han wang, daniel nezich, jing kong and tomas palacios · han wang, daniel nezich, jing kong and...

10
[email protected] New Applications for Graphene Electronics New Applications for Graphene Electronics Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology [email protected] This work is sponsored by MIT/Army Institute For Soldier Nanotechnologies (ISN) and the Interconnect Focus Center (SRC/FCRP IFC).

Upload: others

Post on 23-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

[email protected]

New Applications for Graphene ElectronicsNew Applications for Graphene Electronics

Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios

Department of Electrical Engineering and Computer ScienceMassachusetts Institute of Technology

[email protected]

This work is sponsored by MIT/Army Institute For Soldier Nanotechnologies (ISN) and the Interconnect Focus Center (SRC/FCRP IFC).

Page 2: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

[email protected]

What is the best application for graphene?

• Electron mobility?− µgraphene = 200,000 cm2/Vs

- Carrier velocity?- ve,GNT = 5×107 cm/s

- Ballistic transport?

0.1 1 10 1000

1

2

3

4

5

6

7

CNT

InSb

GaN

GaAs

InPSi

InAs

Elec

tron

vel

ocity

(107 c

m/s

)

Electric field (kV/cm)

CNT

InGaAsP

µInSb = 80,000 cm2/Vs

Transport properties are not what make this material unique…

Page 3: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

3

Unique properties of graphene

• Ambipolar transport with very high mobility

• Bandgap control through etchinglateral bandgap engineering

• Flexible and transparent material

• Excellent electrostatic control+

• Improved transport properties.-1 0 1 2 3

0.0

200.0

400.0

600.0

800.0

1.0m

I d (A)

Vg (V)

Graph F W1R7C01THfO2 = 40nmW=5µm, L=10µmVDS = 1 V

e-h+

Page 4: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

[email protected]

4

Holes Electrons

New graphene devices: Frequency doublers

•Full wave rectification using a single graphene device•No bandgap required•Field effect transistor: Signal amplification possible•Much higher efficiency than conventional diode or FET frequency doublers

he

Graphene Ambipolar FET

Input signal (f0)

Output signal (2f0)Vp(Dirac Voltage)

Page 5: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

[email protected]

Fabrication of Graphene Frequency Multipliers

Final DeviceOptical Interference Image of graphene flakes

Schematic Structure

H. Wang, D. Nezich, J. Kong, and T. Palacios “Graphene Frequency Multipliers” IEEE Electron Device Letters, May 2009..

Page 6: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

[email protected]

6

OutputInput

•First demonstration of frequency doubling

•Excellent spectral purity high conversion efficiency

•High frequency operation

•Large gain possible

•No bandgap required

Experimental results…Graphene frequency doubler

Graphene is the an excellent material for high performance

frequency multipliers100 1000

0.1

1

10

100

FET frequencymultipliers

Effic

ienc

y (%

)

Frequency (GHz)

x2 x2x2 x3 x2x2x2 x2x2x3 x2x2x2x2

Graphene frequency multiplier

Diode frequency multipliers

?

Page 7: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

[email protected]

Conclusion and Future Work- Ambipolar frequency multipliers based on graphene demonstrated.- Excellent spectral purity with 94% of the output power at useful frequency.- No filtering elements are needed at the output.- Signal amplification possible.

Many other new devices/applications are possible :-Analog to digital converters-Energy harvesting devices-Advanced photodetectors-…

Many other new devices/applications are possible :-Analog to digital converters-Energy harvesting devices-Advanced photodetectors-…

H. Wang, D. Nezich, J. Kong, and T. Palacios, IEEE Electron Device Letters, May 2009.

Page 9: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

[email protected]

Ambipolar Frequency Multipliers

Ambipolar Frequency Multipliers

Conventional FET Frequency Multipliers

II--V CharacteristicsV Characteristics Circuit and Output WaveformCircuit and Output Waveform Output Power SpectrumOutput Power Spectrum

II--V CharacteristicsV Characteristics Circuit and Output WaveformCircuit and Output Waveform Output Power SpectrumOutput Power Spectrum

f

f

Page 10: Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios · Han Wang, Daniel Nezich, Jing Kong and Tomas Palacios Department of Electrical Engineering and Computer Science Massachusetts

[email protected]

Why is spectral purity so high at the output?

Parabolic component of Ids-Vgsmuch larger in fabricated GFETs

Less higher order harmonics, hence higher spectrum purity

Sub-linear Ids-Vgs characteristics in fabricated GFETs 78% maximum

94%