guidelines for good manufacturing practice of ... · materials. i- in order to demonstrate...

71
1 September 2010 Page 1 of 71 Version 1.2 Guidelines for Good Manufacturing Practice of Radiopharmaceuticals

Upload: others

Post on 25-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1 September 2010 Page 1 of 71

    Version 1.2       

    Guidelines for Good Manufacturing Practice of Radiopharmaceuticals   

     

  • 1 September 2010 Page 2 of 71

    These guidelines for manufacturing radiopharmaceuticals are intended to complement those

    already available (by SFDA) for pharmaceutical products as well as those for sterile

    pharmaceutical products.

    The regulatory procedures necessary to control radiopharmaceutical products are in large part

    determined by the source of these products and methods of manufacture. Manufacturing

    procedures within the scope of these guidelines include:

    The manufacturing of radiopharmaceuticals in centralized radiopharmacies.

    The manufacturing of radiopharmaceuticals in nuclear institutes

    industrial manufacturers.

    The manufacturing of radiopharmaceuticals in positron emission tomography (PET)

    centers.

    Radiopharmaceuticals can be classified into four categories:

    1- Ready-for-use radioactive products.

    2- Radionuclide generators.

    3- Non-radioactive components (kits) for the preparation of compounds with

    a radioactive component (usually the elute from a radionuclide generator).

    4- Precursors used for radiolabeling other substances before administration.

    Radiopharmaceutical products include inorganic compounds, organic compounds, peptides,

    proteins, monoclonal antibodies and fragments and oligonucleotides labeled with radionuclide

    with half-lives varying from a few minutes to several days.

    Scope of These Guidelines

  • 1 September 2010 Page 3 of 71

    Accelerator (Cyclotron):

    A machine to accelerate charged particles linearly or in circular paths by means of an

    electromagnetic field. The accelerated particles such as alpha (α) particles, protons (p),

    deuterons (d), and heavy ions possess high energies and can cause nuclear reactions in target

    atoms by irradiation.

    Aerobic:

    A term used to indicate the growth of microorganisms in the presence of oxygen.

    Anaerobic:

    A term used to indicate the growth of microorganisms in the absence of oxygen.

    Annihilation Radiation:

    Gamma radiations of 511 keV energy emitted at 180˚ after a positron particle (β+) particle is

    annihilated by combining with an electron in matter.

    Antibody (Ab):

    A substance that is produced in response to an antigen and forms a specific complex with it.

    Aseptic Technique

    Aseptic technique refers to carrying out a procedure under controlled conditions in a manner

    that will minimize the chance of contamination.

    Authorized Person:

    Person recognized by the authority as having the necessary basic scientific and technical

    background and experience.

    Becquerel (Bq):

    A unit of radioactivity. One becquerel is equal to 1 disintegration per second.

    Batch

    A defined quantity of final product produced in one production run often expressed either in

    mass (mg or gram) or volume (mL or L) or total radioactivity (Ci or GBq), total number of

    vials or doses.

    Glossary

  • 1 September 2010 Page 4 of 71

    Carrier-Free:

    A term used to indicate the absence of any stable isotopic atoms in a radionuclide sample.

    Calibration

    Set of tests that confirms under desired conditions, the relationship between values indicated

    by a measuring instrument or measuring system, or values represented by a material measure,

    and the corresponding values of a reference standard.

    Chelating Agent:

    A compound that binds to a metal ion by more than one coordinate covalent bond.

    Clean Room

    A room in which the air is highly filtered in order to keep out impurities.

    Colloid:

    A dispersion of a substance in a liquid. The size of the dispersed particles (colloid) ranges

    from 10 nm to 1 μm.

    Critical Organ:

    The organ that is functionally essential for the body and receives the highest radiation dose

    after administration of radioactivity.

    Cross-Contamination

    Contamination of a drug or a radionuclide or a raw material or in-process intermediate with

    another drug, radionuclide, raw material or in-process intermediate. In multi-product facilities,

    potential cross-contamination can occur throughout the manufacturing process.

    Curie (Ci):

    A unit of radioactivity. A curie is defined as 3.7 x 1010 disintegrations per second.

    Dosage:

    A general term for the amount of a radiopharmaceutical administered in millicuries or

    millibecquerel.

  • 1 September 2010 Page 5 of 71

    Elution:

    A method of "washing off" an adsorbed substance from a solid adsorbing matter (such as ion-

    exchange resin) with a liquid.

    Free Radical:

    A highly reactive chemical species that has one or more unpaired electrons.

    Freeze Drying

    Freeze drying (lyophilization) is a process in which water is removed from a product after it is

    frozen and placed under a vacuum allowing the ice to change directly from solid to vapor

    without passing through a liquid phase.

    Generator, Radionuclide:

    A device in which a short-lived daughter is separated chemically and periodically from a

    long-lived parent adsorbed on adsorbent material. For example, 99mTc is separated from 99Mo

    from the molybdenum generator by eluting with saline.

    Half-Life (tl/2):

    A unique characteristic of a radionuclide, defined by the time during which an initial activity

    of a radionuclide is reduced to one half. It is related to the decay constant (λ) by tl/2 = 0.693/λ.

    Hot Cell

    A lead shielded total containment cabinets providing an environment of different classes.

    Ionization Chamber:

    A gas-fi1led instrument used to measure radioactivity or exposure in terms of ion pairs

    produced in gas by radiations.

    Isotopes:

    Nuclides having the same atomic number, that is, the same number of protons in the nucleus,

    but different number of neutrons. Examples are C146 and C126 .

    Labeled Compound:

    A compound containing radionuclide as integral component of the molecule.

  • 1 September 2010 Page 6 of 71

    Marketing Authorization

    It is a legal governmental permission process given to radiopharmaceuticals manufacturer to

    control their marketing.

    Manufacturing Authorization

    It is a legal governmental permission process given to radiopharmaceuticals manufacturer to

    control their production.

    Metastable State (m):

    An excited state of a nuclide that decays to the ground state by the emission of radiation with

    a measurable half-life (e.g. 99mTc).

    No Carrier Added (NCA):

    Indicates the status of a radionuclide sample where no stable atom of the same element has

    been added purposely.

    Parenteral:

    A term indicating the route of drug administration other than oral. Examples are intrathecal,

    intravenous, interstitial, and intramuscular.

    Radiation Safety Officer:

    A physicist who oversees of radiation safety in work place as well as the general public in the

    vicinity.

    Radiochemical Purity:

    The fraction of the total radioactivity in the desired chemical form. If 99mTc-MAA is 90%

    pure, then 90% of the radioactivity is in the 99mTc-MAA form.

    Radiolysis:

    A process by which radiolabeled compounds are broken up by radiations from the

    radionuclide in labeled molecules.

    Radionuclidic Purity:

    The fraction of the total radioactivity in the form of the stated radionuclide. Any extraneous

    radioactivity such as 99Mo in 99mTc-radiopharmaceuticals is an impurity.

    Radiopharmaceutical:

  • 1 September 2010 Page 7 of 71

    A radioactive drug that can be administered safely to humans for diagnostic and therapeutic

    purposes.

    Radiosynthesizer Unit (RSU)

    A closed-system device for the automated synthesis of radioactive drug substances. The

    system may be controlled by graphical computer software programs.

    Sievert (Sv):

    The unit of absorbed dose equivalent and equal to 100 rem.

    Standard Operating Procedure (SOP):

    An authorized written procedure giving instructions for performing operations not necessarily

    specific to a given product or material (e.g. equipment operation, maintenance and cleaning;

    validation; cleaning of premises and environmental control; sampling and inspection).

    Certain SOPs may be used to supplement product-specific master and batch production

    documentation.

    Target Material

    A chemical substance which is bombarded with nuclear particles to produce a desired

    radionuclide.

    Tracer:

    A radionuclide or a compound labeled with a radionuclide that may be used to follow its

    distribution or course through a chemical, physical, or metabolic process.

  • 1 September 2010 Page 8 of 71

    Introduction

    Radiation protection and safety at any radiopharmaceutical production facility is concerned

    with the protection of individuals and mankind as a whole. The main type of radiation of

    interest in nuclear medicine practice is classed as ionizing radiation, including X-rays (x),

    gamma rays (γ), beta particles (β), alpha particles (α), positrons (β+), neutrons (n) and protons

    (p). The major objective of radiation safety is to reduce public and occupational exposure to a

    minimum, keeping in mind the "ALARA" principle (As Low As Reasonably Achievable) and

    the current national or/and international guidelines.

