hadron-quark crossover and massive hybrid stars...hadron-quark crossover and massive hybrid stars...

1
Hadron-Quark Crossover and Massive Hybrid Stars Abstract Introduction Results Theory TOV equa.on Equa.on of State: MassRadius(MR) rela.on for NS Observa.on Typical observed mass for double NS binaries: 1.4 M onetoone correspondence Recent discovery [1] and Key ques.on In 2010, NS(PSRJ16142230) with (1.97±0.04) was found • Are there any EOS which can explain NS? • Is there HadronQuark transi.on inside the NS? M New EOS with hadron-quark crossover [2,3] Hadronic phase: TNI2u EOS [4] Quark phase: NJL EOS References [1]P. B. Demorest et al., Nature 467 (2004), 10811083 [2]K. Masuda, T. Hatsuda and T. Takatsuka, ApJ 764, 12 (2013) [3]K. Masuda, T. Hatsuda and T. Takatsuka, Prog. Theor. Exp. Phys. 073D01 (2013) [4]S. Nishizaki, Y. Yamamoto, T. Takatsuka, Prog. Theor. Phys. 108 (2002), 703. [5]M. Buballa, Physics Reports 407 (2005), 205376 [6]T. Hatsuda and T. Kunihiro, Physics Reports , 247 (1994), 221367 Summary Future Works • Finite temperature extension to treat protoneutron star • Constraints on EOS from other observables (cooling, …) parameter HK RKH LKW 631.4 602.3 750 3.67 3.67 3.64 9.29 12.36 8.9 5.5 5.5 3.6 135.7 140.7 87 New EOS with Crossover Hadron phase: TNI2u (hyperons and universal 3body force) Quark phase : (2+1)flavor NJL with equilibrium and charge neutrality M/M ! β Pressure (P) Baryon density (ρ) hadron crossover quark strongly interac.ng quark majer can sustain NS. It is in contrast to the case of In this poster, we choose HK and change in the range P = P H 1 - tanh ( - ¯ Γ ) 2 + P Q 1 + tanh ( - ¯ Γ ) 2 pressure in a hadron phase width of the crossover region crossover density pressure in a quark phase (2+1)flavor NJL with equilibrium and charge neutrality (+ ) β L NJL q (i@ - m)q + G s 2 8 X a=0 [(¯ q λ a q ) 2 +(¯ qiγ 5 λ a q ) 2 ] - g v 2 [(¯ q γ μ q ) 2 ] +G D [det¯ q (1 + γ 5 )q +h.c] mean field approxima.on Various EOS with hyperons specified by free parameters: ¯ , Γ e - - (MeV) G s 2 G D 5 m s (MeV) m u,d (MeV) • strongly interac.ng quark phase at rela.vely low densi.es ! 2M Only the massive neutron stars would have strangeness core in a form of quark majer. 3 2.05 2.17 4 1.89 1.98 5 1.73 1.80 1.74 1.80 6 1.60 1.65 1.62 1.66 Maximum mass with TNI2u HEOS ¯ 0 g v = G s g v =1.5G s Γ/0 =1 Γ/0 =2 g v = G s g v =1.5G s At , hadron picture must be correct ¯ - 2Γ 0 0 ¯ Γ • key point Hypothesis of the hadronquark crossover , Γ) = (30 , 0 ) Shapiro delay Orbital phase (turns) Timing residual (μs) 0 1 2M 2M ,P = 2 @ ("/) @⇢ EOS = dP dr = -(M +4Pr 3 )(" + P ) r 2 G - 2Mr -1 M = Z 4r 2 "(x)dx P = f (") Schema.c picture of crossover TNI2u TNI2 AV18 + TBF method Gmatrix Gmatrix Gmatrix RMF universal 3body force × × × κ (MeV) 250 250 192 211 maximum mass( ) 1.52 1.08 1.22 1.36 central density( ) 11.06 16.10 7.35 5.89 0 M SCL3⇤⌃ M max M does not depend on HEOS M max Universal 3body force delays hyperon mixture 2.50 (TNI2) ! 40 (TNI2u) (&%# ,#*" "-'(&%) !$ 00 + ./ g v = G s g v 0 g v G s 1.5 • Defini.on of pressure P and energy density ε • Condi.on Using the idea of smooth crossover from hadronic majer with hyperons to quark majer with strangeness, we show the maximum mass of neutron stars with quark majer core can be larger than . It is in contrast to conven.onal sotening of EOS due to exo.c components in the case of 1 st order transi.on. Essen.al condi.ons: (I) the crossover takes place at rela.vely low densi.es, around 3 .mes the normal nuclear density. (II) the quark majer is strongly interac.ng in the crossover region. 2M g V = G S 2M 2M 1.44M 1.44M This may solve the wellknown problem of rapid cooling of neutron stars with hyperon core. 3. Colorsuperconduc.vity L = L NJL + H 2 X A=2,5,7 X A 0 =2,5,7 qiγ 5 A λ A 0 C ¯ q T )(q T Ciγ 5 A λ A 0 q ) 1 st order transi.on. M/M • At very high density, colorsuperconduc.ng (CSC) phase appears. • CSC sotens EOS, but its effect on the maximum mass is very small. H = 3 4 G s H = 3 4 G s CFL gCFL [5],[6] 1. Maximum mass [2],[3] 2. Internal structure [3] , Γ) = (30 , 0 )

