hardware: theweb.cecs.pdx.edu/~mperkows/class_479/lectures479/pe010...s1:0 wibus n1:0 e1:0 w1:0...

42
É C O L E F É D É R E D. Mange, M. Sipper, A. D. Mange, M. Sipper, A. Stauffer Stauffer , and G. , and G. Tempesti Tempesti Self-Repairing and Self-Replicating Self-Repairing and Self-Replicating Hardware: The Hardware: The Embryonics Embryonics Approach Approach 2nd NASA/ 2nd NASA/ DoD DoD Workshop on Workshop on Evolvable Evolvable Hardware Hardware Palo Alto, July 13-15, 2000 Palo Alto, July 13-15, 2000

Upload: others

Post on 30-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

É C O L EF É D É RE

D. Mange, M. Sipper, A. D. Mange, M. Sipper, A. StaufferStauffer, and G. , and G. TempestiTempesti

Self-Repairing and Self-ReplicatingSelf-Repairing and Self-Replicating Hardware: The Hardware: The Embryonics Embryonics ApproachApproach

2nd NASA/2nd NASA/DoD DoD Workshop on Workshop on Evolvable Evolvable HardwareHardwarePalo Alto, July 13-15, 2000Palo Alto, July 13-15, 2000

Page 2: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Caenorhabditis ElegansCaenorhabditis Elegans

11 December 1998

We understand completelythe chromosome and role ofthe genes in the organism ofthe Elegans!

Model for studies in genetics

Page 3: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Multicellular OrganizationMulticellular Organization

959 somatic cells

Page 4: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Embryonics: Why?Embryonics: Why?

Design of robust integrated circuitsDesign of robust integrated circuitsable to:able to:

• self-repair (healing)• self-repair (healing)

• self-replicate (cloning)• self-replicate (cloning)

Page 5: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Embryonics: Why?Embryonics: Why?

Today:Today: • space exploration• space exploration• nuclear plants• nuclear plants• avionics• avionics

Tomorrow:Tomorrow: • molecular electronics• molecular electronics

Page 6: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Embryonics: How?Embryonics: How?

Iterative electronic circuit based onIterative electronic circuit based on3 features:3 features:

• multicellular organization• multicellular organization

• cellular division• cellular division

• cellular differentiation• cellular differentiation

Page 7: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Cellular DivisionCellular Division

mother cell

daughter cell daughter cell

Page 8: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Cellular DifferentiationCellular Differentiation

Pharynx

Intestine

Page 9: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

BioWatchBioWatch

Page 10: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

The Future ofThe Future of Embryonics Embryonics

Page 11: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Two kinds of Programmable ArraysTwo kinds of Programmable ArraysBased on logic functions in cellsBased on logic functions in cells

Based on switchboxesBased on switchboxesMixedMixedMixed

Inputs andfunctions Lookup

Table

ffFF’s

mux

ffFF’s

memorymemory

primaryinputs

Based on switchboxesBased on switchboxesBased on logic functionsBased on logic functions

Page 12: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Based on switchingBased on switching

mux

ff

memory

mux

ff

memory

mux

ff

memory

mux

ff

memory

mux

ff

memory

mux

ff

memory

Page 13: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB
Page 14: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Multicellular OrganizationMulticellular Organization

O R G

CELLgene

A C E

B D F2

1

1 2 3

Y

X

Organism is composed of bio-cellsOrganism is composed of bio-cells

bio-cell bio-cell == phenotype from genotype phenotype from genotype

bio-cell bio-cell == logic circuit (virtual) logic circuit (virtual)

Chromosome Chromosome == memory contents memory contents

Page 15: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

MUXTREE MoleculeMUXTREE Molecule

0 10 1 2 3 4

0 10 1 2 3 4

1 0

NOUT

SIN

CKEOBUS

EOUTEIN

WIBUS

WINWOUT

L2:0 R2:0

1 0 R

SB1 0

EIBUSB

WOBUS

NOBUS NIBUS

SOBUSSIBUS

5 56 7 6 7

INITPD

Q FF

MUXTREE

MUX

0 L2:0 0 R2:0 N1:0 S1:0 E1:0W1:0 0 P R Bswitch block (SB)connection block (CB)

memory and test

1 0456789101112141618 219

CREGMOLCODE = MC19:0

2 30 1

3 12 0

NOBUS

SOBUS

0132

EOBUS1320

WOBUSNOUT

NIBUS

NOUT

NOUT

NOUT

EIBUS

S1:0

WIBUS

N1:0E1:0

W1:0

SIBUS

SB

20 programming bits inmemory of the molecule cell9 memory cells

Block SB8 memory cells

9+8+3=20 memory cells

Bio-cell has several moleculeBio-cell has several moleculecells like thiscells like this