    Principle

    1.1 Following careful attention to the four fundamental factors together with the use of

    well-planned techniques and procedures should lead to the safest working conditions

    and lowest exposures:

    a- Time of exposure:

    The time spent near radioactive material should be minimized.

    b- Distance from the source:

    The distance from the source should be kept as far as practicable.

    c- Amount of shielding present:

    The amount of shielding required depends on the radiation type, quantity and energy.

    d- Radioactivity of the source:

    The quantity of radioactivity used should be the minimum necessary to produce a

    satisfactory result.

    1.2 The following rules are the minimum requirement for good radiation practice and

    should be observed in radiopharmaceutical manufacturing facilities when working with

    radioactive materials:

    a- laboratory coats and disposable gloves should be worn at all times. Safety glasses

    should be used if the work is of a hazardous nature. Gloves should be changed at

    regular intervals in order to minimize the spread of contamination.

    b- personal film badges or thermoluminescent dosimeters (TLDs) must be worn at all

    times when handling radioactive materials or working in areas where they are

    handled or stored.

    c- all working surfaces should be covered with absorbent paper that has an

    impermeable plastic coating on the reverse side.

    Chapter 1 Radiation Protection and Safety

  • 1 September 2010 Page 9 of 71

    d- radioactive materials should be kept in closed, sealed vials within shielding

    containers at all times.

    e- all shielding containers and vials should bear a label identifying the

    radiopharmaceutical, the total radioactivity, the volume and/or the radioactive

    concentration and the time and date of calibration.

    f- small spills that present no radiological hazard to persons should be cleaned up

    immediately. More serious spills may require evacuation of the area before cleanup

    is undertaken and should be reported to the local radiation safety officer.

    g- eating, drinking, smoking, the administration of medication or the application of

    cosmetics should be prohibited in areas where radioactive materials are handled or

    stored.

    h- foodstuffs, drinks or medication should not be stored in the same area as radioactive

    materials.

    i- in order to demonstrate confinement of radioactivity, a suitable electronic radiation

    detector should always be available when radioactive materials are manipulated.

    j- appropriate radioactive waste management (storage and disposal) should be in place

    in accordance with national and/or international radiation control legislation.

    k- current occupational exposure limits should be in accordance with national and/or

    international radiation control legislation.

    Management and Training

    1.3 Management:

    a- management should ensure safe and efficient facility operations at all times by

    establishing an organization, keeping in view the workload and support from other

    groups.

    b- the operation and maintenance of the facility should be entrusted to the facility

    operation group.

    c- the radiation protection services should be provided by the health physics personnel.

    d- the supporting facilities/services that comprise water, electricity, heating,

    air-conditioning, ventilation, compressed air, workshop, housekeeping, telephone,

    security, etc. should be the responsibility of the independent general service

    department. However, other supporting services (such as fire fighting, transport)

    should be provided after arrangement with the local radiation safety office.

    e- the movement of all radioactive materials from the facility should be strictly

    controlled through administration measures. Access to the facility should be

    controlled by security and head of facility.

  • 1 September 2010 Page 10 of 71

    f- the radiation work should be reviewed by the local radiation safety office or

    committee. It should review abnormal and normal operations, unusual occurrences,

    proposals for experiments, changes and modifications in the facility equipment and

    radioactive laboratories, working procedures, emergency planning and preparedness,

    etc. This radiation safety office or committee should report to the Head of the facility

    and give its comments and recommendations for further guidance by submission to

    the National Nuclear Regulatory Body.

    1.4 Personnel Training:

    For the safety of workers and environment against nuclear hazards, management should

    establish, implement and assess personnel training.

    a- all radiation workers at the facility should undergo training according to the nature of

    their jobs and their responsibilities.

    b- all technical staff members should be obliged to attend a basic nuclear orientation

    course and then they should be given additional on job training within the facility.

    c- only qualified and/or certified senior technical staff and supervisors are allowed to

    run various operations in the facility.

    d- certificates should be awarded by an independent national regulatory body (if

    applicable).

    Radiation Monitoring

    1.5 External Radiation Monitoring:

    a- Areas and neighboring areas in which radiation sources are used or stored should be

    monitored at regular intervals.

    b- radiation surveys should be performed before starting a project or using radiation

    sources, after any significant modification of set-up and also periodically during

    operation.

    c- frequency of radiation surveys should be determined by the area health physicist

    depending on the nature and scale of operations carried out in the area.

    d- all radiation surveys should be carried out and a proper record should be maintained

    by heath physics personnel.

    1.6 Surface Contamination Monitoring:

    a- principal objectives of a program of monitoring for surface contamination can be

    summarized as follows:

    i. to detect failure of containment;

  • 1 September 2010 Page 11 of 71

    ii. to detect departures from good operating procedures;

    iii. to limit surface contamination to levels at which the general standards of

    goods housekeeping are adequate; and

    iv. to provide information for the planning of programs of individuals

    monitoring and of air monitoring and for defining operational procedures.

    b- the presence of contamination on such surfaces as floors, bench tops, clothing, skin

    and so on should be monitored.

    c- smear surveys (wipe tests) are an indirect method of measuring surface

    contamination levels.

    1.7 Air Contamination Monitoring:

    Air monitoring should be carried out in areas where airborne contamination may occur

    by disturbance of surface contamination on the surface in the active area.

    1.8 Personnel Monitoring:

    a- the radiation exposure due to internally deposited radionuclide (such as inhalations

    and ingestion, etc.) should be determined periodically by either whole body counting

    or monitoring of excreta such as urine (Bioassay) or by scanning a particular organ.

    b- in case of an incident resulting in widespread contamination of laboratory

    environment, the workers should be asked to provide urine samples for immediate

    analysis.

    Ventilation

    1.9 Proper ventilation (shielded fume hood) should be maintained in the radiochemical

    laboratories where unsealed radioactive materials (gas, liquid, etc.) are handled when

    activity level between 1 and 10 times the maximum recommended body burden.

    1.10 Glove boxes should be used when there is potential hazard of contaminating the

    working environment and/or exposing the worker more than 10 times recommended

    maximum body burden and/or whole body dose limit respectively. Airflow through the

    glove box is usually smaller than that of a fume hood and is in the order of 0.01 to 0.02

    m3 /sec (25-50 ft3 /min).

    Shielding and Remote Handling

    1.11 Shielding should be provided for safe working conditions. The amount of shielding

    required depends on the radiation type, quantity and energy, the dimensions and

  • 1 September 2010 Page 12 of 71

    radioactivity of the sources and the dose rate that is considered acceptable for radiation

    workers.

    1.12 Gamma radiation can be effectively shielded by using lead bricks or lead pots.

    1.13 Beta and Alpha radiation are effectively shielded with aluminum or perspex.

    1.14 Neutron radiation requires special shielding conditions (such as Boron mixed materials).

    Packaging and Transportation of Radiopharmaceuticals

    1.15 The packaging and transportation of either radioactive substances and/or

    radiopharmaceuticals should be designed to confirm to the national and/or international

    guidelines of radioactive material packaging and transportation. The necessary shielding

    against ionizing radiation and preventing loss and spillage of radioactive substances

    during the transport and in case of transport accidents should be provided.

    1.16 The radiation levels should never exceed specified maximum levels (as defined by

    national and/or international regulatory authorities) when measured on the surface of the

    package and at 1 meter distance from the surface of the package.

    1.17 To reduce radiation hazards from radioactive substances during transport and to prevent

    loss of radioactive substances, the following factors are of importance.

    a- selecting means of transport.

    b- design of packaging.

    c- administrative and physical control of package and transport.

    d- emergency planning.

    Radioactive Waste

    1.18 To avoid any serious source of internal and external radiation hazards from radioactive

    waste, adequate arrangements should be made for the proper collection and safe

    disposal of all kinds of radioactive wastes generated at the facility.

    Decontamination

    1.19 Personnel, clothing, equipment and work places may become contaminated with

    radioactive materials during routine operations in a radioactive area. It is the

    responsibility of the radiation workers concerned to ensure that decontamination

    operation is performed to reduce contamination at least to the permissible levels.

