is regulated until the model is free relatively to the attached towing carriage. !n order too5tain tur5ulent flow around the model% a trip wire is placed at station + 8(+9. To compensate the

    difference 5etween the frictional resistance of the model and the frictional resistance of the ship%

    converted to model scale% the model is unloaded with a towing force in the direction of motion.

    The towing force 8"A9 is calculated 5y the formula#

    mm

    m

    S  D   S V C  F    ⋅⋅⋅=  /

    /

     ρ 

    [ ]   989(898  BDs BDm Ao F  Fs Fm s   C C C k C C C C    −+−+⋅∆+−=

    Auring the tests% the following parameters are recorded#

    >ropeller thrust T

    >ropeller tor;ue

    Rate of revolution n

    Model speed V

    Thrust and tor;ue measured during propulsion and open water tests are expressed non

    dimensionally as#

    C/  Dn

    T  K T 

    ⋅⋅=

     ρ   and   ,/  Dn

    Q K Q

    ⋅⋅=

     ρ 

    !n the open water diagram I T and I  are presented as functions of the advance coefficient 8D9. Jy

    entering the open water diagram with the thrust coefficient 8I T9 measured during the propulsion

    test% corresponding DF and I Fvalues are o5tained which are used to estimate wa=e fraction%

    relative rotative efficiency% hull efficiency and ;uasipropulsive coefficient.

    a=e fraction#

     Dn

     J w   "

    −= (

    Relative rotative efficiency#Q

    Q"

     R K 

     K =η 

    Hull efficiency#w

    t  ! 

    −=(

    (η 

    uasipropulsive coefficient#   R ! " D   η η η η    ⋅⋅=   8ηF & propeller efficiency in open water9

    Thrust deduction fraction#T 

     F  Rt    DT 

      −−= (   8note# T  is total thrust 3 sum of all props.9

  • 8/17/2019 Guide for power prediction.doc

    4/11

    OPEN WATER TESTS

    ENCL. >>E@A!B 2

    REPORT *'(*//.''.'(

    DATE /''2'C('

    REF M/27,D

    The propeller model is driven 5y a dynamometer at which thrust% tor;ue and rate of revolution arerecorded. The immersion of the propeller shaft is ≥ propeller diameter.

    Test procedure#

    The rate of revolution is =ept constant and 5y varying the speed% we get the variation of the

    advance coefficient 8D9. t each advance coefficient exact rate of revolution% 8n9% propeller thrust%

    8T9% and tor;ue% 89% are recorded. The results are presented dimensionless as#

     Dn

     J   A

    ⋅=

    % advance coefficient

    C/  Dn

    T  K T 

    ⋅⋅=

     ρ % thrust coefficient

    ,/  Dn

    Q K Q

    ⋅⋅=

     ρ % tor;ue coefficient

    π η 

    /⋅

    ⋅=

    Q

    " K 

     J  K % propeller efficiency in open water 

  • 8/17/2019 Guide for power prediction.doc

    5/11

    PERFORMANCE PREDICTION

    ENCL. >>E@A!B C

    REPORT *'(*//.''.'(

    DATE /''2'C('

    REF M/27,D

    The performance prediction is 5ased on the assumption that the thrust deduction fraction% t% the

    wa=e fraction w and the relative rotative efficiency% ηR % are free from scale effects.

    "rom the total resistance of the ship% RTs% and the thrust deduction fraction% t% the following relation

    is esta5lished#

    / / / /8( 9 8( 9TsT 

     s s

     R K 

     J nprop t D V w ρ =

    × × − × × × − 8nprop is num5er of propellers9

    "or each speed% the intersection point of the I T 3 D/ curve given a5ove with the open water

    diagram is found. The advance coefficient DK at this point gives the rate of revolution#

    K

    9(8*'

     J 

     D

    w RP# 

      s s⋅

    −⋅

    =

    The corresponding tor;ue coefficient I % and the relative rotative efficiency% ηR % gives the

    delivered power#

    , 2/8 9 8 9(''' *'

    Q

     D R

     K  RP#  P k nprop D

    π  ρ 

    η = × × × × ×

    The calculation is repeated for different speeds giving the speed0power curve for the actual pitch

    ratio. n extrapolation of the open water diagram gives speed0power curves for different pitch

    ratios. The final pitch ratio and speed0power curve is found 5y interpolation for the actual R>M

    and power.

    "inally the 5ra=e power and merit coefficient are calculated#

     # 

     D B

     P k  P 

    η =98

     B

     s

     AD#  P 

    V C 

    220/⋅∇

    = 8VS in m0sec.9

  • 8/17/2019 Guide for power prediction.doc

    6/11

    LIST OF SYMBOLS

    ENCL. >>E@A!B ,

    REPORT *'(*//.''.'(

    DATE /''2'C('

    REF M/27,D

    Sym5ol Title Aimensions

    AEFTB

    c

    $$$AM$AB

    $J$JA$A$"

