h15[1].l12_proc_var

Upload: resizer20

Post on 04-Jun-2018

252 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 h15[1].l12_proc_var

    1/8

    Lecture 12

    PVT Variations

    Device Mismatch

    R. Dutton, B. Murmann

    R. Dutton, B. Murmann 1EE114 (HO # 15)

    an or n vers y

    Re-cap

    What weve covered so far

    Device modeling

    Analysis tools (Miller approximation, ZVTC)

    Fundamental stage configurations (CS, CG, CD)

    What we have implicitly assumed

    We have nearly ideal current and voltage sources available

    to set up the transistors bias points

    Transistor parameters and supply voltage do not vary

    The next set of lectures will move us toward the practical

    R. Dutton, B. Murmann 2

    implementation of transistor stages

    Focusing on biasing schemes that are insensitive to

    variations commonly seen in IC technology

    EE114 (HO # 15)

  • 8/13/2019 h15[1].l12_proc_var

    2/8

  • 8/13/2019 h15[1].l12_proc_var

    3/8

    Process Variations

    Wafer made yesterday

    All NMOS are slow

    All PMOS are nominal

    Wafer made today

    All NMOS are fast

    All PMOS are fast

    Parameter Slow Nominal Fast

    Vt 0.65V 0.5V 0.35V

    Cox (NMOS) 40 A/V2 50 A/V2 60 A/V2

    Cox (PMOS) 20 A/V2 25 A/V2 30 A/V2

    All C are fast

    All C are slow

    R. Dutton, B. Murmann 5EE114 (HO # 15)

    Rpoly2 60/ 50/ 40/

    Rnwell 1.4 k/ 1 k/ 0.6 k/

    Cpoly-poly2 1.15 fF/m2 1 fF/m2 0.85 fF/m2

    Temperature Coeffic ients

    Parameter Approximate TC

    Vt -1.2 mV/C

    Cox (NMOS) -0.33 %/C

    Cox (PMOS) -0.33 %/C

    Rpoly2 +0.2 %/C

    Rnwell +1 %/C

    Cpoly-poly2 -30 ppm/C

    R. Dutton, B. Murmann 6EE114 (HO # 15)

    * The defaul t t emper ature i n Spi ce i s 25 degr ees Cel si us

    * The f ol l owi ng command set s t he temperat ure t o 100 degr ees Cel si us

    . t emp 100

  • 8/13/2019 h15[1].l12_proc_var

    4/8

  • 8/13/2019 h15[1].l12_proc_var

    5/8

  • 8/13/2019 h15[1].l12_proc_var

    6/8

    Mismatch

    Upon closer inspection, device parameters not only vary fromlot-to-lot or wafer-to-wafer, but there are also differences

    between closely spaced, nominally identical devices on the

    same c p

    These differences are called mismatch

    L

    WC

    L

    WC

    VVV

    oxox

    ttt

    =

    =

    21

    21

    R. Dutton, B. Murmann 11EE114 (HO # 15)

    CCC = 21

    Statistical Model

    Experiments over the past decades have shown that

    mismatches in device parameters (Vt, C, ) are typicallyrandom and well-described by a Gaussian distribution

    With zero mean and a standard deviation that depends on

    the process and the size of the device

    Empirically, the standard deviation of the mismatch between two

    closely spaced devices can be modeled using the following

    expression

    WL

    AX

    X=

    R. Dutton, B. Murmann 12EE114 (HO # 15)

    where WL represents the area of the device, and X is the

    device parameter under consideration

  • 8/13/2019 h15[1].l12_proc_var

    7/8

    Coefficients for the EE114 Technology

    Parameter Value

    AVt 20 mV-m

    A/ 2 %-m

    AC/C (Poly-Poly2 capacitor) 2.5 %-m

    AR/R (Poly2 resistor) 10 %-m

    R. Dutton, B. Murmann 13EE114 (HO # 15)

    Example

    Example: MOSFET with W= 20m, L=1 m

    %mV 220.m.

    tV

    2020====

    http://en.wikipedia.org/wiki/Image:Standard_deviation_diagram.svg

    mV.t

    V 5133 =

    R. Dutton, B. Murmann 14EE114 (HO # 15)

    %.3513 =

  • 8/13/2019 h15[1].l12_proc_var

    8/8

    Mismatch in EE114

    Again, for simplicity, we do not want to go overboard in EE114in terms of taking mismatch into account

    More on this topic in EE315A, EE315B

    Nonetheless, we should use the information from the previous

    slides to guide our expectation on how well two transistors on

    the same chip can match

    Important e.g. in the context of current mirrors (lecture 13)

    Typical numbers to remember

    Vt of a close-by pair of MOSFETS typically shows mismatch

    R. Dutton, B. Murmann 15

    on e or er o m

    =CoxW/L of a close-by pair of MOSFETS typically shows

    mismatch on the order of 0.52%

    EE114 (HO # 15)

    Aside: Well Proximity Effects

    Modern technologies Many fancy issues that can cause mismatch

    between two devices

    R. Dutton, B. Murmann 16EE114 (HO # 15)

    P. G. Drennan et al., "Implications of Proximity Effects for Analog Design," Proc. CICC, pp.169-176, Sep. 2006.