  • 1 September 2010 Page 13 of 71

    Principle

    The main difference between radiopharmaceuticals and conventional medicines lies in the

    radioactivity and short usable life (in most instances) of the radioactive product.

    Radiopharmaceuticals are released to Nuclear Medicine Centers and administered to the

    patients before the completion of all the Quality Control testing. Therefore, the manufacturing

    authorization holder must ensure that the manufactured radiopharmaceutical products are fit

    for their intended use, comply with the requirements of the marketing authorization and do

    not place patients at risk due to inadequate safety, efficacy and quality. The attainment of this

    quality objective is the responsibility of senior management and requires the participation and

    commitment by staff in many different departments and at all levels within the organization,

    including organization suppliers and distributors.

    To achieve quality objective reliability there must be a comprehensively designed and

    correctly implemented system of Quality Assurance incorporating Good Manufacturing

    Practice and thus Quality Control. Such system should be fully documented and its

    effectiveness monitored. All parts of the Quality Assurance systems should be adequately

    resourced with competent personnel, suitable and sufficient premises, equipment and

    facilities.

    The basic concepts of Quality Assurance, Good Manufacturing Practice and Quality Control

    are inter-related. They are described here in order to emphasize their relationships and their

    fundamental importance to the production and control of products.

    Quality Assurance (Q.A.)

    2.1 Quality Assurance is a wide ranging concept that covers all matters which individually

    or collectively influence quality of a product. It is the sum total of organized

    arrangements made with the objective of ensuring that products are of the quality

    required for their intended use.

    The system of Quality Assurance appropriate for the manufacture of

    radiopharmaceutical products should ensure that:

    a- products are designed and developed in a way that takes account of the

    requirements of Good Manufacturing Practice and Good Laboratory Practice;

    b- manufacturing and control operations are clearly specified and Good

    Manufacturing Practice applied;

    c- all staff responsibilities are clearly specified;

    Chapter 2 Quality Management

  • 1 September 2010 Page 14 of 71

    d- arrangements are made for the manufacture, supply and use of the correct raw and

    packaging materials;

    e- all necessary controls on intermediate products, and any other in-process controls

    and validations are carried out;

    f- the product is correctly processed and checked, according to the defined

    procedures;

    g- products are not sold or supplied before an authorized person has certified

    that each production batch has been produced and controlled in accordance

    with the requirements of the Saudi Food & Drug Authority (SFDA) and any

    other regulations relevant to the production, control and release of products;

    h- satisfactory arrangements exist to ensure that the products are stored,

    distributed and subsequently handled so that quality is maintained throughout

    their shelf life;

    i- there is a procedure for self-inspection and/or quality audit which regularly

    appraises the effectiveness and applicability of the quality assurance system.

    Good Manufacturing Practice for Radiopharmaceutical Products (GMP)

    2.2 Good Manufacturing Practice is that part of Quality Assurance which ensures that

    products are consistently produced and controlled to the quality standards appropriate

    to their intended use and as required by the Saudi Food & Drug Authority (SFDA) or

    product specification.

    Good Manufacturing Practice is concerned with both production and quality control.

    The basic requirements of GMP are as follow:

    a- all manufacturing processes are clearly defined, systematically reviewed in the

    light of experience and shown to be capable of consistently manufacturing

    products of the required quality and complying with their specifications;

    b- all critical processes and significant changes to the process are validated;

    c- all necessary facilities to ensure GMP are provided including:

    i- appropriately qualified and trained personnel;

    ii- adequate premises and space;

    iii- suitable equipment and services;

    iv- approved procedures and instructions;

    v- correct materials, containers and labels;

    vi- suitable storage and transport.

    d- procedures are written in an instructional form in clear and unambiguous

    language, specifically applicable to the facilities;

  • 1 September 2010 Page 15 of 71

    e- operators are trained to carry out procedures correctly;

    f- records are made, manually and/or by recording instruments, during manufacture

    which demonstrate that all the steps required by the defined procedures and

    instructions were in fact taken and that the quantity and quality of the product

    was as expected. Any significant deviations are fully recorded and investigated;

    g- records of manufacture including distribution which enable the complete history

    of a batch to be traced, are retained in a comprehensible and accessible form;

    h- distribution of products minimizes any risk to their quality;

    i- a system is available to recall any batch of product, from sale or supply;

    j- complaints about marketed products are examined, the causes of quality defects

    investigated and appropriate measures taken in respect of the defective products

    and to prevent reoccurrence.

    Quality Control (Q.C.)

    2.3 Quality Control is that part of Good Manufacturing Practice which is concerned with

    sampling, specifications, testing, organization, documentation and release procedures

    which ensure that the necessary and relevant tests are actually carried out and that

    materials are neither released for use, nor products released for sale or supply, until

    their quality has been judged to be satisfactory.

    The basic requirements of Quality Control are as follow:

    a- adequate facilities, trained personnel and approved procedures are available for

    sampling, inspecting and testing raw materials, packaging materials, intermediate,

    bulk, and finished products, and where appropriate for monitoring environmental

    conditions for GMP purposes;

    b- samples of raw materials, packaging materials, intermediate products, bulk

    products and finished products are taken by trained personnel and by methods

    approved by Quality Control;

    c- test methods are validated;

    d- records are made, manually and/or by recording instruments which demonstrate

    that all the required sampling, inspecting and testing procedures were actually

    carried out. Any deviations are fully recorded and investigated;

    e- the finished products contain active ingredients complying with the qualitative

    and quantitative composition of the marketing authorization, are of the purity

    required, and are enclosed within their proper container and correctly labeled;

    f- records are made of the results of inspection and that testing of materials,

    intermediate, bulk, and finished products is formally assessed against

  • 1 September 2010 Page 16 of 71

    specification. Product assessment includes a review and evaluation of relevant

    production documentation and an assessment of deviations from specified

    procedures;

    g- no batch of product is released for sale or supply prior to certification by an

    authorized person that it is in accordance with the requirements of the

    marketing authorization;

    h- sufficient reference samples of raw materials and products are retained to permit

    future examination of the product if necessary and that the product is retained in

    its final pack unless exceptionally large packs are produced.

  • 1 September 2010 Page 17 of 71

    Principle

    The establishment and maintenance of a satisfactory system of quality assurance and the

    correct manufacture of radiopharmaceutical products relies upon people. For this reason there

    must be sufficient number of qualified personnel to carry out all tasks which are the

    responsibility of the producer. Individual responsibilities should be clearly understood by the

    individuals and recorded.

    All personnel should be aware of the principles of GMP and the radiation protection practice

    that affect them. The producer must have an updated organization chart. People in responsible

    positions should have specific duties recorded in written job descriptions and adequate

    authority to carry out their responsibilities. Their duties may be delegated to designated

    deputies of a satisfactory qualification level. There should be no gaps or unexplained overlaps

    in the responsibilities of those personnel concerned with the application of GMP. The

    responsibilities placed on any one individual should not be so extensive as to present any risk

    to quality.

    Personnel Qualifications

    3.1 The producer should have an adequate number of personnel with the necessary

    qualifications including appropriate education, training and practical experience in the

    field of radiochemistry, radiopharmacy, radiation physics, microbiology and other

    related disciplines and skills.

    Key Personnel

    3.2 Key Personnel include the head of Production, the head of Q.C., and authorized

    person(s). Normally key posts should be occupied by full-time personnel. The heads of

    Production and Q.C. must be independent from each other. In addition an adequate

    number of technically trained personnel should be available to carry out the production

    and control operations in accordance with established procedures and specifications.

    Key Personnel Responsibilities

    Production Supervisor

    3.3 A person responsible for supervising radiopharmaceutical production section generally

    has at least the following responsibilities:

    a- to approve the instructions relating to production operations and to ensure their

    strict implementation;

    Chapter 3 Personnel and Training

  • 1 September 2010 Page 18 of 71

    b- to ensure that the production records are evaluated and signed by an authorized

    person before they are sent to the Q.C. unit;

    c- to ensure that products are produced and stored according to the appropriate

    documentation in order to obtain the required quality;

    d- to check the maintenance of his section, premises and equipment;

    e- to ensure that the appropriate validations are done;

    f- to ensure that the required initial and continuing training of his section personnel

    is carried out and adapted according to need.