    ∆CF$L$M$>$R $S$T$T$Vd

    A

    "A"ng

    D

    I 'I 

    I TI TAI T>LFL>>LLn

    nprop

    >

    >J>A

    >E>S

    Expanded blade area

    Disc area

    Transverse projected area of ship/model above the waterline

    Breadth moulded

    Chord length

    Empirical correlation coefficient determined from trial analyses

    Air resistance coefficient

    Merit coefficient

    Admirality coefficient

    Block coefficient

    Transom stern resistance coefficient

    Drag coefficient

    Frictional resistance coefficient

    Roughness allowance

    Lift coefficient

    Midship section coefficient

    Prismatic coefficient

    Residuary resistance coefficient

    Towing force coefficient

    Total resistance coefficientAppendage resistance coefficient

    Viscous resistance coefficient

    Hub diameter

    Propeller diameter

    Towing force

    Froude number

    Acceleration due to gravity

    Advance coefficient

    Form factor

    Torque coefficientThrust coefficient

    Duct thrust coefficient

    Propeller thrust coefficient

    Length overall

    Length between perpendiculars

    Length of waterline

    Rate of revolution

    Number of propellers

    Propeller pitch

    Brake power

    Delivered power at propeller

    Effective power

    Shaft power

    L/

    L/

    L/

    L

    L

    L

    L

    LMT/

    -

    LT/

    -

    -

    -

    --

    -

    L

    L

    L

    REVS.T-1

    -

    L

    L2MT-3

    L2MT-3

    L2MT-3

    L2MT-3

  • 8/17/2019 Guide for power prediction.doc

    7/11

    7

  • 8/17/2019 Guide for power prediction.doc

    8/11

    LIST OF SYMBOLS

    ENCL. >>. , cont.

    REPORT *'(*//.''.'(

    DATE /''2'C('

    REF M/27,D

    Sym5ol Title Aimensions

    R

    R nR TS

    SJt

    t

    T

    TTAT>V

    Vw

    α

    ηA

    Torque

    Propeller radius

    Reynolds number

    Total resistance

     Wetted surface

    Area of transom stern below the waterline

    Max. thickness of a propeller section

    Thrust deduction fraction

    Draught moulded

    Thrust

    Duct thrust

    Propeller thrust

    Speed of ship or model

    Speed of advance of propeller

    Wake fraction

    Number of blades of a propeller

    Angle of attack 

    Propulsive efficiency or quasi-propulsive coefficient

    L2MT-2

    L

    -

    LMT-2

    L2

    L2

    L

    -

    L

    LMT-2

    LMT-2

    LMT-2

    LT-1

    LT-1

    -

    -

    -

    -

    ηH Hull efficiency -

    ηM Mechanical efficiency -η' Propeller efficiency in open water -

    ηR  Relative rotative efficiency -

    λ

     ν

    ρ

    Linear scale ratio

    Kinematic viscosity

    Mass density of water

    Displacement volume

    Displacement mass

    -

    L2T-1

    ML-3

    L3

    M

  • 8/17/2019 Guide for power prediction.doc

    9/11

    PRINCIPAL HULL DATA

    ENCL.

    REPORT 1C*''(./'.'(

    DATE /''C'*/(

    REF M/27,D

    HULL MODEL NO.: M2375J   Model Scale: 25.676Loading condition: Design WL

    Draught AP/FP: 6.500 / 6.500 !"Setu#: !2$75%0s&0

    S'!(ol )nit   SHIP MODEL ************************************************************** Length o+erall L,A !" &-0.0& 5.-5$Length on designed aterline LWL !" &$-.600 5.2-2Length (et. #er#. LPP !" &$&.$00 5.&&-readth !oulded !" 22.700 0.11-readth aterline WL !" 22.700 0.11-De#th to &st dec D !" 26.002 &.0&$Draught at LPP/2 3 !" 6.500 0.25$Draught at FP 3FP !" 6.500 0.25$Draught at AP 3AP !" 6.500 0.25$3ri! 4#os. at t !" 0.000 0.000ae o eel !" 0.000 0.000ise o loor !" 0.000 0.000ilge radius !" $.000 0.&&7

     ************************************************************** Water densit'   ρs g/!$" &025.17 1.62Shell #lating thicness !!" 0.00 0Shell #lating in 8 o dis#l. 8" 0.50 0.00

     ************************************************************** 

    9olu!e dis#lace!ent   ∇ !$" &&0-.$ 0.655Dis#lace!ent   ∆ t" &&-$1.2 0.655Pris!atic coeicient ;P

  • 8/17/2019 Guide for power prediction.doc

    10/11

    OPEN WATER TEST

    ENCL.

    REPORT 1C*''(./'.'(

    DATE /'(*'C2'

    REF M/27,D

    PROPELLER MODEL No.: P1284 Model Scale: 25.676

    S'!(ol )nit   SHIP MODEL ************************************************************** Pro#eller dia!eter D !!" -500 &75.26Pitch ratio at r/ ? 0.7 P/D0.7

  • 8/17/2019 Guide for power prediction.doc

    11/11

    OPEN WATER DIAGRAM

    ENCL.

    REPORT 1C*''(./'.'(

    DATE /'(*'C2'

    REF M/27,D

    0.0

    0.1

    0.2

    0.#

    0."

    0.5

    0.&

    0.%

    0.

    0.

    1.0

    0.0 0.1 0.2 0.# 0." 0.5 0.& 0.% 0. 0. 1.0 1.1 1.2

         *     + '     1     0   ,     *    - '    .    o

    /

    PROPELLER MODEL No.: P128

     NO SCALING APPLIED

    Pi+h r+io 1.220

     Se+3p$ p12"s1

    3hrust coeicient Gt < data#oints

    3orHue coeicient &0EGH < data#oints

    ,#en Water @icienc' Io < data#oints

     ShipX (RepGen version 2.0.1&) Sep 2&' 2005 #$"%$" P