Page 16: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Embryonics LandscapeEmbryonics Landscape

MUX

COMP

MUX

dMOLCODE

MOLECULE

ORG ORG

ORG ORGPopulation level

(population = Σ organisms)

Organismic level (organism = Σ cells)

Cellular level (cell = Σ molecules)

Molecular level (basic FPGA's element)

c

b

a d

e

f

A C E

B D F

RG: ribosomic genome PG: polymerase genome

OG: operative genome ORG

CELL

Bio-cell is one ormore FPGA cells

Operative genomeis the same aschromosome inprevious lectures

Page 17: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

StopWatchStopWatch

MIN SECRESET

STARTSTOP

Max = 5 Max = 9

Page 18: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

StopWatchStopWatch

MIN SECMIN SEC

Page 19: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

StopWatchStopWatch

StopWatch

ORG

CELLgene

1

1 2 3

Y

X

Countmod 6

Countmod10

Countmod 6

Countmod10

4

The whole counter is anorganism

The component module 6 ormodule 10 counter is a bio-cell

A bio-cell is of course manyFPGA cells in this model

•There are two types of bio-cells:

•Count mod 6

•Count mod 10

• The organizm is one-dimensional

• It has four bio-cells

Page 20: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

6 10 6 101 2 3 4

OG: operative genomegene

StopWatchStopWatch

Operative genome => for organism

gene => for bio-cell of the organism4 genes

genes responsible fortwo types of bio-cells inthe phenotype

X

Page 21: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

StopWatchStopWatch

X = (WX+1) mod 4case of X:X = 1: Countmod 6 (10 minutes)X = 2: Countmod 10 (minutes)X = 3: Countmod 6 (10 seconds)X = 4: Countmod 10 (seconds)

OG: operative genome

Page 22: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

StopWatchStopWatch

X=(WX+1)mod4

case of X:

X = ...

operativegenome (OG)

HOXgenesswitchgenesfunctionalgenes

Term from geneticsTerm from genetics

Page 23: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Cellular DifferentiationCellular Differentiation

6 10 6 101 2 3 4

X = 1

6 10 6 101 2 3 4

6 10 6 101 2 3 4

6 10 6 101 2 3 4

2

10t1

3

6t2

10

4

t3

Page 24: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Self-ReplicationSelf-Replication

1

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10

1

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

1

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10t1

1 2

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

t1

1

1

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10t1 t2

1 2 3

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10t2

t1

1

1

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10t1 t2 t3

MOTHER ORG

1 2 3 4

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10t2 t3

t1

1

Page 25: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Self-ReplicationSelf-Replication

1

Y

X

t1 t2 t3

MOTHER ORG

t4

1 2 3 4 1

t2 t3 t4

t1 DAUGHTER ORG # 1

1

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10 6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 101

Y

X

t1 t2 t3

MOTHER ORG

t5t4

1 2 3 4 1 2

t2 t3 t4 t5

t1 DAUGHTER ORG # 1

1

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10 6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 101

Y

X

t1 t2 t3

MOTHER ORG

t5 t6t4

1 2 3 4 1 2 3

t2 t3 t4 t6t5

t1 DAUGHTER ORG # 1

1

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10 6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 101

Y

X

t1 t2 t3

MOTHER ORG

t5 t6 t7t4

DAUGHTER ORG # 2

1 2 3 4 1 2 3 4

t2 t3 t4 t6 t7t5

t1 DAUGHTER ORG # 1

1

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10 6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 101

Y

X

t1 t2 t3

MOTHER ORG

t5 t6 t7t4

DAUGHTER ORG # 2

1 2 3 4 1 2 3 4

t2 t3 t4 t6 t7 t8t5

t1 DAUGHTER ORG # 1 DAUGHTER ORG # 3

1

Directions of self-replication

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10 6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

6 10 6 10 6 10 6 10 6 10 6 106 10 6 10

Page 26: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Self-RepairSelf-Repair

1

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10

ORIGINAL ORG

6 10 6 10 6 10 6 10

1 2 3 4 1 2SPARE CELLS

Direction of self-repair

1

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10

1 2 4 1 2

KILL=1

SCAR

106 10 6 101

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10

1 2 3

KILL=1

SCAR

106 10 6 101

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10

1 2 3 4

KILL=1

NEW ORG NEW ORGSCAR

106 10 6 101

Y

X

6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10

1 2 3 4 1

KILL=1

NEW ORG NEW ORGSCAR SPARE CELL

106 10 6 10

Page 27: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Embryonics LandscapeEmbryonics Landscape

ORG = StopWatch

CELL

MOLECULE

Population level (population = Σ organisms)