    Q.C. Supervisor

    3.4 A person responsible for supervising the Q.C. section generally has at least the

    following responsibilities:

    a- to approve or reject raw materials, packaging materials, intermediate, bulk and

    finished products;

    b- to evaluate batch records;

    c- to ensure that all necessary testing is carried out;

    d- to approve specifications, sampling instructions, test methods and other quality

    control procedures;

    e- to approve and monitor any contract analysis;

    f- to check the maintenance of his department, premises and equipment;

    g- to ensure that the appropriate validations are done;

    h- to ensure that the required initial and continuing training of his department

    personnel is carried out and adapted according to need.

    Operators

    3.5 The persons engaging in activities in production and quality control generally have the

    following responsibilities relating to quality. These may include:

    a- the authorization of written procedures and other documents, including

    amendments;

    b- the monitoring and control of the manufacturing environment;

    c- facility cleanness;

    d- calibration and process validation;

    e- the approval and monitoring of suppliers of materials;

    f- the approval and monitoring of contract manufacturers;

    g- the designation and monitoring of storage conditions for materials and products;

    h- the retention of records;

  • 1 September 2010 Page 19 of 71

    i- the monitoring of compliance with the requirements of GMP;

    j- the inspection and investigation to monitor factors which may affect product

    quality.

    Training

    3.6 All production and Q.C. personnel should be trained in the principles of GMP,

    radiation protection and any relevant theory of the tasks assigned to them. Similarly,

    all other personnel (e.g. maintenance, service, cleaning) whose duties take them into

    manufacturing areas should receive appropriate training.

    3.7 Newly recruited personnel should receive training appropriate to the duties assigned to

    them.

    3.8 Continuing training should be given by qualified individuals, and its practical

    effectiveness should be periodically assessed and recorded. Training programs should

    be available, approved by either the person responsible for Production or the person

    responsible for Q.C.

    3.9 Personnel working in areas where contamination is a hazard, e.g. clean areas or areas

    where highly radioactive, toxic, infectious or sensitizing materials are handled, should

    be given specific training by qualified individuals.

    3.10 Visitors or untrained personnel should not be taken into the production and Q.C. areas.

    If this is unavoidable, they should be given information in advance, particularly about

    personal hygiene and the prescribed protective clothing. They should be closely

    supervised.

    3.11 The concept of Q.A. and all the measures capable of improving its understanding and

    implementation should be fully discussed during the training sessions.

    Personal Hygiene

    3.12 There should be an adequate number of personnel at all level having knowledge, skill

    and capabilities relevant to their assigned function, in good mental and physical health,

    and able to execute their duties professionally and properly.

    3.13 All personnel should receive medical examination upon recruitment. It must be the

    producer's responsibility that there are instructions ensuring that health conditions that

    can be of relevance to the quality of products come to the producer's knowledge. After

    the first medical examination, examinations should be carried out periodically when

    necessary for the work and personal health.

  • 1 September 2010 Page 20 of 71

    3.14 Steps should be taken to ensure that no person affected by an infectious disease or

    having open lesions on the exposed surface of the body is engaged in the production of

    pharmaceutical products.

    3.15 Every person entering the manufacturing areas should wear protective garments

    appropriate to the operations to be carried out.

    3.16 Eating, drinking, chewing or smoking, or the storage of food, drink, smoking materials

    or personal medication in the production, laboratory and storage areas should be

    prohibited. In general, any unhygienic practice within the manufacturing areas or in

    any other area where the product might be adversely affected, should be forbidden.

    3.17 Direct contact should be avoided between the operator's hands and the exposed

    product as well as with any part of the equipment that comes into contact with the

    products.

    3.18 Personnel should be instructed to use the hand-washing facilities.

    3.19 All employees should be instructed and encouraged to report to their immediate

    supervisor any conditions that they consider may adversely affect the products.

  • 1 September 2010 Page 21 of 71

    Principle

    Premises should be located, designed, constructed, and equipped to suit the operation to be

    carried out according to GMP and radiation protection. The individual working areas should

    be adequate so that any risk of errors, cross-contamination or other mix-ups are eliminated or

    reduced to a minimum.

    Premises

    4.1 Premises should be sited to provide radiation and contamination protection to

    personnel and environment.

    4.2 Premises should be sited to avoid contamination from external environment or

    adjacent premises.

    4.3 Premises should be carefully maintained, to facilitate and enhance quality of products.

    facility should be cleaned and where applicable disinfected according to detailed

    written procedures.

    4.4 Premises should be designed and equipped to afford maximum protection against the

    entry of insects or other animals.

    4.5 Steps should be taken in order to prevent the entry of unauthorized people. Production,

    storage and quality control areas should not be used as a right of way by personnel

    who do not work in these areas.

    4.6 Buildings and facilities should have adequate working space for the orderly placement

    of equipment and materials to prevent mix-ups and contamination.

    4.7 The flow of materials and personnel through the building or facilities should be

    designed to prevent mix-ups or contamination.

    4.8 There should be defined areas or other control systems for the following activities:

    a- receipt, identification, sampling and quarantine of incoming materials, pending

    testing and approval;

    b- quarantine before release or rejection of the products;

    c- sampling of the products;

    d- holding rejected materials before further disposition (e.g., return, reprocessing or

    destruction);

    e- storage of released materials and shielded storage for released radioactive

    products;

    f- production and Q.C. operations;

    g- packaging and labeling operations;

    Chapter 4 Premises and Facilities

  • 1 September 2010 Page 22 of 71

    4.9 Adequate, clean washing, showering, radiodecontamination and toilet facilities should

    be provided for personnel. These washing facilities should be equipped with hot and

    cold water as appropriate, soap or detergent, air driers or single service towels.

    4.10 A dedicated and self-contained facilities must be available for the production of

    particular products, such as highly radioactive materials, biological preparations and

    products derived from human blood or plasma.

    4.11 Walls, floors and ceilings of production area should be smooth, free from cracks and

    open joints. Also it should not shed particulate matter and should permit easy and

    effective cleaning and if necessary disinfection.

    4.12 Pipework, light fittings, ventilation points and other services should be designed and

    sited to avoid the creation of recesses which are difficult to clean. As far as possible,

    for maintenance purposes, they should be accessible from outside the manufacturing

    areas.

    4.13 Premises for the packaging of products should be specifically designed and laid out so

    as to avoid mix-ups or cross-contamination.

    Production and Quality Control Areas

    4.14 Production and Q.C. laboratories should be designed to suit the operations to be

    carried out in them. Sufficient space should be given to avoid mix-ups and cross-

    contamination. There should be adequate suitable storage space for samples and

    records.

    4.15 Production and Q.C. laboratories should be separated from each other.

    4.16 Q.C. laboratories for radiopharmaceuticals and biologicals should be separated from

    each other.

    4.17 Separate rooms may be necessary to protect sensitive instruments from vibration,

    electrical interference, humidity,etc.

    Storage Areas

    4.18 Storage areas should be of sufficient capacity to allow orderly storage of the various

    categories of materials and products including: raw and packaging materials,

    intermediates, finished products, products in quarantine (released, rejected, returned or

    recalled).

    4.19 Storage areas should be designed or adapted to ensure good storage conditions. In

    particular, they should be clean and dry and maintained within acceptable temperature

    limits. Where special storage conditions are required (e.g. temperature, humidity)

    these conditions should be provided, checked and monitored.

  • 1 September 2010 Page 23 of 71

    4.20 Receiving and dispatch ways should protect materials and products from the weather.

    Receptions areas should be designed and equipped to allow containers of incoming

    materials to be cleaned where necessary before storage.

    4.21 Where quarantine status is ensured by storage in separate areas, these areas must be

    clearly marked and their access restricted to authorized personnel. Any system

    replacing the physical quarantine should give equivalent security.

    4.22 There should be a separate sampling area for raw materials and it should be conducted

    in such a way to prevent contamination or cross-contamination.

    4.23 Segregated areas should be provided for the storage of rejected, recalled or returned

    materials or products.

    4.24 Highly radioactive materials or products should be labeled and stored in shielded and

    secure areas.

    4.25 Printed packaging materials are considered critical to the conformity of the products

    and special attention should be paid to the safe and secure storage of these materials.

    Utilities

    4.26 All utilities that could impact on product quality (e.g. steam, gases, compressed air,

    heating, ventilation and air conditioning) should be qualified and appropriately

    monitored and action should be taken when limits are exceeded. Drawings for these

    utility systems should be available.