Upload: others

Post on 22-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hadron-Quark Crossover and Massive Hybrid Stars...Hadron-Quark Crossover and Massive Hybrid Stars !!!!! Abstract Introduction Results !! •Theory!!!!TOV!equaon!!!!!Equaon!of!State:!!!!!Mass7Radius(MR)!relaon!for!NS!!!

Hadron-Quark Crossover and Massive Hybrid Stars

                                         

                                         

                                         

                                         

                                         

 Abstract

 Introduction  Results

   

 •Theory        TOV  equa.on                Equa.on  of  State:              Mass-­‐Radius(M-­‐R)  rela.on  for  NS  

   

   •Observa.on      Typical  observed  mass        for  double  NS  binaries:  1.4  M�

one-­‐to-­‐one  correspondence

   

•Recent  discovery  [1]  and  Key  ques.on        In  2010,  NS(PSRJ1614-­‐2230)  with  (1.97±0.04)            was  found

•  Are  there  any  EOS  which  can  explain                  NS?  •  Is  there  Hadron-­‐Quark  transi.on  inside  the  NS?

M�

 New EOS with hadron-quark crossover [2,3]

 Hadronic phase: TNI2u EOS [4]

                                         

 Quark phase: NJL EOS

                                         

 References [1]P.  B.  Demorest  et  al.,  Nature  467  (2004),  1081-­‐1083  [2]K.  Masuda,  T.  Hatsuda  and  T.  Takatsuka,  ApJ  764,  12  (2013)  [3]K.  Masuda,  T.  Hatsuda  and  T.  Takatsuka,              Prog.  Theor.  Exp.  Phys.  073D01  (2013)    [4]S.  Nishizaki,  Y.  Yamamoto,  T.  Takatsuka,  Prog.  Theor.  Phys.  108  (2002),  703.  [5]M.  Buballa,  Physics  Reports  407  (2005),  205-­‐376  [6]T.  Hatsuda  and  T.  Kunihiro,  Physics  Reports  ,  247  (1994),  221-­‐367    

                                         

 Summary

Future  Works  •  Finite  temperature  extension  to  treat  proto-­‐neutron  star  •  Constraints  on  EOS  from  other  observables  (cooling,  …) …  

parameter HK RKH LKW 631.4 602.3 750 3.67 3.67 3.64 9.29 12.36 8.9 5.5 5.5 3.6 135.7 140.7 87

New  EOS  with  Crossover  Hadron  phase:  TNI2u  (hyperons  and  universal  3-­‐body  force)  Quark  phase    :  (2+1)-­‐flavor  NJL  with        -­‐equilibrium  and                                                          charge  neutrality  

���

���

��

� � �� �� � � ��

M/M

������

����

���

��� !

��������

���������

������ ����

����

Pres

sure

(P)

Baryon density (ρ)

hadron crossover quark

strongly  interac.ng  quark  majer  can  sustain                    NS.  It  is  in  contrast  to  the  case  of    

In  this  poster,    we  choose  HK  and           change            in  the  range    

P = PH ⇥1� tanh

�⇢�⇢̄�

2+ PQ ⇥

1 + tanh�⇢�⇢̄�

2pressure  in  a  hadron  phase  

width  of  the  crossover  region  crossover  density  pressure  in  a  quark  phase  

(2+1)-­‐flavor  NJL  with   -­‐equilibrium  and  charge  neutrality  (+                    )  �

LNJL = q̄(i@ �m)q +Gs

2

8X

a=0

[(q̄�aq)2 + (q̄i�5�aq)2]� gv

2[(q̄�µq)

2]

+GD[detq̄(1 + �5)q + h.c]

mean  field    approxima.on  

 Various  EOS  with  hyperons  

specified  by  free  parameters:  ⇢̄, �

e�, µ�

⇤(MeV)

Gs⇤2

GD⇤5

ms(MeV)

mu,d(MeV)

•  strongly  interac.ng  quark  phase  at  rela.vely  low  densi.es    ! 2M�

Only  the  massive  neutron  stars  would  have  strangeness  core  in  a  form  of  quark  majer.  