Organismic level (organism = Σ cells)

Cellular level ??? (cell = Σ molecules)

Molecular level ??? (basic FPGA's element)

106 10 6

ORG ORG

ORGORG

Page 28: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

MUXTREE MoleculeMUXTREE Molecule

0 10 1 2 3 4

0 10 1 2 3 4

1 0

NOUT

SIN

CKEOBUS

EOUTEIN

WIBUS

WINWOUT

L2:0 R2:0

1 0 R

SB1 0

EIBUSB

WOBUS

NOBUS NIBUS

SOBUSSIBUS

5 56 7 6 7

INITPD

Q FF

MUXTREE

MUX

0 L2:0 0 R2:0 N1:0 S1:0 E1:0W1:0 0 P R Bswitch block (SB)connection block (CB)

memory and test

1 0456789101112141618 219

CREGMOLCODE = MC19:0

2 30 1

3 12 0

NOBUS

SOBUS

0132

EOBUS1320

WOBUSNOUT

NIBUS

NOUT

NOUT

NOUT

EIBUS

S1:0

WIBUS

N1:0E1:0

W1:0

SIBUS

SB

Page 29: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

0 10 1 2 3 4

0 10 1 2 3 4

1 0

NOUT

SIN

CKEOBUS

EOUTEIN

WIBUS

WINWOUT

L2:0 R2:0

1 0 R

SB1 0

EIBUSB

WOBUS

NOBUS NIBUS

SOBUSSIBUS

5 56 7 6 7

INITP

DQ FF

MUXTREE

MUX

WCell has only oneflip-flop

This isprogrammablehardware

Is programmedto virtualhardware

Virtualhardware is aFSM

Page 30: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

0 10 1 2 3 4

0 10 1 2 3 4

1 0

NOUT

SIN

CKEOBUS

EOUTEIN

WIBUS

WINWOUT

L2:0 R2:0

1 0 R

SB1 0

EIBUSB

WOBUS

NOBUS NIBUS

SOBUSSIBUS

5 56 7 6 7

INITP

DQ FF

MUXTREE

MUX

W

NOBUS

NIBUS

NOUT

R

P

INIT

EOBUS

EIBUS

EOUT

EIN

WIN

WOUT

WIBUS

WOBUS

SIBUS

SOBUS

SIN

north

east

west

south

Page 31: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Space DividerSpace Divider

PGX=1

Separation concerns only some signals

Page 32: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Space DividerSpace Divider

PGPG2X=1 3 4 SPARE CELL

Page 33: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Cellular Self-ReplicationCellular Self-Replication

RG+OG2 3 4X=1 SPARE

CELL

Page 34: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Cellular Self-RepairCellular Self-Repair

RG+OG2 3 4X=1 SPARE

CELL

faulty molecule

Page 35: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Cellular Self-RepairCellular Self-Repair

RG+OG2 3 4X=1 SPARE

CELL3 4

KILL=1

Stuck-at-one, stuck-at-zero faultmodels

Page 36: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Molecular ImplementationMolecular Implementation

Page 37: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB
Page 38: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB
Page 39: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Embryonics LandscapeEmbryonics Landscape

MUX

COMP

MUXMOLCODE

ORG = StopWatch

CELL

MOLECULE

Population level (population = Σ organisms)

Organismic level (organism = Σ cells)

Cellular level (cell = Σ molecules)

Molecular level (basic FPGA's element)

106 10 6

ORG ORG

ORGORG

SBDM

SMEM

PGRG+OG

Page 40: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

Artificial GenomeArtificial Genome

X=(WX+1)mod4

case of X:

X = ...

operativegenome (OG)

HOXgenesswitchgenesfunctionalgenes

molecular codes

space divider programming data polymerasegenome (PG)ribosomicgenome (RG)

Page 41: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB
Page 42: Hardware: Theweb.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/PE010...S1:0 WIBUS N1:0 E1:0 W1:0 SIBUS SB 20 programming bits in memory of the molecule cell 9 memory cells Block SB

■■ Draw a modulo 6 counter using only flip-flops andDraw a modulo 6 counter using only flip-flops andmultiplexed constantsmultiplexed constants

■■ Do the same for module 10 counter.Do the same for module 10 counter.■■ Design a complete watch, as in this lecture from suchDesign a complete watch, as in this lecture from such

elements.elements.■■ Explain a methodology of realizing arbitraryExplain a methodology of realizing arbitrary

autonomous machines in the switch/constant cellularautonomous machines in the switch/constant cellularmodelmodel

■■ Explain how to realize arbitrary state machine withExplain how to realize arbitrary state machine withsingle input in this modelsingle input in this model

Problems to solveProblems to solve