    4.27 Adequate ventilation, air filtration and exhaust systems should be provided, where

    needed. These systems should be designed and constructed to minimize risks of

    contamination and cross-contamination and should include equipment for control of

    air pressure, dust, humidity, temperature and microorganisms, as appropriate to the

    stage of manufacture. Particular attention should be given to areas where products are

    exposed to the environment.

    4.28 Separate air handling units should be used for radioactive and non-radioactive areas.

    Air extracted from areas where radioactive products are handled should not be

    recirculated and should be exhausted through appropriate filters (that are regularly

    checked for performance) to avoid environmental contamination.

    4.29 Permanently installed pipework should be appropriately identified. This can be

    accomplished by identifying individual lines, documentation, computer control

    systems or alternative means. Pipework should be located to avoid risks of

    contamination.

    4.30 Drains should be of adequate size and should be provided with an air break or a

    suitable device to prevent back-siphonage, when needed.

  • 1 September 2010 Page 24 of 71

    4.31 Lighting, temperature, humidity and ventilation should be appropriate and such that

    they do not adversely affect, directly or indirectly, either the products during their

    manufacture and storage, or the accurate functioning of equipment.

    4.32 In general any radioactivity should be handled within maintained negative pressure. In

    contrast positive pressure areas should be used to process sterile products. Therefore,

    the production of radiopharmaceuticals should be carried out under negative pressure

    surrounded by a positive pressure zone in order to protect the internal and external

    environment.

    Ancillary Areas

    4.33 Rest and refreshment rooms should be separate from other areas.

    4.34 Facilities for changing clothes, and for washing and toilet purposes should be easily

    accessible and appropriate for the number of users. Toilets should not directly

    communicate with production or storage areas.

    4.35 Maintenance workshops should be separated from production areas. Whenever parts

    and tools are stored in the production area, they should be kept in rooms or lockers

    reserved for that use.

    4.36 Animal houses should be well isolated from other areas, with separate entrance

    (animal access) and air handling facilities.

    Lighting

    4.37 Adequate lighting should be provided in all areas, particularly in productions areas

    where visual on-line controls are carried out.

    Sewage and Refuse

    4.38 Specific disposal systems should be mandatory for radioactive substances. These

    systems should be carefully maintained and documented to prevent

    radiocontamination and exposure of personnel and others within and outside the

    facility.

    4.39 In other hand, non-radioactive sewage, refuse, and other waste should be disposed of

    in a safe, timely, and sanitary manner. Containers and/or pipes for waste material

    should be clearly identified.

  • 1 September 2010 Page 25 of 71

    Sanitation

    4.40 Buildings used in the manufacture of products should be properly maintained and kept

    in a clean condition and should be free of infestation by rodents, birds, insects and

    other vermin.

    4.41 Written procedures should be established assigning responsibility for sanitation and

    describing the cleaning schedules, methods, equipments and materials to be used in

    cleaning buildings and facilities.

    4.42 Written procedures should also be established for the use of suitable rodenticides,

    insecticides, fungicides, fumigating agents and cleaning and sanitizing agents to

    prevent the contamination of equipment, raw materials, packaging/labeling materials,

    or finished products.

    Water

    4.43 Water used in the manufacture of products should be demonstrated to be suitable for

    its intended use.

    4.44 Where water used in the process is treated by the manufacturer to achieve a defined

    quality, the treatment process should be validated and monitored.

  • 1 September 2010 Page 26 of 71

    Principle

    Equipments must be designed, constructed, located, adapted and maintained to suit the

    operations to be carried out. Their layout and design must aim to minimize the risk of errors

    and permit effective cleaning and maintenance in order to avoid cross-contamination, build

    up of dust or dirt and in general, any adverse effect on the quality of products. In addition, it

    should take in consideration aspects of radiation protection and contamination to personnel

    and to the environment.

    Design and Construction

    5.1 Equipment used in the manufacturing of products should be of appropriate design,

    construction, adequate size and suitably located in order that the quality designed into

    each product can be assured and reproducible on the batch-to-batch production basis.

    5.2 Manufacturing equipment should be designed, located and maintained to suit its

    intended purpose.

    5.3 Equipment should be installed in such a way as to prevent any risk of error or of

    contamination.

    5.4 Manufacturing equipment should be designed so that it can be easily and thoroughly

    cleaned.

    5.5 Production equipment that comes in contact with the product should not be reactive,

    absorptive or additive which could affect the quality of the product.

    5.6 Closed or contained equipment should be used whenever appropriate. Where open

    equipment is used or equipment is opened, appropriate precautions should be taken to

    minimize the risk of contamination.

    5.7 Balances and measuring equipment of an appropriate range and precision should be

    available for production and control operations.

    5.8 Distilled, deionised and where appropriate other water pipes, should be sanitized

    according to written procedures which detail the action limits for microbiological

    contamination and the measures to be taken to ensure a reliable production of water of

    an appropriate quality.

    5.9 Autoclaves used in the production areas for radiopharmaceuticals may be placed

    behind a lead shield to minimize radiation exposure to staff. In such circumstances it is

    important to allow for the increase in time needed to obtain the temperature required

    for the shielded vial within the autoclave.

    Chapter 5 Equipment

  • 1 September 2010 Page 27 of 71

    5.10 Such autoclaves shall be checked for contamination immediately after use to minimize

    cross contamination of vials of the next autoclave cycle and to avoid distribution of

    contamination vials.

    5.11 When used, conveyor belts should not pass through a partition between a clean area

    and a processing area of a lower level of air cleanliness unless the belt is situated in a

    sterilized tunnel or is continually sterilized.

    Maintenance and Cleaning

    5.12 Equipment should be cleaned and maintained according to the written procedures and

    without posing any hazard to the quality of the product.

    5.13 Preventative maintenance should be carried out according to the written procedure

    schedule.

    5.14 Defective equipment should be removed from production and control areas and la-

    beled as such until repaired, revalidated and calibrated prior to reuse.

    5.15 Equipment should be cleaned, stored, and where appropriate sanitized or sterilized to

    prevent contamination or carry-over of a material that would alter the quality of the

    product.

    5.16 Cleaning equipment used should not be a source of contamination and should be

    chosen to suit the operations.

    5.17 After all planned or necessary equipment maintenance in clean areas, the area should

    be cleaned and disinfected appropriately before processing recommences if the

    standard of cleanliness and/or asepsis has not been maintained during the maintenance.

    5.18 All equipment including sterilizers, air filtration systems, water treatment systems

    including stills should be subject to planned maintenance according to the written

    procedures and should be validated and approved by quality control after any major

    maintenance work has been carried out.

    5.19 Glove boxes and other enclosures should also frequently cleaned externally and

    internally to avoid external contaminated vials.

    5.20 Tongs and forceps used to increase the distance between the vials and the operator's

    hands and body shall also be frequently cleaned and checked. Lead shielding such as

    lead pots, lead castle/bricks used to minimize radiation exposure to staff shall be kept

    well painted and cleaned.

    5.21 Records should be kept for maintenance, cleaning and sanitizing.

  • 1 September 2010 Page 28 of 71

    Calibration

    5.22 All equipment should carry a labeling stating the last calibration date and next

    calibration date due and should be signed off by an authorized person.

    5.23 Control, weighing, measuring, monitoring and test equipment should be calibrated

    according to written procedures and established schedules.

    5.24 Equipment calibrations should be performed using certified standards.

    5.25 Records of these calibrations should be maintained.

    5.26 The current calibration status of equipments should be known and verifiable.

    5.27 Instruments that do not meet calibration criteria should not be used.

    Computerized Systems

    5.28 Radiopharmaceuticals production related computerized systems should be validated.

    5.29 Appropriate operational qualification should demonstrate the suitability of computer

    hardware and software to perform assigned tasks.

    5.30 Computerized systems should have sufficient controls to prevent unauthorized access.

    In addition, the identity of operators entering and/or confirming data should be

    recorded.

    5.31 Written procedures should be available for the operation and maintenance of

    computerized systems.

    5.32 Incidents related to computerized systems that could affect the quality of products or

    the reliability of records or test results should be recorded and investigated.

    5.33 Changes to the computerized system should be made according to a change procedure

    and should be formally authorized, documented and validated. Records should be kept

    of all changes, including modifications and enhancements made to the hardware,

    software and any other critical component of the system.