3 2.05 2.17 -­‐ -­‐ 4 1.89 1.98 -­‐ -­‐ 5 1.73 1.80 1.74 1.80 6 1.60 1.65 1.62 1.66

Maximum  mass    with  TNI2u  H-­‐EOS  

⇢̄

⇢0 gv = Gs gv = 1.5Gs

�/⇢0 = 1 �/⇢0 = 2

gv = Gs gv = 1.5Gs

At            ,  hadron  picture  must  be  correct  ⇢̄� 2� � ⇢0

⇢0

⇢̄

•  key  point  Hypothesis  of    the  hadron-­‐quark  crossover        

(⇢̄,�) = (3⇢0, ⇢0)

Shapiro  delay    

Orbital  phase  (turns)  

Timing  resid

ual  (μs)  

0   1  

2M�

2M�

, P = ⇢2@("/⇢)

@⇢

EOS  

=  

dP

dr= �(M + 4⇡Pr3)("+ P )

✓r2

G� 2Mr

◆�1

M =

Z4⇡r2"(x)dx

P = f(")

Schema.c  picture  of  crossover

TNI2u TNI2   AV18  +  TBF

method G-­‐matrix G-­‐matrix G-­‐matrix RMF universal    

3-­‐body  force ○ × × ×

κ  (MeV) 250 250 192 211 maximum  mass(          ) 1.52 1.08 1.22 1.36 central  density(            ) 11.06 16.10 7.35 5.89 ⇢0

M�

SCL3⇤⌃

Mmax

M�

 •                        does  not  depend  on  H-­‐EOS    Mmax

Universal  3-­‐body  force  delays  hyperon  mixture                                      2.5⇢0 (TNI2) ! 4⇢0 (TNI2u)

��

���

���

���

� � � � �

���(&%#������,#*"�"-' (&%)

���� ��!$

0�0�

����+

����

���./

��� ����

gv = Gs

gv0 gv

Gs 1.5

   

•  Defini.on  of  pressure  P  and  energy  density  ε    

   

•  Condi.on

Using  the  idea  of  smooth  crossover  from  hadronic  majer  with  hyperons  to  quark  majer  with  strangeness,  we  show  the  maximum  mass  of  neutron  stars    with  quark  majer  core  can  be  larger  than                  .  It  is  in  contrast  to  conven.onal  sotening  of  EOS  due  to  exo.c  components  in  the  case  of  1st  order  transi.on.

   Essen.al  condi.ons:  (I)    the  crossover  takes  place  at  rela.vely  low  densi.es,  around  3  .mes  the  normal  nuclear  density.                                                                            (II)    the  quark  majer  is  strongly  interac.ng  in  the  crossover  region.

2M�

gV = GS

2M!

2M!

1.44M!

M! 1.44M!

This  may  solve  the  well-­‐known  problem  of  rapid  cooling  of  neutron  stars  with  hyperon  core.  

3.  Colorsuperconduc.vity L = LNJL +H

2

X

A=2,5,7

X

A0=2,5,7

(q̄i�5⌧A�A0Cq̄T )(qTCi�5⌧A�A0q)

���

���

���

���

��

��

��� �� ��� �� ��

���������������������� �

���������������������������� �

�������

������� �������

��

��

��

��

��

��

��� �� ��� �� ��

������������������������������

��������

��

��

��

1st  order  transi.on.  

���

���

��

� � �� �� � � ��

������ ����

���������

����

�����

M/M

������

•  At  very  high  density,  colorsuperconduc.ng  (CSC)  phase  appears.  •  CSC  sotens  EOS,  but  its  effect  on  the  maximum  mass  is  very  small.  

H =3

4GsH =

3

4Gs

CFL                                      

gCFL                                      

[5],[6]  

1.  Maximum  mass  [2],[3]

2.  Internal  structure  [3] (⇢̄,�) = (3⇢0, ⇢0)