    5.34 If system breakdowns or failures would result in the permanent loss of records, a back-

    up system should be provided. A means of ensuring data protection should be

    established for all computerized systems.

    5.35 The procedures to be followed if the system fails or breaks down should be defined

    and validated. Any failures and remedial action taken should be recorded.

  • 1 September 2010 Page 29 of 71

    Principle

    Documentation is an essential part of an effective quality assurance system. The main

    purposes are to define the system, to reduce the risk of misinterpretation and error inherent in

    oral communication, to ensure that detailed instructions are available to personnel and that

    established procedures are carried out in accordance with instructions. The documentation

    system should make it possible to trace an individual product back through the whole process

    including the use and disposal of each material and to discover the reason for defective

    radiopharmaceuticals. The documentation system should be designed to include both

    pharmaceutical and radiation protection aspects. It should be prepared and distributed with

    control.

    All documentation material should be dated and authorized by the relevant competent persons.

    Documents should be regularly reviewed and kept up-to-date.

    General Requirements

    6.1 All documents related to the manufacture of products should be prepared, reviewed,

    approved, dated and distributed according to written procedures. Such documents can

    be in paper or electronic form.

    6.2 Documents of standard operating procedures (SOP) should be available for major

    items of manufacturing and test equipment.

    6.3 Documents should have unambiguous title and contents; nature and purpose should be

    clearly stated. Reproduced documents should be clear, legible and reproduction of

    working documents from master documents must not allow any error to be introduced

    through the reproduction process.

    6.4 Documents should be regularly reviewed and kept up-to-date. When a document has

    been revised, systems should be operated to prevent inadvertent use of superseded

    documents.

    6.5 Documents should not be handwritten; although, where documents require the entry of

    data, these entries may be made in clear, legible and indelible handwriting. Sufficient

    space should be provided for such entries.

    6.6 The records should be authentic, unambiguous and completed at the time each action

    is taken and in such a way that all significant activities concerning the manufacture of

    radiopharmaceutical products are traceable. They should be retained for at least one

    year after the expiry date of the finished product.

    Chapter 6 Documentation and Records

  • 1 September 2010 Page 30 of 71

    6.7 Any alteration made to the entry on a document and record should be recorded, signed

    and dated; the alteration should permit the reading of the original information. Where

    appropriate, the reason for the alteration should be recorded.

    6.8 A record of radioactive material activity received, used, and disposed should be kept

    as per requirements. Accurate values of radioactivity must be given on the secondary

    container, as it is difficult to give this information on primary container.

    6.9 Data may be recorded by electronic data processing systems, photographic or other

    reliable means. But detailed procedures relating to the system in use should be

    available and the accuracy of the records should be checked.

    Documents Required

    Specifications

    6.10 There should be appropriately authorized and dated specifications for raw and

    packaging materials, bulk products and finished products, in terms of its chemical,

    physical and biological characteristics.

    Specifications for Raw and Packaging Materials, Bulk Products and Finished Products

    6.11 A set of specifications should be established for each raw and packaging materials,

    bulk products and finished products

    The list of specifications for raw materials, packaging materials and finished products

    is given below (appropriate items are applicable):

    a- name and code number;

    b- description of physical form and appearance;

    c- supplier(s) approved;

    d- tests and limits for identity, purity and assay;

    e- radioactivity contents should be recorded with time;

    f- sampling (including reference sample) and analytical methods to be used;

    g- storage conditions;

    h- safety precautions to be observed;

    i- expiry.

  • 1 September 2010 Page 31 of 71

    Manufacturing Document (Master Document) and Processing Instructions

    Formally authorized Manufacturing Document and Processing Instructions should exist for

    each product and batch size to be manufactured.

    6.12 The Manufacturing Document should include:

    a- name of the product, with a product reference code unique to the batch produced;

    b- description of the radiopharmaceutical form, strength of the product and batch size;

    c- list of all raw materials to be used, the amount of each, described the designated

    name and a reference which is unique to that material.

    d- statement of the final yield with the acceptable limits and relevant intermediate

    yields, where applicable.

    6.13 The Processing Instructions should include:

    a- statement of the processing location and the principal equipment to be used;

    b- methods to be used for preparing the critical equipment (e.g. cleaning, assembling,

    calibrating and sterilizing);

    c- detailed stepwise processing instructions (e.g. checks on materials, pretreatment,

    sequence for adding materials, mixing times, temperatures and pressure.);

    d- instructions for any in-process controls with their limits;

    e- where necessary, the requirements for bulk storage of the products including the

    container, labeling and special storage conditions where applicable;

    f- any special precautions to be observed.

    Packaging Instructions

    6.14 There should be formally authorized Packaging Instructions for each product, pack

    size and type. These should normally include, or have a reference to, the following:

    a- name of the product;

    b- description of radiopharmaceuticals, strength and shielding required;

    c- the pack size expressed in terms of number, activity or volume of the product in

    the final container;

    d- complete list of all the packaging materials required for a standard batch size,

    including quantities, sizes and types, with the code or reference number relating to

    the specifications of each packaging material;

    e- where appropriate, an example or reproduction of the relevant printed packaging

    materials, and specimens indicating where to apply batch number references, and

    shelf life of the product;

    f- special precautions to be observed.

    g- description of the packaging operation, including any significant subsidiary

  • 1 September 2010 Page 32 of 71

    operations, and equipment to be used;

    h- details of in-process controls with instructions for sampling and acceptance limits.

    Records Required

    6.15 Records provide a history of each radioactive and non-radioactive raw material and

    batch of radiopharmaceuticals, including their preparation, packaging, quality control,

    storage and distribution and also of all other relevant parameters that can affect the

    quality of the final product.

    Raw Material Records

    Receipt

    6.16 There should be written procedures and records for the receipt of each delivery

    of each raw and packaging material.

    6.17 The records of the receipts should include:

    a- the name of the material on the delivery note and container;

    b- the "in-house" name and/or code of material (if different from supplier);

    c- date of receipt;

    d- supplier’s name and manufacturer’s name;

    e- manufacturer’s batch or reference number;

    f- total quantity and number of containers received;

    g- the specific identification number assigned after receipt;

    h- any relevant comment (such as incorrect labeling, container damage,

    broken seals and evidence of contamination).

    6.18 There should be written procedures for the internal labeling, quarantine and

    storage of raw materials, packaging materials and other materials.

    Sampling

    6.19 There should be written procedures for sampling, which include:

    a- the person(s) authorized to withdraw samples;

    b- method of sampling, the sampling plan and standard used in the sampling

    plan;

    c- precautionary measures taken during sampling including use of special

    equipment and sample container(s) by authorized person(s) to withdraw

    samples;

    d- location of sampling;

    e- quantity of sample(s) to be withdrawn;

  • 1 September 2010 Page 33 of 71

    f- name of the product and code number;

    g- date of sampling.

    Testing

    6.20 There should be written procedures for testing materials and products at

    different stages of manufacture.

    The record of testing should include at least the following data:

    a- the name of the material or product and, where applicable, dosage form;

    b- the batch number and the manufacturer and/or supplier;

    c- reference to the relevant specifications, testing procedures and equipment

    to be used;

    d- test results, including observations and calculations, and reference to

    specifications (limits);

    e- date of inspection and testing;

    f- the initials of the person(s) who performed the testing and verified the

    testing and calculations ;

    g- a clear statement of release or rejection (or other status decision) and the

    dated signature of the designated responsible person;

    h- a cross reference to any relevant certificate of analysis.

    Batch Manufacturing Records

    6.21 The batch manufacturing record is one of the most important documents for following

    and recording the production process. It may contain details of complete method and

    must carry a batch number.

    Batch manufacturing record must contain:

    a- name of the product;

    b- space for recording checks of equipment and workstations.

    c- batch numbers for each raw material.

    d- initials of person(s) who weighed or measured each material and initials of person

    who checked each of these operations. This check also includes identity and batch

    number of material.

    e- results of yield measurements at intermediate stages and of process controls signed

    by the person carrying them out along with the initials of the person responsible

    for each critical stage of manufacture.

    f- the final yield and the number of containers.

    g- a signature from the process supervisor confirming that everything has proceeded

  • 1 September 2010 Page 34 of 71

    in accordance with the master formula and that any variation is adequately

    explained.

    h- if the final dispensing and packaging is not included in the manufacturing process,

    a separate batch dispensing record may be kept containing all details about

    dispensing, packaging etc. including specimens of labels and instructions for use

    etc.

    i- quality control test results of reference to special reports.

    j- date and signature of the person authorizing the release of the product.

    Quality Control Records

    6.22 Quality control records should include complete data derived from all tests conducted

    to ensure compliance with established specifications and standards, including

    examinations and assays, as follows:

    a- a description of samples received for testing, including the material name, source,

    quantity, batch number or other distinctive code and the date of sampling and

    testing;

    b- a statement of, or reference to each test method used;

    c- a statement of the weight or measure of sample used for each test as described by

    the method; data on, or reference to the preparation and testing of reference

    standards, reagents and standard solutions;

    d- a complete record of all raw data generated during each test, in addition to graphs,

    charts, and spectra from laboratory instrumentation, properly identified to show

    the specific material and batch tested;

    e- a record of all calculations performed in connection with the test, including, for

    example, units of measure, conversion factors, and equivalency factors;

    f- a statement of the test results and how they compare with established acceptance

    criteria;

    g- the signature of the person who performed each test and the date(s) tests were

    performed;

    h- the date and signature of a second person showing that the original records have

    been reviewed for accuracy, completeness, and compliance with established

    standards.

    6.23 Complete records should also be maintained for:

    a- any modifications to an established analytical method;

    b- periodic calibration of laboratory instruments, apparatus, gauges, and recording

    devices;

  • 1 September 2010 Page 35 of 71

    c- all stability testing performed on finished products;

    d- out-of-specification (OOS) investigations and corrective action taken.

    Release and Rejection Records

    6.24 There should be written procedures for the release and rejection of materials and

    products, and in particular for the release for sale of the finished product by an

    authorized person.

    Batch Packaging Records

    6.25 A Batch Packaging Record should be kept for each batch or part of a batch processed.

    It should be based on the relevant parts of the Packaging Instructions and the method

    of preparation of such records should be designed to avoid transcription errors. The

    record should carry the batch number and the quantity to be packed.

    6.26 Before any packaging operation begins, there should be recorded checks that the

    equipment and work station are clear of previous products, documents or materials not

    required for the planned packaging operations, and that equipment is clean and

    suitable for use.

    Batch Packaging Records must contain:

    a- name of the product;

    b- dates, and times of the packaging operations;

    c- name of the responsible person carrying out the packaging operation;

    d- initials of the operators of the different significant steps;

    e- records of checks for identity and conformity with the packaging instructions;

    f- details of the packaging operations carried out, including references to equipment and

    the packaging lines used (if applicable);

    g- notes on any special problems or unusual events including details with signed

    authorization for any deviation from the manufacturing formula and processing

    instructions;

    h- quantities and reference number or identification of all printed packaging materials

    and bulk product issued, used, destroyed or returned to stock and the quantities of

    product obtained, in order to provide for an adequate reconciliation.

    When radioactivity is involved in the packaging an additional operation namely shielding is

    required.

  • 1 September 2010 Page 36 of 71

    Distribution Records

    6.27 There should be written procedures for the distribution of each batch of a product to

    facilitate recall of the batch, if necessary.

    The distribution record should include at least the following data:

    a- name, address and number of the customer that the product is shipped to;

    b- delivery order date and number;

    c- name, dosage form, strength, quantity delivered, batch number and expiry date of

    the product;

    d- special storage requirements or precautionary measures to handle the product;

    e- radiation protection measures in addition to the approval of radiation safety

    officer.

    Records of Product Complaints and Adverse Reactions Report

    6.28 There should be written procedures for the handling of product complaints. The record

    of product complaints and adverse reactions report should include at least the

    following data:

    a- product name and batch number;

    b- type of complaint or adverse reactions report;

    c- source of complaint or adverse reactions report;

    d- summary of complaint or adverse reactions report;

    e- method of handling of complaint or adverse reactions report;

    f- result of investigation;

    g- evaluation of complaint or adverse reactions report;

    h- response and follow up action to the complaint or adverse reactions report.

    Returned, Recalled and Destruction Records

    6.29 There should be written procedures for the handling of returned, recalled or destructed

    products. The record should include at least the following data:

    a- product name, batch number and batch size of returned, recalled or destructed

    product;

    b- date of receiving of the product returned or recalled;

    c- reason of return or recall;

    d- quantity of product returned, recalled or destructed;

    e- source of product returned, recalled or destructed;

    f- the handling and disposition of returned product.

  • 1 September 2010 Page 37 of 71

    g- the guidelines for making decision either to salvage, reprocess, or destroy the

    returned or recalled product and the method of destruction;

    h- follow up action taken.

    Others

    6.30 Log books should be kept for major or critical equipments. In addition written

    procedures for validation, calibration, maintenance, environmental monitoring,

    cleaning, pest control, training and batch numbering should be established and

    implemented.

  • 1 September 2010 Page 38 of 71

    Principle

    The manufacturing of radiopharmaceutical products involves the use of materials such as

    radioactive raw materials, non-radioactive raw materials and packaging materials.

    Consequently, special precautions must be taken in selecting, handling, testing and storing of

    these materials.

    General Requirements

    7.1 There should be written procedures describing the receipt, identification, quarantine,

    storage, handling, sampling, testing, approval or rejection of materials and packaging

    materials prior delivery.

    7.2 Manufacturers should have a system for evaluating the suppliers of critical materials.

    7.3 Materials should be purchased against an agreed specification approved by the quality

    unit(s) and should be identified with a distinctive code for each lot in each shipment

    received.

    7.4 Changing the source of supply of raw materials should be approved by the quality

    unit.

    7.5 Working standards can be established as in-house reference standards. These standards

    including reference standards must be stored in secure area.

    7.6 Flint neutral borosilicate glass vials (USP type-1/equivalent) should be used for

    dispensing.

    7.7 Sterile kit formulation and rubber stoppers with split ends should be used for freeze-

    drying operation.

    7.8 Packing materials include thermocol boxes, cardboard boxes, tin containers, absorbent

    cotton, lead containers, labels etc. should be used. Outdated or obsolete primary

    packaging material should be destroyed and this disposal should be recorded.

    Receipt and Quarantine

    7.9 Upon receipt and before acceptance, each container or group of containers of materials

    should be examined visually for correct labeling, container damage, broken seals and

    evidence of tampering or contamination. Materials should be held under quarantine

    until they have been sampled, examined or tested as appropriate, and released by Q.C.

    for use.

    7.10 Any canceled or damaged packaging material must be disposed of promptly.

    7.11 Only raw materials that have been released by Q.C. can be used by production, such

    release should be by written instructions.

    Chapter 7 Materials Management

  • 1 September 2010 Page 39 of 71

    Sampling and Testing of Materials

    7.12 Each lot of materials should be withheld from use until the lot has been sampled,

    tested, or examined and released for use by the quality control unit.

    7.13 Representative samples of each shipment of each lot should be collected for testing or

    examination. The number of containers to be sampled, and the amount of material to

    be taken from each container, should be based upon appropriate criteria such as

    statistical criteria for component variability, confidence levels, and degree of precision

    desired, the past quality history of the supplier, and the quantity needed for analysis

    and reserve samples.

    7.14 Samples should be conducted and collected in accordance with the following

    procedures:

    a- The containers of components selected should be cleaned where necessary, by

    appropriate means.

    b- Sterile equipment and aseptic sampling techniques should be used when

    necessary.

    c- Sample containers should be identified so that the following information can be

    determined:

    i- name of the material sampled;

    ii- the lot number;

    iii- the container from which the sample was taken;

    iv- the date on which the sample was taken;

    v- the name of the person who collected the sample.

    7.15 Samples should be examined and tested as follows:

    a- At least one test should be conducted to verify the identity of each component of

    product. Specific identity tests, if they exist, should be used.

    b- Supplier approval should include an evaluation that provides adequate evidence

    (e.g., past quality history) that the manufacturer can consistently provide material

    meeting specifications. Full analysis should be conducted on at least three batches

    before reducing in-house testing. However, as a minimum, a full analysis should

    be performed at appropriate intervals and compared with the Certificates of

    Analysis. A report of analysis may be accepted from the supplier of a material,

    provided that at least one specific identity test is conducted by the manufacturer.

    Reliability of Certificates of Analysis should be checked at regular intervals.

    c- Each lot of a material that is liable to microbiological contamination should be

    subjected to microbiological tests before use.

  • 1 September 2010 Page 40 of 71

    d- Materials should be re-tested as appropriate to determine their suitability for use

    (e.g., after prolonged storage or exposure to heat or humidity).

    Storage

    7.16 Materials should be handled and stored in a manner to prevent degradation,

    contamination, and cross-contamination.

    7.17 Materials stored in bags, or boxes should be stored off the floor and suitably spaced to

    permit cleaning and inspection.

    7.18 Where special storage conditions are required (e.g. temperature, humidity, shielding)

    these should be provided, monitored and recorded.

    7.19 Printed packaging materials should be stored in a designated secure area and the

    access to this area is limited to authorized person(s).

    7.20 Printed packaging materials should be stored in closed containers in such a way as to

    prevent mix-ups.

    7.21 A storage procedure that ensures the oldest stock of raw material, intermediate or

    ancillary item is utilized before a newer and identical stock item is utilized (i.e. First In

    / First Out "FIFO" principle concept).

    7.22 Printed materials, cut labels and other loose printed materials should be issued by an

    authorized person following a documented procedure. These printed materials should

    be stored separately to avoid mix-up.

    Waste materials

    7.23 Provision should be made for the proper and safe storage of waste materials awaiting

    disposal. Toxic substances and flammable materials should be stored in suitably

    designed, separate, enclosed cupboards, as required by national legislation.

    7.24 Waste material should not be allowed to accumulate. It should be collected in suitable

    receptacles for removal to collection points outside the buildings and disposed of

    safely and in a sanitary manner at regular and frequent intervals.

    7.25 To avoid any serious source of internal and external radiation hazards from radioactive

    waste adequate arrangements should be made for the proper collection and safe

    disposal of all kinds of radioactive wastes generated at the facility.

    Dispensing

    7.26 Dispensing of raw material should be done by authorized personnel in accordance with

    written procedures to ensure that the correct materials are accurately dispensed,

    labeled and the reference number must be documented for each material upon

    dispensing.

  • 1 September 2010 Page 41 of 71

    7.27 Proper measures must be taken to avoid cross contamination during dispensing.

    7.28 Materials dispensed for a production batch must be kept together and labeled

    accordingly.

  • 1 September 2010 Page 42 of 71

    Principle

    Radiopharmaceuticals production practice can be categorized into:

    1- Ready-for-use radioactive products.

    2- Radionuclide generators.

    3- Non-radioactive components (kits) for the preparation of compounds with

    a radioactive component (usually the elute from a radionuclide generator).

    4- Precursors used for radiolabeling other substances before administration.

    Production facility requirements for these four categories are different and discussed in

    separate sections. The central radiopharmacy that may include positron emission tomography

    also undertakes the production/formulation of radiopharmaceuticals and hence is discussed in

    separate section in this chapter.

    In addition contingency plans for dealing with any foreseeable emergency situation involving

    radioactivity should be written down, displayed and known by personnel.

    Hot Lab Procedure

    8.1 Radiopharmaceuticals preparation should be performed in accordance with an

    approved written procedure which should be safe, straightforward and reliable. Careful

    attention should be given to prevent cross-contamination between products during

    production.

    8.2 All radiopharmaceuticals should be handled either in fume hoods, glove boxes, hot

    cells, biohazard safety cabinets or laminar flow hoods (LFH) (based on the nature of

    radioisotopes).

    8.3 Glove boxes should be provided with adequate shielding and remote handling

    facilities.

    8.4 Separate areas should be used for each product to avoid cross contamination and

    should be provided with equipment and instruments necessary for the operation.

    8.5 Introduction of the materials into the glove boxes/hot cells and removal of the

    products should be done without the spread of the radioactivity.

    8.6 The transfer, storage and handling of radioactivity outside the glove boxes/hot cells

    should be done with adequate shielding and remote handling devices so as to minimize

    radiation exposure to personnel.

    8.7 All of the operation should be carefully designed and standardized to minimize the

    spread of radioactivity.

    8.8 Glove boxes/hot cells/ LFH should meet ventilation requirements for radioactive

    handling as described under Chapter 2.

    Chapter 8 Production of Radiopharmaceuticals

  • 1 September 2010 Page 43 of 71

    8.9 Glove boxes/hot cells/LFH should comply with air quality requirements as per the

    codes of GMP for injectable and other preparations (Annex 1).

    8.10 The facilities should satisfy the following conditions:

    a- All processes involving the manufacturing sterile radiopharmaceuticals should be

    carried out inside laminar flow hood class A placed in class C clean room. All

    processes involving the manufacturing non-sterile radiopharmaceuticals should be

    carried out in class C environment.

    b- hot lab, preparation room and quality control room should be provided with

    controlled environment to avoid contamination by microorganisms and particles.

    c- glove box/hot-cells for combining radiation protection and clean room

    requirements should be well standardized following national or international

    guidelines.

    8.11 All other equipment should be chosen so as to maintain the air quality during

    operation.

    8.12 Other facilities required at the hot lab:

    a- radioactive waste should be collected separately with lead shielding.

    b- personnel monitoring must be done as described in Chapter 2.

    c- radiation monitoring should be done during the processing operation.

    d- in case of contamination, steps as described under radiation protection procedures

    must be adopted.

    Manufacture of Sterile Cold Kits

    8.13 These products are strictly not radiopharmaceuticals, however, since they are the

    precursors for radiopharmaceuticals, are described as radiopharmaceuticals for

    practical purposes.

    8.14 The manufacture of these kits involves special requirements to avoid the risk of

    microbial, pyrogen and particulate contamination.

    8.15 Sterile kit preparations should be manufactured in accordance with GMP guidelines

    applicable to sterile injectable products in Class A workstation and Class B

    environment. Kits which can be terminally sterilized (e.g. S-colloid) may be prepared

    in Class A workstation and Class C environments.

    8.16 Class A Laminar Air Flow (LAF) bench situated in a clean room of Class C should

    provide such an atmosphere for preparing and dispensing of kit solution.

    8.17 A periodic sanitation program for the premises indicating cleaning procedures and

    cleaning intervals should be established and implemented. The microbial

  • 1 September 2010 Page 44 of 71

    contamination level in the room as well as dispensing areas should be monitored at

    regular intervals.

    8.18 All preliminary work, such as cleaning, sterilization of glassware, containers, closures,

    filters and preparation of bulk solutions for the kits should be performed in the room

    adjacent to the kit preparation and dispensing room that is interconnected by hatches

    (pass box installed with interlock) for material transfer.

    8.19 All surfaces in the area should be designed to facilitate cleaning and disinfecting.

    Manufacturing Process

    A- Laminar Air Flow (LAF) Bench (vertical or horizontal air flow type or others)

    8.20 The particle count in the LAF bench environment should not exceed a total of 3500

    particles/m3 of a size of 0.5μm or greater and the greatest particle present in any

    sample should not exceed 5μm (Annex 1).

    8.21 The LAF bench should be disinfected by swabbing with an appropriate disinfectant

    before using.

    8.22 The performance of the LAF bench should be regularly checked by measurement of

    air velocity and periodical exposure of nutrient agar culture plate in the working area

    to detect microbial contamination.

    B- Freeze Drying

    8.23 A shelf type freeze-drying unit with required capacity should be used.

    8.24 The unit should have facilities for stoppering the vials under vacuum or nitrogen gas

    by mechanical means.

    8.25 Each time prior to loading of the samples, the freeze-dryer should be operated without

    load and performance of the machine with respect to the important parameters

    checked.

    8.26 Where an isolator is used for the manufacture of sterile cold kits, this unit should be

    located inside clean air condition (class D).

    8.27 The chemical identity of starting materials should be verified according to methods

    specified in the BP, USP or other pharmacopoeia. These materials should be tested for

    chemical purity and the presence of heavy metal contaminants. All materials should be

    handled as outlined in starting material control, in such a way that identity, potency

    and purity are guaranteed.

    8.28 All water used for cold kit preparation must be at least of the quality of water for

    Injections BP, USP or other pharmacopoeia.

  • 1 September 2010 Page 45 of 71

    8.29 All saline used for cold kit preparation should be of the quality of 0.9 % w/v sodium

    chloride for Injection BP, USP o